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Abstract 

It has been observed that the temporal reasoning com- 
ponent in a knowledge-based system is frequently a 
bottleneck. We investigate here a class of graphs ap- 
propriate for an interesting class of temporal domains 
and for which very efficient algorithms for reasoning 
are obtained, that of series-parallel graphs. These 
graphs can be used for example to model process ex- 
ecution, as well as various planning or scheduling ac- 
tivities. Events are represented by nodes of a graph 
and relationships are represented by edges labeled by 
5 or <. Graphs are composed using a sequence of se- 
ries and pcaraldel steps (recursively) on series-parallel 
graphs. We show that there is an 0(n) time pre- 
processing algorithm that allows us to answer queries 
about the events in O(1) time. Our results make use 
of a novel embedding of the graphs on the plane that 
is of independent interest. Finally we argue that these 
results may be incorporated in general graphs repre- 
senting temporal events by extending the approach of 
Gerevini and Schubert. 

Introduction 
It has been observed that in knowledge-based systems, 
planning systems, and the like, that the temporal rea- 
soning component is frequently a severe bottleneck. 
The difficulty is that scadabidity is a problem: even if 
an algorithm requires, say, O(n2) time and/or space, 
such a bound is unacceptable for large databases, par- 
ticularly if frequent use is to be made of such an algo- 
rithm. Consequently it is of interest to investigate not 
just efficient algorithms for temporal reasoning, but 
very efficient algorithms for such reasoning. An impor- 
tant and interesting problem, then, is concerned with 
identifying classes of problems for which very efficient 
algorithms exist. 

In this paper, we investigate a class of graphs appro- 
priate for an interesting class of temporal domains, and 
for which we have obtained very efficient algorithms 
for reasoning. In these graphs, events are represented 
by nodes and temporal relationships between events 
are represented by labeled edges. These graphs, which 
we call (<, I)-series-parallel graphs, are composed us- 
ing a sequence of series and paradded steps (described 

later), where edges are directed and labeled by < or 
5. We show that following a linear (in the size of 
the graph) time preprocessing step that we can answer 
queries concerning the temporal relationship between 
two nodes in constant time. 

So there are two steps in dealing with these graphs: 
first there is a preprocessing step; second, queries are 
answered with respect to this processed information. 
Clearly, for the representation of temporal precedence 
in arbitrary graphs, one can store precedence infor- 
mation in an adjacency matrix - the difficulty is that 
the O(n2) space and preprocessing requirements do 
not permit large-scale applications. Consequently we 
require linear (or near linear) preprocessing time and 
storage requirements, with constant (or near constant) 
time query answering. We show that for the classes of 
graphs we consider, there is an Q(n) time preprocess- 
ing algorithm that allows us to answer queries about 
the order of events in O(1) time, with the addition of 
constant space overhead. Therefore, query answering 
effectively becomes information retried, and so the 
approach can be looked on as compiling temporal in- 
formation into a highly efficient representation. 

In more detail we have the following. Our results 
centre on what we call (<, I)-series-padled graphs. 
A series-parallel graph (VTL82) is perhaps best en- 
visaged as comprising a qualitative temporal trace of 
process execution, where a process can overlay itself 
with another, or spawn subprocesses but must wait for 
all spawned processes to terminate before it can ter- 
minate. Slightly more formally (a formal definition is 
given in the Preliminaries to follow), a series parallel 
graph consists of a directed edge between two nodes,’ 
or (recursively) some number of such graphs connected 
in series or in parallel (i.e. with common source and 
sink in the last case). A (<, <)-series-parallel graph is 
a series-parallel graph where edges are labeled either 
< or 5. 

We show that every (<, <)-series-parallel graph can 
be embedded in the plane such that for nodes u and 

‘In practice a single node should also constitute a series 
parallel graph; however the development is simplified by 
omitting this trivial case. 
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21 with coordinates (zU, ylu) and (xv, yU), u 5 21 (i.e. 
there is a path from u to w) if and only if 2, < x, and 
yU < yv. We show that this embedding can be carried 
out in 0(n) time, where n is the number of nodes in 
the graph. Clearly, given the embedding of a graph, 
determining < relations can be carried out in constant 
time. It is a bit more complex determining < relations 
between time points. In this paper we show how the 
original embedding can be “perturbed” such that for 
points u and ZI where xU < x, and yU < yv, if their 
co-ordinates are unperturbed then the relation is 5; 
otherwise it is <. 

