
A Simple

Christian Bessihre
LIRMM (UMR 5506 CNRS),

161 rue Ada,
34392 Montpellier cedex 5, France

Email: bessiere@lirmm.fr

Abstract

Reasoning about qualitative temporal information
is essential in many artificial intelligence problems.
In particular, many tasks can be solved using the
interval-based temporal algebra introduced by Allen
(A1183). In this framework, one of the main tasks is to
compute the transitive closure of a network of relations
between intervals (also called path consistency in a
CSP-like terminology). Almost all previous path con-
sistency algorithms proposed in the temporal reason-
ing literature were based on the constraint reasoning
algorithms PC-l and PC-2 (Mac77). In this paper, we
first show that the most efficient of these algorithms is
the one which stays the closest to PC-2. Afterwards,
we propose a new algorithm, using the idea “one sup-
port is sufficient” (as AC-3 (Mac77) does for arc con-
sistency in constraint networks). Actually, to apply
this idea, we simply changed the way composition-
intersection of relations was achieved during the path
consistency process in previous algorithms.

Introduction
Reasoning about qualitative temporal information is
essential in many artificial intelligence applications
such as natural language processing, diagnosis, and
planning. The interval algebra introduced by Allen
(A1183) is among the most suitable frameworks for such
applications. However, qualitative reasoning in inter-
val algebra (or IA) networks (i.e. networks of relations
of the Allen’s algebra constraining pairs of variables
that represent intervals) is inherently intractable, as
shown by Vilain and Kautz (VK86). Allen introduced
a polynomial time algorithm which computes the tran-
sitive closure of an IA network. Transitive closure is
also known as path consistency. Since the consistency
problem is intractable in IA networks, we can expect
path consistency to suffer from incompleteness. One
can easily find, indeed, path consistent IA networks
that are not consistent (A1183). In fact, finding a con-
sistent scenario (a consistent assignment of atomic re-
lations to every edge in the network) is the “easiest”
way to prove the consistency of an IA network. But,

because of intractability, finding a consistent scenario
will need a backtrack-based procedure.

It has widely been shown by the constraint reason-
ing community that a backtracking algorithm which
does not incorporate some look-ahead processing is al-
most always subject to thrashing ((SG95), (HE80),
(Pro93)), and then is not able to produce a solution
in reasonable time. In constraint satisfaction problems
(CSPs), different forms of weak partial consistency can
be computed at each node of the search tree. The trick
is to find the good compromise: pruning as much local
inconsistencies as possible without slowing down too
much the tree search. Usually, the amount of prepro-
cessing performed is somewhere between nothing and
arc consistency (Nad89).

In IA networks, it is not difficult to choose which
amount of partial consistency will fit the best since all
the partial consistency techniques weaker than path
consistency are pruningless (LR92b). Arc consistency
for example does not remove anything in IA networks
because they are already arc consistent. Path consis-
tency is then the only technique usable as a look-ahead
scheme in a backtracking procedure (higher level par-
tial consistencies are surely too expensive: they pro-
duce higher arity constraints).

Thus, the performance of reasoning in IA networks
is completely bound to the performances of path con-
sistency algorithms, as the performance of reasoning
in constraint networks is closely related to the perfor-
mances of arc consistency algorithms (BFR95). But,
if arc consistency has been widely studied in CSPs
((Mac77)) (MH86), (Bes94), (BFR95)), path consis-
tency has involved little interest from the temporal
reasoning community.

Some authors, underlining that path consistency is
time expensive, chose to reduce the expressive power
of Allen’s algebra (usually restricting to pointizable re-
lations) and then produced efficient but quite complex
algorithms to deal with the restricted language they
defined ((GM89), (GS93)).

Temporal Reasoning 375

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

In this paper, we take another way: rehabilitating
path consistency by producing a simple and efficient
algorithm which deals with the overall Allen’s alge-
bra. First, we recall the different path consistency al-
gorithms already presented in the temporal reasoning
literature. They are discussed, and some experimental
comparisons are given, which lead us to consider the
direct adaptation of PC-2 (Mac77) (given in (DMP91))
as the best existing algorithm to perform path consis-
tency in IA networks. Afterwards, we present the ker-
nel of all these algorithms (in which they spend almost
all their running time), namely the function REVISE.
We discuss its behavior and present the main result of
this paper: a simple way to improve its efficiency. Fi-
nally, we give some experiments to show the efficiency
of path consistency with our improvement compared
to the classical version of REVISE.

