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Abstract 

Reasoning about qualitative temporal information 
is essential in many artificial intelligence problems. 
In particular, many tasks can be solved using the 
interval-based temporal algebra introduced by Allen 
(A1183). In this framework, one of the main tasks is to 
compute the transitive closure of a network of relations 
between intervals (also called path consistency in a 
CSP-like terminology). Almost all previous path con- 
sistency algorithms proposed in the temporal reason- 
ing literature were based on the constraint reasoning 
algorithms PC-l and PC-2 (Mac77). In this paper, we 
first show that the most efficient of these algorithms is 
the one which stays the closest to PC-2. Afterwards, 
we propose a new algorithm, using the idea “one sup- 
port is sufficient” (as AC-3 (Mac77) does for arc con- 
sistency in constraint networks). Actually, to apply 
this idea, we simply changed the way composition- 
intersection of relations was achieved during the path 
consistency process in previous algorithms. 

Introduction 
Reasoning about qualitative temporal information is 
essential in many artificial intelligence applications 
such as natural language processing, diagnosis, and 
planning. The interval algebra introduced by Allen 
(A1183) is among the most suitable frameworks for such 
applications. However, qualitative reasoning in inter- 
val algebra (or IA) networks (i.e. networks of relations 
of the Allen’s algebra constraining pairs of variables 
that represent intervals) is inherently intractable, as 
shown by Vilain and Kautz (VK86). Allen introduced 
a polynomial time algorithm which computes the tran- 
sitive closure of an IA network. Transitive closure is 
also known as path consistency. Since the consistency 
problem is intractable in IA networks, we can expect 
path consistency to suffer from incompleteness. One 
can easily find, indeed, path consistent IA networks 
that are not consistent (A1183). In fact, finding a con- 
sistent scenario (a consistent assignment of atomic re- 
lations to every edge in the network) is the “easiest” 
way to prove the consistency of an IA network. But, 

because of intractability, finding a consistent scenario 
will need a backtrack-based procedure. 

It has widely been shown by the constraint reason- 
ing community that a backtracking algorithm which 
does not incorporate some look-ahead processing is al- 
most always subject to thrashing ((SG95), (HE80), 
(Pro93)), and then is not able to produce a solution 
in reasonable time. In constraint satisfaction problems 
(CSPs), different forms of weak partial consistency can 
be computed at each node of the search tree. The trick 
is to find the good compromise: pruning as much local 
inconsistencies as possible without slowing down too 
much the tree search. Usually, the amount of prepro- 
cessing performed is somewhere between nothing and 
arc consistency (Nad89). 

In IA networks, it is not difficult to choose which 
amount of partial consistency will fit the best since all 
the partial consistency techniques weaker than path 
consistency are pruningless (LR92b). Arc consistency 
for example does not remove anything in IA networks 
because they are already arc consistent. Path consis- 
tency is then the only technique usable as a look-ahead 
scheme in a backtracking procedure (higher level par- 
tial consistencies are surely too expensive: they pro- 
duce higher arity constraints). 

Thus, the performance of reasoning in IA networks 
is completely bound to the performances of path con- 
sistency algorithms, as the performance of reasoning 
in constraint networks is closely related to the perfor- 
mances of arc consistency algorithms (BFR95). But, 
if arc consistency has been widely studied in CSPs 
((Mac77)) (MH86), (Bes94), (BFR95)), path consis- 
tency has involved little interest from the temporal 
reasoning community. 

Some authors, underlining that path consistency is 
time expensive, chose to reduce the expressive power 
of Allen’s algebra (usually restricting to pointizable re- 
lations) and then produced efficient but quite complex 
algorithms to deal with the restricted language they 
defined ((GM89), (GS93)). 
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In this paper, we take another way: rehabilitating 
path consistency by producing a simple and efficient 
algorithm which deals with the overall Allen’s alge- 
bra. First, we recall the different path consistency al- 
gorithms already presented in the temporal reasoning 
literature. They are discussed, and some experimental 
comparisons are given, which lead us to consider the 
direct adaptation of PC-2 (Mac77) (given in (DMP91)) 
as the best existing algorithm to perform path consis- 
tency in IA networks. Afterwards, we present the ker- 
nel of all these algorithms (in which they spend almost 
all their running time), namely the function REVISE. 
We discuss its behavior and present the main result of 
this paper: a simple way to improve its efficiency. Fi- 
nally, we give some experiments to show the efficiency 
of path consistency with our improvement compared 
to the classical version of REVISE. 