These graphs are of independent interest: for exam- 
ple they model process execution, wherein if a process 
spawns others, it must wait for the spawned processes 
to terminate before it can terminate. In reasoning 
about the state of a database for example, temporal 
precedence of processes is required to determine which 
process might have last accessed a portion of memory. 
Similarly for planning systems and various scheduling 
problems: If a task or action must precede another, 
and that task is composed of some number of subtasks, 
then each of these subtasks must precede the second 
task. For example, if Pat wishes to go to the airport, 
and going there consists of getting ready, travelling 
to the airport, and checking in, then any subtasks in- 
volved in getting ready must necessarily finish before 
any involved with travelling or checking in can begin. 
That queries concerning strict and non-strict temporal 
precedence can be answered in constant time clearly 
would be useful for systems employing such structures. 

While we argue that these results are of independent 
interest, we also indicate how they may be extended to 
arbitrary graphs, representing assertions in the point 
algebra (VK86), and from there to stronger systems. 
We present a brief synopsis suggesting how the ap- 
proach may be used to extend that of (GS95). While 
this constitutes preliminary work, nonetheless it is easy 
to show that the approach of Gerevini and Schubert is 
ill suited to deal with series parallel graphs; moreover, 
even a naive incorporation of the present approach into 
theirs would represent a useful extension. 

The next section briefly reviews related work. We 
then introduce notation, and give precise definitions 
of the problems considered in the paper. Following 
this is a linear time algorithm for preprocessing series- 
parallel graphs such that temporal precedence can be 
determined in constant time. We then present an out- 
line of how this algorithm can be extended to deal with 
general graphs. Finally, we finish the paper with brief 
conclusions and open problems. Complete proofs are 
contained in the full paper. 

Related Work 
In temporal reasoning there is a fundamental choice 
between whether time points or time intervals are the 
primitive objects. In Artificial Intelligence, (Al183) has 
proposed the interval algebra (IA) framework of tem- 

poral relations. Reasoning with this algebra (that is, 
reasoning about implied interval relations or determin- 
ing the consistency of a set of assertions) however has 
been shown to be NP-complete (VK86). The point ul- 
gebru (PA) is introduced in (VK86; VKvBSO), based 
on the notion of a time point in place of an interval. 
The basic relations of the PA that can hold between 
two points are <, =, and >. Allowing the relation 
between two points to be a disjunction of the basic re- 
lations gives the set {<, 5, >, 2, =, #, 0, ?}. The subset 
of the IA that can be translated into the PA is called 
the pointisubde interval algebra (SIA). Finding a con- 
sistent scenario (i.e. interpretation 
tions in the PA and SIA takes O(n a 

for a set of asser- 
) time for n points 

while computing the closure takes O(n4) time (vBC90; 
vB92). Again, these bounds are too big to permit large 
scale applications. Finally, (GS93) consider complex- 
ity characteristics of various restrictions of the IA. 

Other approaches have attempted to provide good 
expected performance, rather than providing guaran- 
teed bounds. (GM89) uses a spanning tree under- 
lying a lattice of time points for achieving efficient 
indexing. Performance for retrieving and updating 
temporal relations is argued experimentally to be lin- 
ear. (Dor92) develops the notion of a sequence graph, 
based on the observation that frequently in applica- 
tions, processes, for example, will execute or recur se- 
quentially. In sequence graphs, only “immediate” re- 
lations are stored. No information is lost, and the 
reduction in complexity is claimed to be significant. 
In the work of Schubert and collaborators (MS90; 
GS95) temporal reasoning is centred on chains of 
events. Assuming that temporal event histories are 
dominated by such chains, along with assertions be- 
tween them, Gerevini and Schubert obtain efficient 
algori thms for reasoning. Reasoning within a chain 
takes constant time; reasoning between chains is less 
efficient, but is determined by a graph significantly 
smaller2 than the original. 