The paper is organized as follows. Section 2 gives
some background on IA networks. Section 3 recalls
the different existing path consistency algorithms and
discusses them. In section 4, the improvement of the
function REVISE is given. Section 5 experimentally
shows its efficiency. Section 6 gives a summary of the
paper.

Preliminaries
Interval algebra networks
Allen’s interval algebra has been described in (A1183).
The elements of the algebra are relations that may
exist between intervals of time. Given two fixed
intervals (i.e. ‘two elements of {(s,e) E X2/9 <
e}), only one of thirteen atomic relations can hold.
The set A of these thirteen atomic relations is
(b, m, o, f i, di, si, e, s, d, f, oi, mi, bi), with 6 for before,
m for meets, o for overlaps, f for finishes, s for starts,
e for equals, d for during, and Vx E {b, m, o, s, d, f } : xi
for “the converse of x” . For any a! E d, 0-l will denote
the converse of o.

An IA network R (vB92) consists of variables
{i, j, . ..} (whose values are intervals), and arcs (i, j)
labeled with the set Rij of admissible atomic rela-
tions between variables i and j. The relation between
two variables is allowed to be a set (or disjunction) of
atomic relations in order to represent indefinite infor-
mation. Allen allows the relations between two vari-
ables to be any subset of d (213 relations). For any IA
network R we suppose that Rji = R,j’ = {CX-‘/CX E
f&j).

A scenario S of R is an IA network with the same
variables as R, where each arc (i, j) is labeled with a
single atomic relation belonging to Rij. A consistent
instantiation of R is an instantiation of each variable
of R to a fixed interval, such that for each arc (i, j), the

376 Constraint Satisfaction

atomic relation holding between the values of i and j
belongs to Raj (we say that the instantiation of i and j
satisfies Rij). A consistent scenario of R is a scenario
of R admitting a consistent instantiation.

Allen showed that much of the information con-
tained in an IA network can be implicit, due to the
topological constraints of interval relationships. He
gave a transitivity table TrT, which for each pair of
atomic relations (2 and p furnishes the composition
TrT[cr,P] of these relations. We can define the com-
position @I of any relations p and 1c) in 2d as: p @ $J =

The transitive closure of a network R is the network
Rc obtained when all the transitive information is given
explicitly, i.e. when for all length-2 paths i, Ic, j in RC
we have: R~j C R$ @ R~j. Referring to the constraint
reasoning literature, transitive closure is now usually
called path consistency.

The strong result given in the theorem below per-
mits us to forget the instantiations of the variables to
intervals and to deal only with the relations between
variables.

Property 1 ((VP87)) An3 path consistent IA net-
work that is a scenario is also a consistent scenario.

Instance generator
In the following, we will use randomly generated IA
networks to compare the performances of different al-
gorithms. A randomly generated IA network will be
characterized by three parameters:

n, the number of variables involved.

the density D= C/(n * (n - 1)/2), where C is the
number of edges {i, j)’ chosen in the network not to
be labeled by the universal relation (the set d con-
taining the 13 atomic relations). The edges are cho-
sen with a uniform distribution, but not connected
networks2 are discarded.

the tightness T, i.e. the probability that an atomic
relation is forbidden in a non universal relation.

Then, D *n * (n - 1) /2 edges are labeled by a relation
containing an average of (1 - T) * 13 atomic relations3,
the other edges being labeled by the universal relation.

‘In fact for each edge {i, j} chosen, we generate a re-
lation RQ labeling the arc (i, j) and we label the arc (j, i)
with Rji = Ru’.

2A network is said to be “not connected” if there exists
a pair of variables such that all the paths linking them
contain at least one edge labeled by the universal relation.

3When an emp y t relation is generated, it is discarded
and another one is generated.