The paper is organized as follows. Section 2 gives 
some background on IA networks. Section 3 recalls 
the different existing path consistency algorithms and 
discusses them. In section 4, the improvement of the 
function REVISE is given. Section 5 experimentally 
shows its efficiency. Section 6 gives a summary of the 
paper. 

Preliminaries 
Interval algebra networks 
Allen’s interval algebra has been described in (A1183). 
The elements of the algebra are relations that may 
exist between intervals of time. Given two fixed 
intervals (i.e. ‘two elements of {(s,e) E X2/9 < 
e}), only one of thirteen atomic relations can hold. 
The set A of these thirteen atomic relations is 
(b, m, o, f i, di, si, e, s, d, f, oi, mi, bi), with 6 for before, 
m for meets, o for overlaps, f for finishes, s for starts, 
e for equals, d for during, and Vx E {b, m, o, s, d, f } : xi 
for “the converse of x” . For any a! E d, 0-l will denote 
the converse of o. 

An IA network R (vB92) consists of variables 
{i, j, . ..} (whose values are intervals), and arcs (i, j) 
labeled with the set Rij of admissible atomic rela- 
tions between variables i and j. The relation between 
two variables is allowed to be a set (or disjunction) of 
atomic relations in order to represent indefinite infor- 
mation. Allen allows the relations between two vari- 
ables to be any subset of d (213 relations). For any IA 
network R we suppose that Rji = R,j’ = {CX-‘/CX E 
f&j). 

A scenario S of R is an IA network with the same 
variables as R, where each arc (i, j) is labeled with a 
single atomic relation belonging to Rij. A consistent 
instantiation of R is an instantiation of each variable 
of R to a fixed interval, such that for each arc (i, j), the 
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atomic relation holding between the values of i and j 
belongs to Raj (we say that the instantiation of i and j 
satisfies Rij). A consistent scenario of R is a scenario 
of R admitting a consistent instantiation. 

Allen showed that much of the information con- 
tained in an IA network can be implicit, due to the 
topological constraints of interval relationships. He 
gave a transitivity table TrT, which for each pair of 
atomic relations (2 and p furnishes the composition 
TrT[cr,P] of these relations. We can define the com- 
position @I of any relations p and 1c) in 2d as: p @ $J = 

The transitive closure of a network R is the network 
Rc obtained when all the transitive information is given 
explicitly, i.e. when for all length-2 paths i, Ic, j in RC 
we have: R~j C R$ @ R~j. Referring to the constraint 
reasoning literature, transitive closure is now usually 
called path consistency. 

The strong result given in the theorem below per- 
mits us to forget the instantiations of the variables to 
intervals and to deal only with the relations between 
variables. 

Property 1 ((VP87)) An3 path consistent IA net- 
work that is a scenario is also a consistent scenario. 

Instance generator 
In the following, we will use randomly generated IA 
networks to compare the performances of different al- 
gorithms. A randomly generated IA network will be 
characterized by three parameters: 

n, the number of variables involved. 

the density D= C/(n * (n - 1)/2), where C is the 
number of edges {i, j)’ chosen in the network not to 
be labeled by the universal relation (the set d con- 
taining the 13 atomic relations). The edges are cho- 
sen with a uniform distribution, but not connected 
networks2 are discarded. 

the tightness T, i.e. the probability that an atomic 
relation is forbidden in a non universal relation. 

Then, D *n * (n - 1) /2 edges are labeled by a relation 
containing an average of (1 - T) * 13 atomic relations3, 
the other edges being labeled by the universal relation. 

‘In fact for each edge {i, j} chosen, we generate a re- 
lation RQ labeling the arc (i, j) and we label the arc (j, i) 
with Rji = Ru’. 

2A network is said to be “not connected” if there exists 
a pair of variables such that all the paths linking them 
contain at least one edge labeled by the universal relation. 

3When an emp y t relation is generated, it is discarded 
and another one is generated. 



We do not use the simpler generator used for exam- 
ple in (LR92a), in which D = 1.0 and T = 0.5 for 
all the instances generated. Indeed, with this gener- 
ator, as soon as n > 14, we only produce inconsis- 
tent networks, and the more n increases, the easier 
it is to find an inconsistency. Then, we cannot com- 
pare accurately the behavior of different algorithms. 
With the generator we propose, for any value of n, we 
can produce over-constrained networks (inconsistent), 
under-constrained networks (trivially consistent), and 
networks in the “transition range” (in which consis- 
tency -or inconsistency- is more difficult to demon- 
strate). 