The work reported here can be considered as be- 
longing to both groups of approaches described above. 
On the one hand we identify an interesting and useful 
class of graphs for which, using these graphs to repre- 
sent temporal information, we can guarantee very ef- 
ficient query-answering. On the other hand, we argue 
that this work can be used to extend existing general 
systems for (more) general temporal reasoning, with 
guaranteed improved performance. 

Preliminaries 
Graphs: Our results will rely substantially on graph 
theoretic concepts; we refer the reader to (BM76) for 
terms not defined here. The graphs that we use are 
simple, finite and directed. For a graph G, we denote 
the vertex and edge sets of G by V(G) and E(G) re- 
spectively. An edge e E E(G) from u to 21 is denoted 

2if the original graph is dominated by chains. 
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by the tuple (u, v). Edges will generally be labeled with 
labels drawn from a finite set. 

A directed acyclic graph (dag) is a directed graph 
with no directed cycles. For G a dag, 6-l is the graph 
obtained from G by reversing the direction of all edges. 
That is, V(G-‘) = V(G) and E(G-I) = {(u,zf) 1 
(v, u) E E(G)). For G a dag, every vertex w of G can be 
assigned a rank, rank(v), as follows: The rank of the 
sources of G is 0. For any other vertex w with parents 
w,..., wk, rank(v) = max{ 1 + rank(wi) : 1 5 i 5 L}. 
Notice that the rank of all vertices of a dag can be com- 
puted in O(lEl) t ime using breadth-first search. Our 
algorithms will rely on computing variants of rank. 

A series-purudlel graph is a dag with source s and 
sink t, defined inductively as follows. A single edge 
e = (s, t) is a series-parallel graph with source s and 
sink t called the base graph. Let Gr and 62 be series- 
parallel graphs with source and sink sr, tl and ~2, t2 

respectively such that V(G1) n V(G2) = 0. Then, 
the graph G constructed by taking the disjoint union 
of Gr and G:! and identifying s2 with tl is a series- 
parallel graph with source sr and sink t2 constru- 
cuted using a series step. 

the graph G constructed by taking the disjoint union 
of Gi and G2 and identifying sr with s2 (call this 
vertex s) and tl with t2 (call this vertex t) is a series- 
parallel graph with source s and sink t constructed 
using a parallel step. 

no graph other than those constructed using 
erations above is a series-parallel graph. 

the op- 

Fact 1 For G a series-purudlel graph, 

1. G is acyclic with a single source and sink. 
2. ]E(G)] 5 2]V(G)], that is, the number of edges is 

linear in the number of vertices; 

We will rely on being able to decompose a series- 
parallel graph G into series and parallel steps in linear 
time. This decomposition is in terms of a tree, the SP- 
decomposition tree of G. Internal nodes of such a tree 
are labeled by either “series” or “parallel” and leaves 
are labeled by edges of G. With each node a! of a SP- 
decomposition tree T, we will associate a subgraph of 
G; we call this the subgraph induced by LY. A node cx 
of T labeled by “series” has two children and the sub- 
graph induced by CY is formed by taking the subgraphs 
Gr and G2 induced by the children of CY and combining 
them using a series step. Similarly, a node r~ labeled by 
“parutted”, has two children where the the subgraph in- 
duced by a is formed by taking the subgraphs induced 
by the children of LY and joining them in using a parallel 
step. The next result follows from results of (VTL82). 

Lemma 1 For G a series-purulbel graph with two dis- 
tinguished nodes s and t, a SP-decomposition tree of G 
can be constructed in linear time. 

Notice that for T a SP-decomposition tree of a series- 
parallel graph 6, each edge of G appears at exactly one 

parallel 

A 

b 

series 

A 
(s.4 (d, t) /\ cc.?) 

(a,b) (b.c) 

Figure 1: A series-parallel graph and its SP- 
decomposition tree. 

leaf of 7’. Furthermore, IV(G)] is easily computed from 
7’: For s the the number of nodes labeled “series”, 
IV(G) I = s + 2. We will denote the quantity s + 2 
by N(T). F ur th ermore, for cu a node of T, we will 
denote the subtree of T rooted at Q by T,. Figure 1 il- 
lustrates a series-parallel graph with its corresponding 
SP-decomposition. 