We do not use the simpler generator used for exam-
ple in (LR92a), in which D = 1.0 and T = 0.5 for
all the instances generated. Indeed, with this gener-
ator, as soon as n > 14, we only produce inconsis-
tent networks, and the more n increases, the easier
it is to find an inconsistency. Then, we cannot com-
pare accurately the behavior of different algorithms.
With the generator we propose, for any value of n, we
can produce over-constrained networks (inconsistent),
under-constrained networks (trivially consistent), and
networks in the “transition range” (in which consis-
tency -or inconsistency- is more difficult to demon-
strate).

The usual measures of the complexity of an algo-
rithm dealing with IA networks are the number of look-
ups to the transitivity table TrT, and the running time.
In fact, with a classical implementation, we will see
that they are often strongly correlated.

Path consistency algorithms
Several path consistency algorithms (PC) have been
proposed in the temporal reasoning literature to com-
pute the transitive closure of an IA network. All of
them incorporate the function REVISE (even if it
is not explicitly written as for Allen’s or Vilain and
Kautz’s versions (Al183), (VK86)). REVISE(i, k, j)
updates Rij by considering the length-2 path from i to
j through tE, Rij c Rij n Rik @ Rkj, and returns true
iff Rij has been modified4.

function REVISE(i, k, j): Boolean;
1 if (l&k = A) or (Rkj = A) then return False; 5
2 TtO;
3 for Q! E I?& do
4 for ,6 E Rkj do T t T U TrT[cq ,8];
5 if Rij c T then return False;
6 Rij + &j n T; Rji t R,j’;
7 return True;

In this section, we will quickly underline that these
different versions of PC are not equivalent in efficiency
simply because they do not propagate in the same way
the modifications caused by REVISE in the network.

The comparison we will make is not exhaustive (it
would have been impossible), but concerns the most
representative versions of PC we found in the litera-
ture. We will use for our comparisons:

a procedure PC1 IA (see Fig.l), presented in
(DMPSl), slightly improved from the version used
for example by Ladkin and Reinefeld (LR92b), which

41t is a direct adaptation of the version given for con-
straint networks in (Mac77, page 112).

5This line is a trivial improvement of the classical RE-
VISE to avoid processing useless length-2 paths.

was adapted from the PC-1 version of path consis-
tency in constraint networks (Mac77), (Mon74).

a procedure PC- VK (see Fig.l), due to Vilain and
Kautz (VK86), which is a slight improvement of
Allen’s version (Al183).

a procedure PC-VB (see Fig.2), given in (vB92, page
314).

a procedure PG?IA (see Fig.2), adapted from the
PC-2 version of path consistency in constraint net-
works (Mac77). It is presented in (DMP91).

Some of these procedures have been first presented in
the context of point algebra networks. But the princi-
ple is exactly the same as for interval algebra networks.

procedure PC~IA;
1 repeat
2 CHANGE+ Fake;
3 fork,i,j+ltondoifi#j#k#ithen
4 if REVISE(i, k, j) then

i
if &j = 0 then exit “inconsistency”;
CHANGE+- True;

7 until not CHANGE;

procedure PC-VK;
1 Q + U&M < jl;
2 while Q # 0 do
3 select and delete an arc (i, j) from &;
4 for k # i, k # j do

x
if REVISE(i, j, k) then

if &k = 8 then exit “inconsistency”;
7 else Arwnd(Q, ((4 k))); a if REVISE(k, i, j) then
9 if Rkj = 8 then exit “inconsistency”;
10 else Awend(Q, Uk,j))>;

Figure 1: procedures PC~~A and PC-VK.

The results given Table 1 lead us to a few comments
on the four algorithms tested. First, it is clear that
the number of table look-ups is strongly correlated to
the number of times the function REVISE is called
(since all the algorithms use the same function RE-
VISE). PC~IA, which has no technique of propagation
of the modifications caused by REVISE (it checks the
overall network at each loop, until no more changes
occur) is obviously the worst algorithm for the number
of table look-ups. PC-VK, which maintains a list of
modified arcs to propagate can circumscribe the prop-
agation of modifications, and then, has a better behav-
ior. PC-VB can be seen as a refined version of PC-VK
where the list of modified arcs (i, j) to propagate has
been replaced by the set of length-2 paths (i, j, k) and