The usual measures of the complexity of an algo- 
rithm dealing with IA networks are the number of look- 
ups to the transitivity table TrT, and the running time. 
In fact, with a classical implementation, we will see 
that they are often strongly correlated. 

Path consistency algorithms 
Several path consistency algorithms (PC) have been 
proposed in the temporal reasoning literature to com- 
pute the transitive closure of an IA network. All of 
them incorporate the function REVISE (even if it 
is not explicitly written as for Allen’s or Vilain and 
Kautz’s versions (Al183), (VK86)). REVISE(i, k, j) 
updates Rij by considering the length-2 path from i to 
j through tE, Rij c Rij n Rik @ Rkj, and returns true 
iff Rij has been modified4. 

function REVISE(i, k, j): Boolean; 
1 if (l&k = A) or (Rkj = A) then return False; 5 
2 TtO; 
3 for Q! E I?& do 
4 for ,6 E Rkj do T t T U TrT[cq ,8]; 
5 if Rij c T then return False; 
6 Rij + &j n T; Rji t R,j’; 
7 return True; 

In this section, we will quickly underline that these 
different versions of PC are not equivalent in efficiency 
simply because they do not propagate in the same way 
the modifications caused by REVISE in the network. 

The comparison we will make is not exhaustive (it 
would have been impossible), but concerns the most 
representative versions of PC we found in the litera- 
ture. We will use for our comparisons: 

a procedure PC1 IA (see Fig.l), presented in 
(DMPSl), slightly improved from the version used 
for example by Ladkin and Reinefeld (LR92b), which 

41t is a direct adaptation of the version given for con- 
straint networks in (Mac77, page 112). 

5This line is a trivial improvement of the classical RE- 
VISE to avoid processing useless length-2 paths. 

was adapted from the PC-1 version of path consis- 
tency in constraint networks (Mac77), (Mon74). 

a procedure PC- VK (see Fig.l), due to Vilain and 
Kautz (VK86), which is a slight improvement of 
Allen’s version (Al183). 

a procedure PC-VB (see Fig.2), given in (vB92, page 
314). 

a procedure PG?IA (see Fig.2), adapted from the 
PC-2 version of path consistency in constraint net- 
works (Mac77). It is presented in (DMP91). 

Some of these procedures have been first presented in 
the context of point algebra networks. But the princi- 
ple is exactly the same as for interval algebra networks. 

procedure PC~IA; 
1 repeat 
2 CHANGE+ Fake; 
3 fork,i,j+ltondoifi#j#k#ithen 
4 if REVISE(i, k, j) then 

i 
if &j = 0 then exit “inconsistency”; 
CHANGE+- True; 

7 until not CHANGE; 

procedure PC-VK; 
1 Q + U&M < jl; 
2 while Q # 0 do 
3 select and delete an arc (i, j) from &; 
4 for k # i, k # j do 

x 
if REVISE(i, j, k) then 

if &k = 8 then exit “inconsistency”; 
7 else Arwnd(Q, ((4 k))); a if REVISE(k, i, j) then 
9 if Rkj = 8 then exit “inconsistency”; 
10 else Awend(Q, Uk,j))>; 

Figure 1: procedures PC~~A and PC-VK. 

The results given Table 1 lead us to a few comments 
on the four algorithms tested. First, it is clear that 
the number of table look-ups is strongly correlated to 
the number of times the function REVISE is called 
(since all the algorithms use the same function RE- 
VISE). PC~IA, which has no technique of propagation 
of the modifications caused by REVISE (it checks the 
overall network at each loop, until no more changes 
occur) is obviously the worst algorithm for the number 
of table look-ups. PC-VK, which maintains a list of 
modified arcs to propagate can circumscribe the prop- 
agation of modifications, and then, has a better behav- 
ior. PC-VB can be seen as a refined version of PC-VK 
where the list of modified arcs (i, j) to propagate has 
been replaced by the set of length-2 paths (i, j, k) and 
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n/D T PClIA PC-VK PC-VB PC2ZA 

50/0.5/o. 1 #TableLookups 2,108,126 2,083,158 1,735,833 1,041,582 
time (in sec.) 1.03 

i4,260,290 
1.02 1.15 0.66 

50/0.5/0.38 #TableLookups 4,935,570 3,797,018 2,723,227 
time (in sec.) 8.80 3.03 2.79 1.95 

50/0.5/0.6 #TableLookups 35,263 29,112 27,802 3,504 
time (in sec.) 0.03 0.02 0.18 0.08 