Temporal easoning in Series-Parallel Graphs: 
To finish this section, we formally present the central 
problem under consideration in thispaper. Let G be a 
hag with each edge labeled by one of 2 or 5; vertices 
of G represent a set of events with edge labels giving 
information about their relative order of occurrence. 
Let L = [a, b] b e a closed interval on the integer line; 
L is a domain of interpretation of G, which we call a 
time window of G. Here L represents the legal (integer) 
times at which the events in G could occur. We-are 
interested in labelings of the vertices of G by elements 
of L such that the vertex labels are consistent with 
the inequalities induced by the edge labels, that is, 
labelings that satisfy the edge constraints. Formally, 
a temporal labeling bf G over L is an integer-valued 
function e : V(G) --+ L such that for every edge e = 
(u, u), if e is labeled by < (5 respectively) then e(u) < 
-e(v) (J?(U) < e(w) respectively). For a time window 
L 4 [a, bi, we can assume, without loss of generality, 
that a =-0 since every labeling can be translated by 
--a. 

Notice that the use of time windows results in algo- 
rithms that are more general than those obtained by 
other authors. In particular, time windows result in 
events being labeled by explicit time points; if we only 
want to allow implicit time points we only need make 
the time window sufficiently-large. - 

Formally, the problem we are interested in is the 
following: 

Name: Temporal reasoning. 

Instance: G a dag with edges labeled by one of < or 
< and L = [0, b] a closed interval on the integer Enc. 

Problem: Preprocess G such that given any two 
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vertices u and u and a relation R E (5, <}, there 
is a constant time procedure to determine whether 
e(u)&?(u) for every temporal labeling J! of G over L. 

There are two points to notice about our formal 
problem statement. First, in Allen’s approach (All83), 
the relation R is not given but rather output (that is, 
given two points the relation R that holds between the 
two points is generated). We feel our approach results 
in a cleaner presentation since we can give a different 
algorithm for each relation. Furthermore, it is easy to 
use our algorithms to also solve the problem for the 
= relation. However, our algorithms do not solve the 
problem for the # relation. 

A Note on the Model of Computation: We as- 
sume throughout that basic operations on small inte- 
gers (of size log n) can be performed in constant time 
and that such numbers take unit space for storage. 
This is a standard complexity-theoretic assumption - 
for example, in sorting algorithms, it is assumed that 
a comparison of two numbers is performed in constant 
time. This approach also consistent with other work in 
temporal reasoning. If a log-cost RAM model of com- 
putation is used, the complexity of our algorithms is 
increased by a factor of log log n. 

An algorithm for series-parallel graphs 
In this section we consider the temporal reasoning 
problem for series-parallel graphs. Our main result for 
this section is the following: 

Theorem 1 There is an O(n) time preprocessing al- 
gorithm for the temporal reasoning problem on series- 
parallel graphs. 

To 
lems: 

obtain the we consider three algorithm, subprob- 

1. For each vertex o of G determine 

L(v) = (t(u) : e is a temporal labeling of G) 

in O(n) time. We call L(v) the vertex-time window 
ofv. 

2. Given a series-parallel graph G, generate a represen- 
tation of G in O(n) time so that in O(1) time it can 
be determined whether there is a directed path from 
input vertex u to input vertex v. 

3. Further process the representation from 2 so that 
arbitrary queries &(u, v) can be answered in O( 1) 
time. 

Throughout the remainder of this section, we will 
assume that G is a series-parallel graph with one source 
s and one sink t and that L = [0, b] is a time window. 

We defer the proof of Theorem 1 to end of this sec- 
tion, We begin with the solutions to each of the three 
subproblems listed above. 

Vertex Time Windows 
Let G be a dag with every edge labeled by one of < or 
5. Then, the strict rank of a vertex v, srunkc(v), is 
the length of the shortest path from s to 21 where only 
edges labeled by < are counted. Clearly, the strict 
rank of all vertices of G can be computed in O(lEl) 
time using breadth-first search. We will write srunk(v) 
instead of srunkc(v) when G is clear from context. 
We will also be interested in the strict rank of G-l; we 
write srunk-’ (v) for srunk(G-l)(v) when G is clear. 