Temporal Reasoning 377

n/D T PClIA PC-VK PC-VB PC2ZA

50/0.5/o. 1 #TableLookups 2,108,126 2,083,158 1,735,833 1,041,582
time (in sec.) 1.03

i4,260,290
1.02 1.15 0.66

50/0.5/0.38 #TableLookups 4,935,570 3,797,018 2,723,227
time (in sec.) 8.80 3.03 2.79 1.95

50/0.5/0.6 #TableLookups 35,263 29,112 27,802 3,504
time (in sec.) 0.03 0.02 0.18 0.08

Table 1: The four algorithms on three representative types of random problems: under-, over-, and middle-
constrained (500 instances per type). 208 among 500 instances of (50/0.5/0.38) were found to have a path consistent
closure. These networks are then in the transition range, where much propagation is needed to find the result.
500 among 500 instances of (50/0.5/0.1), and 0 among 500 instances of (50/0.5/0.6) were found to have a path
consistent closure.

procedures PC-VB and PC&A;
1 Q+U;<. Related-Paths(i, j); 6
2 while Q 4 0 do
3 select and delete a path (i, k, j) from Q;

i
if REVISE(i, k, j) then

if Rij = 0 then exit “inconsistency”;
6 else Q t Q U Related-Paths(i, j);

function Related-Paths(i, j); /* for PC-VB */
1 return ((6 j, k), 6, id/k # i,k # jh

function Related-Paths(i, j); /* for PC2ZA */
1 return {(i, j, k)/i < k, k # j} U {(k, i, j)/k < j, k # i}

W&j, 9/k < i, k # j) U ((j, i, W/j < k, k # i);

Figure 2: procedures PC-VB and PC21A (they only
differ by their function Related-Paths).

(k, i, j) to check with REVISE. The function Related-
Paths(i, j) returns the set of length-2 paths that need
to be considered if Rij is changed. The use of a set
instead of a list, and of length-2 paths instead of arcs
permits to avoid useless calls to REVISE (an (i, k, j)
cannot belong twice to the set). Finally, PC21A, also
based on a set of length-2 paths to check, handles them
via its function Related-Paths(i, j) in order to max-
imize “collisions” of length-2 paths in the set, then
minimizing the number of length-2 paths to check.

From these comments, the four algorithms can be
ordered from PC1 IA to PC21A via PC-VK and PC-
vB, with respect to the number of table look-ups they
perform.

Usually, running time and the number of table look-
ups are strongly correlated. However, when path con-
sistency is performed on very easy networks (under-
constrained or over-constrained), where no propaga-

‘For pC2IA it is eq
i, k # j}“.

uivalent to “Q t {(i, k, j)/i < j, k #

378 Constraint Satisfaction

tion is necessary (the network is already path consis-
tent or trivially inconsistent), the time needed by PC-
vB and PC21A to initialize the o(n3) set of length-2
paths can degrade their overall performance to such an
extent that the time they need to achieve path consis-
tency can exceed the time needed by PC~IA or PC-VK
(see Table 1). Fortunately, when path consistency is
used at each step of a search procedure, this expensive
initialization is performed only once at the root of the
search tree, and then its cost is widely outweighed by
the savings it implies during the search. Nevertheless,
on very large networks (more than 300 variables), the
O(n3) space of the set of length-2 paths used in PC-
vB and PC21A can become a real drawback on per-
sonal machines, and then PC-VK can advantageously
be used.

Improving the function REVISE

As we have seen in the previous section, REVISE is
the kernel of all path consistency algorithms. They
differ in the way they propagate the modifications, but
they all use the same function REVISE. Hence, an
improvement of the efficiency of this function would
yield an equivalent improvement of the efficiency of
any PC algorithm.