Table 1: The four algorithms on three representative types of random problems: under-, over-, and middle- 
constrained (500 instances per type). 208 among 500 instances of (50/0.5/0.38) were found to have a path consistent 
closure. These networks are then in the transition range, where much propagation is needed to find the result. 
500 among 500 instances of (50/0.5/0.1), and 0 among 500 instances of (50/0.5/0.6) were found to have a path 
consistent closure. 

procedures PC-VB and PC&A; 
1 Q+U;<. Related-Paths(i, j); 6 
2 while Q 4 0 do 
3 select and delete a path (i, k, j) from Q; 

i 
if REVISE(i, k, j) then 

if Rij = 0 then exit “inconsistency”; 
6 else Q t Q U Related-Paths(i, j); 

function Related-Paths(i, j); /* for PC-VB */ 
1 return ((6 j, k), 6, id/k # i,k # jh 

function Related-Paths(i, j); /* for PC2ZA */ 
1 return {(i, j, k)/i < k, k # j} U {(k, i, j)/k < j, k # i} 

W&j, 9/k < i, k # j) U ((j, i, W/j < k, k # i); 

Figure 2: procedures PC-VB and PC21A (they only 
differ by their function Related-Paths). 

(k, i, j) to check with REVISE. The function Related- 
Paths(i, j) returns the set of length-2 paths that need 
to be considered if Rij is changed. The use of a set 
instead of a list, and of length-2 paths instead of arcs 
permits to avoid useless calls to REVISE (an (i, k, j) 
cannot belong twice to the set). Finally, PC21A, also 
based on a set of length-2 paths to check, handles them 
via its function Related-Paths(i, j) in order to max- 
imize “collisions” of length-2 paths in the set, then 
minimizing the number of length-2 paths to check. 

From these comments, the four algorithms can be 
ordered from PC1 IA to PC21A via PC-VK and PC- 
vB, with respect to the number of table look-ups they 
perform. 

Usually, running time and the number of table look- 
ups are strongly correlated. However, when path con- 
sistency is performed on very easy networks (under- 
constrained or over-constrained), where no propaga- 

‘For pC2IA it is eq 
i, k # j}“. 

uivalent to “Q t {(i, k, j)/i < j, k # 
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tion is necessary (the network is already path consis- 
tent or trivially inconsistent), the time needed by PC- 
vB and PC21A to initialize the o(n3) set of length-2 
paths can degrade their overall performance to such an 
extent that the time they need to achieve path consis- 
tency can exceed the time needed by PC~IA or PC-VK 
(see Table 1). Fortunately, when path consistency is 
used at each step of a search procedure, this expensive 
initialization is performed only once at the root of the 
search tree, and then its cost is widely outweighed by 
the savings it implies during the search. Nevertheless, 
on very large networks (more than 300 variables), the 
O(n3) space of the set of length-2 paths used in PC- 
vB and PC21A can become a real drawback on per- 
sonal machines, and then PC-VK can advantageously 
be used. 

Improving the function REVISE 

As we have seen in the previous section, REVISE is 
the kernel of all path consistency algorithms. They 
differ in the way they propagate the modifications, but 
they all use the same function REVISE. Hence, an 
improvement of the efficiency of this function would 
yield an equivalent improvement of the efficiency of 
any PC algorithm. 

We can first remark that REVISE(i, Ic, j) computes 
the complete composition of .&k and Rkj before test- 
ing whether Rij is included in or not. It would be 
sufficient to check for each atomic relation +-y in Rij 
if there exist Q in &k and P in Rkj such that y is 
in TrT[a, p]. In fact, it is sufficient to find a “sup- 
port” for each y in Rij, i.e. a proof of its viability in 
the length-2 path (i, Ic, j). This idea comes from the 
function REVISE(i, j) used in AC-3 to compute arc 
consistency in constraint networks (Mac77). However, 
if for each y in Rij we simply seek a in Rik and ,0 in 
Rkj such that y is in TrT[a, ,0] we will have a worst-case 
number of table look-ups for REVISE(i, k, j) bounded 
by IRijl X IRikl X IRkjl, i.e. O(]d13), while it was only 



bounded by IRik I X IRkj I, i.e. 0( Id]“), in the classical 
version. We can avoid this trap by using the following 
property of IA networks (the proof is given in (Bes96)). 
Property 2 R being an IA network, and i, j, k three 
variables in this network: 