Since all edges of our graph are labeled by one 
of < and 5, it is clear that in any temporal label- 
ing f of G, -e(v) is a non-decreasing function along 
any directed path of G. For every 21 E V(G), let 
a, = ml;n{ a(v)} and b, = mpx{ a(v)}. Then L(w) is the 

closed interval [a,, b,] C L. Also, a, = srunk(v) and 
b, = b - srunk-l(v); we show that {L(v) : v E V(G)} 
can be computed in O((E[) time. 
Theorem 2 For G a series-parallel dug and L a time 
window, there a’s a linear time algorithm for determin- 
ing whether there are any temporal lubelings of G and 
if so, determining L(v) for every vertex v of G. 

Proof. For n = IV(G)1 notice that JE(G)) E O(n). We 
can use breadth-first search to compute srunk(v) and 
srunk- 1 (w) for every vertex v of G. If srank(v) _< b 
for every vertex 21 then at least one temporal labeling 
of G exists and L(w) = [srunk(v), srunk-l(v)]. II 

Determining paths quickly 
In this section we give an O(n) time representation of a 
series-parallel graph so that we can determine the exis- 
tence of paths between arbitrary vertices in O(1) time. 
Our techniques are partially inspired by work of Valdes 
et al (VTL82) who also use a geometric representation 
for another class of graphs. 

Given a series-parallel dag G, we will assign to each 
vertex w of G a coordinate (x,, , yv) on the integer plane 
such that for any other vertex w, there is a path from 
2, to w if and only if xv < xw and yv < yw . 

For integers al, bl, aa, b2 , al < u2 and bl < b2, 
we call the set of (integer) points {(x,y) : al 5 x 5 
~2, bl 5 y 5 bz} a (al, bl) x (~2, b2)-box. Then, given 
(~1, h) and (Q, b), our general strategy is to induc- 
tively (on the structure of G) solve the following prob- 
lem: Assign coordinates inside the (al, bl) x (~2, b2)- 
box to all vertices of G such that the source s has 
coordinates (al, br), the sink t has coordinates (~2, b2), 
and a vertex u is an ancestor of a vertex 21 if and only if 
x, < x, andy, < yv. We call this the (al, bl)x(ua, b2)- 
embedding problem of G. In general, for a graph G on 
n nodes, we will require a box of size n x n, that is, 
a2 - ui+1= b2 - bl + 1 = n. 

Algorithm: (al, bl) x (~2, b2)-embedding problem. 
Inputs: ((al, bl) x (~2, bz), T) where (al, bl) x (~2, b2) 
is a box with u2 - al = b2 - bl = N(T) - 1 and T is 
an SP-decomposition tree. 
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Figure 2: The planar embedding of the series-parallel 
graph given in Figure 1 

1. let ~11 be the root of T. 
2. if IV(T)1 = 1 then 
2.1. let e = (s,t) be the label on T. 
2.2. assign (al, br ) to s and (~2, b2) to t. 
3. if o is labeled by “series” then 
3.1 let pr and @2 be the children of o. 
3.2 let a’ = a1 + N(Tp,) - 1. 
3.3 let b’ = bl + N(Tp,) - 1. 
3.4 solve ((alA) x (a’,b’),Tpl). 
3.5 solve ((a’, b’) x (a~, b), Tp,). 
4. if o is labeled by “parallel” then 
4.1 let /3r, ,& be the children of o. 
4.2 let a’ = al + N(Tp,) - 1. 
4.3 let b’ = b2 - N(Tp,) + 1. 
4.4 solve ((al, b’) x (a’, b), Tpl). 
4.5 let a” = a2 - N(Tp,) + 1. 
4.6 let b” = b1 + N(T’,) - 1. 
4.7 solve ((a”, bl) x (~2, b”), Tp,). 
4.8 assign s the coordinates (ai, bl). 
4.9 assign t the coordinates (~2, b2). 

We initially call the algorithm to solve the 
(0,O) x (n - 1,n - 1)-embedding problem on a SP- 
decomposition tree 7’ of G, n = IV(G) I. Figure 2 il- 
lustrates the coordinates assigned by the algorithm to 
the graph given in Figure 1. 