We can first remark that REVISE(i, Ic, j) computes
the complete composition of .&k and Rkj before test-
ing whether Rij is included in or not. It would be
sufficient to check for each atomic relation +-y in Rij
if there exist Q in &k and P in Rkj such that y is
in TrT[a, p]. In fact, it is sufficient to find a “sup-
port” for each y in Rij, i.e. a proof of its viability in
the length-2 path (i, Ic, j). This idea comes from the
function REVISE(i, j) used in AC-3 to compute arc
consistency in constraint networks (Mac77). However,
if for each y in Rij we simply seek a in Rik and ,0 in
Rkj such that y is in TrT[a, ,0] we will have a worst-case
number of table look-ups for REVISE(i, k, j) bounded
by IRijl X IRikl X IRkjl, i.e. O(]d13), while it was only

bounded by IRik I X IRkj I, i.e. 0(Id]“), in the classical
version. We can avoid this trap by using the following
property of IA networks (the proof is given in (Bes96)).
Property 2 R being an IA network, and i, j, k three
variables in this network:

7 E Rik 8 Rkj +S ZY E &/TrT[o-‘, y] fJ Rkj # 8

Then, for each 7 in Rij we can seek only a! in Rik
such that TrT[a-‘, r] intersects Rkj. The number of
table look-ups is then bounded by IRijl x IRik I, i.e.
O(]d12)7. This is done in the function REVISE2.

function REVISE2(i, k, j): Boolean;
1 if (&k: = A) or (Rkj = A) then return False;
2 CHANGE t False;
3 for 7 E Rij do

begin
for a E & do

if TrT[a-’ , y] II Rkj # 8 then goto 2;
Rij + f&j \ (7);

7 CHANGE t True;
end

8 if CHANGE then Rji t R,j’;
9 return CHANGE;

A trivial improvement of REVISE2 is performed in
REVISES. Indeed, the complexity of REVISE2 being
bounded by I Rij] x I Rik I, it is better to test first which
one of I Rik I and] Rkj I is the largest relation, and then
to call REVISE2 with the appropriate path: (i, Ic, j)
if] Rik] < 1 Rkj I, (j, k, i) otherwise. The complexity of
REVISE3 is then bounded by lRij/ XVhin(lRikl, IRkjI).

function REVISE3(i, k, j): Boolean;
1 if lfhlcl < IRkjl

2 then return REVISE2(i, k, j)
3 else return REVISE2(j, k, i);

Experimental results
For our experiments, we chose to compare the classi-
cal version of PC2 IA with a version of PC2[A using
the function REVISE3 instead of REVISE (named
PC~~A-3). This choice is guided by the good perfor-
mances of PC2 IA when compared to the other path
consistency algorithms. Nevertheless, REVISE3 could
be implemented in any of the four algorithms presented
in Section 3. The gain would reach the same ratio.

We tested PC2lA and PC~~A-3 on different kinds of
randomly generated interval networks. We took differ-
ent sizes of networks (from 30 to 150 variables), differ-
ent densities (from 0.1 to 1.0)) and for each type, we

71n the complexity analysis, we consider only the num-
ber of table look-ups. The n and U operations on relations
are both considered as O(1) operations since we can com-
pute them in one cycle with a bit-vector implementation of
relations (VK86).

2.3

2

1.5

0.5

-0.1 0.2 0.3
tig!L

0.5 0.6 0.7

Figure 3: PC2 IA and PC~~A-3 on randomly generated
networks with 50 variables and a density of 0.5 (500
instances for each value of the tightness).

varied the tightness from under-constrained to over-
constrained networks. Fig. 3 reports the results for
only one of these experiments; but it is representative
of the general behavior, which is rather stable when
changing the parameter values. (Complete experimen-
tation is given in (Bes96)).

These results show how much the new function RE-
VISE3 overcomes the classical REVISE. Except on
over-constrained networks, PC21~-3 is always 4 to 7
times better than PC21A in number of table look-ups,
and 2 to 4 times faster.

Summary and discussion
In this paper, we first showed that PC21,4 is the path
consistency algorithm which has the best behavior
when some propagation is necessary to compute the
transitive closure of an IA network (i.e. the cases where
this computation is the most expensive). Afterwards,
we discussed the way composition-intersection of rela-

Temporal Reasoning 379

tions is performed in PC algorithms, and we proposed
an improved version of the function REVISE, namely
REVISE3. We showed its efficiency on randomly gen-
erated IA networks.

The composition-intersection of relations being a
general operation, not only useful in IA networks, the
technique presented here will be usable in any type
of networks based on an algebra where composition-
intersection of relations is necessary. This will be
the case in n-interval algebras (LigSO), (Lad86), or
in networks representing spatial information (EH90),
(RCC92).