7 E Rik 8 Rkj +S ZY E &/TrT[o-‘, y] fJ Rkj # 8 

Then, for each 7 in Rij we can seek only a! in Rik 
such that TrT[a-‘, r] intersects Rkj. The number of 
table look-ups is then bounded by IRijl x IRik I, i.e. 
O(]d12)7. This is done in the function REVISE2. 

function REVISE2(i, k, j): Boolean; 
1 if (&k: = A) or (Rkj = A) then return False; 
2 CHANGE t False; 
3 for 7 E Rij do 

begin 
for a E & do 

if TrT[a-’ , y] II Rkj # 8 then goto 2; 
Rij + f&j \ (7); 

7 CHANGE t True; 
end 

8 if CHANGE then Rji t R,j’; 
9 return CHANGE; 

A trivial improvement of REVISE2 is performed in 
REVISES. Indeed, the complexity of REVISE2 being 
bounded by I Rij ] x I Rik I, it is better to test first which 
one of I Rik I and ] Rkj I is the largest relation, and then 
to call REVISE2 with the appropriate path: (i, Ic, j) 
if ] Rik ] < 1 Rkj I, (j, k, i) otherwise. The complexity of 
REVISE3 is then bounded by lRij/ XVhin(lRikl, IRkjI). 

function REVISE3(i, k, j): Boolean; 
1 if lfhlcl < IRkjl 

2 then return REVISE2(i, k, j) 
3 else return REVISE2(j, k, i); 

Experimental results 
For our experiments, we chose to compare the classi- 
cal version of PC2 IA with a version of PC2[A using 
the function REVISE3 instead of REVISE (named 
PC~~A-3). This choice is guided by the good perfor- 
mances of PC2 IA when compared to the other path 
consistency algorithms. Nevertheless, REVISE3 could 
be implemented in any of the four algorithms presented 
in Section 3. The gain would reach the same ratio. 

We tested PC2lA and PC~~A-3 on different kinds of 
randomly generated interval networks. We took differ- 
ent sizes of networks (from 30 to 150 variables), differ- 
ent densities (from 0.1 to 1.0)) and for each type, we 

71n the complexity analysis, we consider only the num- 
ber of table look-ups. The n and U operations on relations 
are both considered as O(1) operations since we can com- 
pute them in one cycle with a bit-vector implementation of 
relations (VK86). 

2.3 

2 

1.5 

0.5 

-0.1 0.2 0.3 
tig!L 

0.5 0.6 0.7 

Figure 3: PC2 IA and PC~~A-3 on randomly generated 
networks with 50 variables and a density of 0.5 (500 
instances for each value of the tightness). 

varied the tightness from under-constrained to over- 
constrained networks. Fig. 3 reports the results for 
only one of these experiments; but it is representative 
of the general behavior, which is rather stable when 
changing the parameter values. (Complete experimen- 
tation is given in (Bes96)). 

These results show how much the new function RE- 
VISE3 overcomes the classical REVISE. Except on 
over-constrained networks, PC21~-3 is always 4 to 7 
times better than PC21A in number of table look-ups, 
and 2 to 4 times faster. 

Summary and discussion 
In this paper, we first showed that PC21,4 is the path 
consistency algorithm which has the best behavior 
when some propagation is necessary to compute the 
transitive closure of an IA network (i.e. the cases where 
this computation is the most expensive). Afterwards, 
we discussed the way composition-intersection of rela- 
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tions is performed in PC algorithms, and we proposed 
an improved version of the function REVISE, namely 
REVISE3. We showed its efficiency on randomly gen- 
erated IA networks. 

The composition-intersection of relations being a 
general operation, not only useful in IA networks, the 
technique presented here will be usable in any type 
of networks based on an algebra where composition- 
intersection of relations is necessary. This will be 
the case in n-interval algebras (LigSO), (Lad86), or 
in networks representing spatial information (EH90), 
(RCC92). 

We claim that the greater the number of relations in 
the algebra, the more REVISE3 will outperform RE- 
VISE. This is due to the feature of REVISE3, which 
looks for an unique “support” for each atomic rela- 
tion while REVISE checks all the possible supports. 
This can be roughly compared to the respective fea- 
tures of AC-3 and AC-4 in constraint networks, where 
the more domain sizes increase, the more AC-3 outper- 
forms AC-4. On algebras with many relations it would 
be worthwhile to study whether an AC-6 like version 
((Bes94), (Sings)) of PC would be interesting or not, 
and at what number of atomic relations it would start 
becoming efficient. 
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