We must show that the coordinates assigned to each 
vertex are well-defined. This is straight-forward by in- 
duction except for the parallel step. Here, the sub- 
graphs T’, and Tpz are embedded so that their sources 
and sinks do not have the same coordinates yet the 
two sources (respectively sinks) are actually the same. 
This is handled by steps 4.8 and 4.9 of the algorithm 
where we assign new coordinates to these nodes. 

Lemma 2 If the above algorithm is initial/y called to 
solve the (0,O) x (n- 1, n - I)-embedding problem on T 
then for any subsequent cad/ to the algorithm to solve 
the (al, bl) x (~2, b2)-embedding problem on a subtree 
T’ ofT, a2-aI+l=bz--bl+l=n/(T’). 

Lemma 3 For G a series-parallel graph and T a SP- 
decomposition tree of G, let (xU, yU) and (xv, yv) be the 
coordinates associated with vertices u and v of G by the 

algorithm. Then, there is a path from u to v in G if 
and only xU < xv and yU < yU. 

Proof. (outline) First suppose there is a path from u 
to v in G. Then either (u, v) is an edge or there are 
subgraphs G1 and G2 of G such that u E V(Gl), v E 
V(G2) and Gr and G2 are joined in a series step. If 
the former, we can directly verify the result. If the 
latter, then if Gr is embedded in a (ai, bl) x (~2, b2)- 
box then G2 is embedded in a (~2, b2) x (as, bs)-box 
where al < a2 < a3 and bl < b2 < b3 and the result 
follows. 

Conversely suppose that x, < xv and yU < yU but 
that u is not an ancestor of v. Then either v is an 
ancestor of u or u and v are incomparable. In the 
first case, it follows by the above argument that xv < 
xu and yv < yu, a contradiction. In the second case, 
there must be subgraphs Gi and G2 of G such that 
u E V(Gl), v f V(G2) and 61 and G2 are joined in a 
parallel step and u and v are not the source or sink of 
Gi or G2. Now, we can verify by structural induction 
on G that for all vertices u’ of Gi and v’ of G2 either 
xU’ < xv’ and yU’ > yV’ or xv’ < xU’ and yU’ > yU’, a 
contradiction. 

Tkaeorem 3 Let G be a series-parallel graph. Then, 
there is an O(n) time algorithm for the temporal reson- 
ing problem restricted to 5 relations. 

Proof. We begin by constructing the temporal time 
window L(u) = [a,, b,] for all vertices u of G. By 
Lemma 1, we can construct a SP-decomposition tree 
T of G in O(n) time and then use this in our embedding 
algorithm to assign coordinates to all vertices of G. 

Let (xU, yU) be the coordinates of vertex u. Now 
answering a query Q( u, v) is performed as follows: If 
b, < a, then e(u) < f(v) for all temporal labelings 
J?. Similarly, if b, < a, then e(v) < e(u) for all l. 
Otherwise, l(u) < e(v) for all temporal labelings e if 
and only if u is an ancestor of v, that is, if and only 
if xU < x, and yU < yV. Notice that the query is 
answered in O(1) time. 

Answering arbitrary queries 
In the previous section, we presented an algorithm for 
embedding a series-parallel graph on the plane that al- 
lows ancestor information to be computed in constant 
time. Here we augment that representation so that 
if there is a path from u to v we can also determine 
whether there is an edge on the path labeled by a “<“. 

The basic idea is to associate with each vertex u both 
a coordinate (xU , yU) as before and a line with equation 
Y = --2 + cU such that there is a path from a vertex u 
to a vertex v if and only if xU < xv and yU < yV and 
there is an edge on some u to v path labeled by “<” if 
and only if yU > -2, + cV and yU < -z, + cV. Notice 
that in general, for vertex u, we need only specify the 
y-intercept cU of the associated line. We can therefore 
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view this as associating the triple (xU, yU, cU) with the 
vertex u. 