We claim that the greater the number of relations in
the algebra, the more REVISE3 will outperform RE-
VISE. This is due to the feature of REVISE3, which
looks for an unique “support” for each atomic rela-
tion while REVISE checks all the possible supports.
This can be roughly compared to the respective fea-
tures of AC-3 and AC-4 in constraint networks, where
the more domain sizes increase, the more AC-3 outper-
forms AC-4. On algebras with many relations it would
be worthwhile to study whether an AC-6 like version
((Bes94), (Sings)) of PC would be interesting or not,
and at what number of atomic relations it would start
becoming efficient.

Acknowledgments I would like to thank Y.
Hamadi, J.C. Regin, and J.F. Vilarem, who helped me
to carry out the experiments, and Ian King who gave
me the C++ code of his random number generator.

References
Allen, J. 1983. Maintaining knowledge about
temporal intervals. Communications of the ACM
26(11):832-843.
Bessiere, C.; Freuder, E.; and Regin, J. 1995. Using
inference to reduce arc consistency computation. In
Proceedings IJCAI’95, 592-598.

Bessiere, C. 1994. Arc-consistency and arc-
consistency again. Artificial Intelligence 65:179-190.
Bessiere, C. 1996. A simple way to improve path
consistency processing in interval algebra networks.
Technical Report 96-001, LIRMM.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49:63.-95.

Egenhofer, M., and Herring, J. 1990. A mathematical
framework for the definition of topological relation-
ships. In Fourth International Symposium on Spatial
Data Handling, 803-813.
Gerevini, A., and Schubert, L. 1993. Efficient tem-
poral reasoning through timegraphs. In Proceedings
IJCAI’93, 648-654.

Ghallab, M., and Mounir Alaoui, A. 1989. Managing
efficiently temporal relations through indexed span-
ning trees. In Proceedings IJCAI’89, 1297-1303.

Haralick, R., and Elliot, G. 1980. Increasing tree
seach efficiency for constraint satisfaction problems.
Artificial Intelligence 141263-313.

Ladkin, P., and Reinefeld, A. 1992a. Effective solu-
tion of qualitative interval constraint problems. Arti-
ficial Intelligence 57:105-124.

Ladkin, P., and Reinefeld, A. 1992b. A symbolic
approach to interval constraint problems. In LNCS
737. Springer-Verlag. 65-84.

Ladkin, P. 1986. Time representation: A taxonomy of
interval relations. In Proceedings AA AI’86, 360-366.

Ligozat, G. 1990. Weak representations of interval
algebra. In Proceedings AAAI’SO, 715-720.

Mackworth, A. 1977. Consistency in networks of
relations. Artificial Intelligence 8(1):99-118.

Mohr, R., and Henderson, T. 1986. Arc and path
consistency revisited. Artificial Intelligence 28:225-
233.

Montanari, U. 1974. Networks of constraints: Fun-
damental properties and applications to picture pro-
cessing. Information Science 7:95-132.

Nadel, B. 1989. Constraint satisfaction algorithms.
Computational Intelligence 5~188-224.

Prosser , P. 1993. Hybrid algorithms for the con-
straint satisfaction problem. Computational Intelli-
gence 9(3):268-299.

Randell, D.; Cui, Z.; and Cohn, A. 1992. An interval
logic for space based on ‘connection’. In Proceedings
ECAI’92, 394-398.

Singh, M. 1995. Path consistency revisited. In Pro-
ceedings TAI’95.

Smith, B., and Grant, S. 1995. Sparse constraint
graphs and exceptionally hard problems. In Proceed-
ings IJCAI’95, 646-651.

Valdes-Perez, R. 1987. The satisfiability of temporal
constraint networks. In Proceedings AAAI’87, 256-
260.

van Beek, P. 1992. Reasoning about qualitative tem-
poral information. Artificial Intelligence 58:297-326.

Vilain, M., and Kautz, H. 1986. Constraint propaga-
tion algorithms for temporal reasoning. In Proceed-
ings AAAI’86, 377-382.

380 Constraint Satisfaction