For our algorithm, we will allow the coordinates 
(xU, yU, cU) to lie at rational points; it is not difficult 
to subsequently translate these to integer coordinates. 
As well, once again when we are embedding a graph G 
with source s and sink t, we will associate a box B on 
the plane in which all the vertices must lie. With B 
we will associate three lines, call them II, 12,/s. Sup- 
pose y = --2 + ci is the equation of line li. Then, 
cl < c2 < es, Ir will be below B, and /2 and /s will 
pass through B. All vertices of G will be mapped to 
points in B that lie between 62 and 1s. Furthermore, 
line II will be associated with a vertex v of G if and 
only if all paths from s to v are only labeled by 5. 

Algorithm: Modified embedding problem. 
Inputs: SP-decomposition tree T, box B = (al, bl) x 
(as, b2) such that a2 -al = b2 - bl , lines dl, 12, as where 
li has equation y = -x + ci, cl < c2 < cs and d2 and 
/a pass through B but II is outside B. 
Output: A triple (xU, yU, cU) for every vertex u of the 
graph G induced by T. 

1. let cx be the root of T. 
2. if IV(T)1 = 1 then 
2.1 let e = (s, t) be the label on T. 
2.2 assign s the coordinates (al, bl, cl). 
2.3 if e is labeled by 5 in G then 
2.2.1. assign t the coordinates (al, bl , cl). 
2.2.2. else assign t the coordinates (al, bl, ~2). 
3. if cx is labeled by “series” then 
3.1 let ,Br and ,& be the children of Q. 
3.2 choose (as, b3) in B such that 

-a3 -I- c2 < b3 < -a3 + ~3. 
3.3 let !& be a line y = -x + ck passing through 

Bl = (al, bl) x (a3, h), ~2 < CL. 
3.4 embed Tpl in Br with lines II, 62, a$. 
3.5 let a; be a line y = -x + CL passing through 

& = (a, b3) x (m, h), ~‘2 < ~3. 
3.6 embed Tpz in B2 with lines a&, al,, 6s. 
4. if (Y is labeled by “parallel” then 
4.1 let pr and ,& be the children of cy. 
4.2 choose (a3, b3) in B so that 

-a3 + c2 < b3 < -a3 + ~3. 
4.3 let Br = (al, b3) x (as, b2) and 

& = (a, bl) x (a2, h). 
4.4 adjust 62, /s so they pass through both &. 
4.5 embed TpI in Br with lines II, /2,6s. 
4.6 embed Tp2 in B2 with lines II, 62,6s. 
4.7 assign s coordinates (al, bl, cl). 
4.8 let (a3, b2, c’) and (az, bs, c”) be the 

coordinates of t in B1 and B2. 
4.9 assign t coordinates (a2, ba, min{c’, c”)). 

For G the graph induced by a, let u be a vertex of G. 
If all paths from the source s to vertex u do not have 
any edges labeled by “<“, then we choose coordinates 
(zU, yU , cU) for u such that (xU, yU) lie between the lines 
II and 62 and cU = cr. Similarly, for all vertices v such 

Figure 3: The planar embedding of one labeling of the 
series-parallel graph given in Figure 1. All unlabeled 
edges of the graph are assumed to be 5. The sets of 
points associated with a particular line in the embed- 
ding is indicated on the line. 

that all paths in G-l from t to v only involve edges la- 
beled by “I”, we assign coordinates (xv, yV, cV) where 
Yw > -2, + cs and assign c,, = cg. Any other vertex 
w is given coordinates (x~ , y,,, , ~2) where (x~ , yw ) lies 
between 12 and 63. 

Notice that the algorithm does not specify, for ex- 
ample, how the point (as, b3) is chosen. One simple 
method is to choose a point half way between the lines 
d2 and ds. Similarly, we can use any simple method of 
choosing the lines-l: and /i in the series step. More 
difficult is the adjustment of /2 and /s in step 4.4 of 
the parallel case. A simple method of making-this ad- 
justment is to move /2 and 63 closer together until they 
both lie in B1 and B2. However, if there are a sequence 
of parallel steps in the SP-tree, this will affect the co- 
ordinates assigned to other points outside of Tp, and 
Tbs. Instead, we do this embedding the entire sequence 
of-parallel graphs at the same time. This then allows 
for a straightforward choice of 62 and /a. 

Finally,we note that the above algorithm places co- 
ordinates at rational points instead-of integer points. 
However, it is not difficult to see that since there are 
O(n) different values of each coordinate, a common de- 
nommator can be found of size O(n3); a more careful 
study shows that O(n2) points suffice. Figure 3 illus- 
trates an embedding df the 
particular labeling of edges. 

graph of Figure 1 for a 

Proof of Theorem 1 
Our proof of Theorem 1 relies on the following lemma 
whose proof is similar to that of Theorem 3. - 
Lemma 4 Suppose G is a series-parallel graph with 
each edge dabeded by either “<” or “5” and L = [0, b] 
is a time window. Then, for u and v vertices of G, 
l(u) < l(v) for every temporal labeling C if and only if 
one of the following holds: 

1. For L(u) = [a,, b,] and L(v) = [a,, b,], b, < a,; or 
2. u is an ancestor of v and there is some directed path 

from u to v with an edge labeled by “< “. 
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Proof. (Theorem 1) We first solve the three subprob- 
lems outlined above in O(n) time. To answer a query 
&(u, v) in O(1) time, we check whether either of the 
two conditions in Lemma 4 holds. The first condition is 
easily checked once we have vertex time windows. For 
the second condition we need to check whether there 
is a path from u to v (the second subproblem) and if 
so whether there is a edge of this path labeled by “<” 
(the third subproblem). 

Extending the Approach 
In this section we indicate how the preceding re- 
sults may be extended to arbitrary graphs, represent- 
ing arbitrary assertions in the point algebra (VK86; 
VKvBSO), and from there to stronger systems. This 
represents work in progress; however we argue that 
the direction and benefits of this extension are clear. 
Again, events are represented by nodes but relation- 
ships now are represented by directed edges labeled by 
< or <, and undirected edges labeled = or #. Our 
development borrows from (vB92) and (GS95). Given 
an arbitrary graph, we can efficiently eliminate = re- 
lations by identifying the strongly-connected compo- 
nents. As well we can efficiently determine (so called) 
implicit < relations and make these relations explicit. 
Lastly we can isolate # relations, so that determining 
# relationships can be accomplished by table lookup. 
So we obtain a graph where we have < and _< edge re- 
lations only. Call the resultant graph the (<, L)-graph 
of the original. 

The second part of this development borrows from 
(and extends) the timegraph approach of (GS95). In 
Gerevini and Schubert’s (GS) approach, temporal rea- 
soning is centred on chains of events. GS asume 
that temporal event histories are composed of such 
chains, along with assertions (cross-edges) between 
them. Reasoning within a chain is constant time; rea- 
soning between chains is less efficient, but is deter- 
mined (essentially) by the graph resulting from col- 
lapsing “runs” in the chains into single nodes, rather 
than the original graph. 

In extending our results to arbitrary graphs, we gen- 
eralise the chains of the GS approach to the more 
general (<, <)- series-parallel graphs. In the result- 
ing structure, reasoning within a (<, <)-series-parallel 
graph is constant time; reasoning between such graphs 
is less efficient, but again is determined by the graph 
resulting from having the series-parallel subgraphs col- 
lapsed into single nodes, rather than the original graph. 
We argue that this this represents an improvement 
on the GS approach, for two reasons. First, the GS 
approach performs arbitrarily poorly on series-parallel 
graphs. For a series parallel graph with branching fac- 
tor n, in the worst case in the GS approach e of 
the edges are cross-edges. Second, since (<, L)-series- 
parallel graphs are essentially generalizations of chains, 
if we can replace time chains by (subsuming) series 

d 

Figure 4: Forbidden subgraph for series-parallel 
graphs. 

parallel graphs, then we 
formance. 

would expect improved per- 

The simplest means of incorporating our approach 
into that of GS is to take a timegraph of GS and, wher- 
ever possible, merge time chains to form series parallel 
graphs. This possibility has the advantage that it is 
simple and straightforward and can only improve a GS 
timegraph; it has the disadvantage that it is ad hoc. 

A second possibility is to decompose a (<, <)-graph 
into a set of maximal (<, <)-series-parallel subgraphs, 
connected by some number of cross-edges. Since the 
class of (<, I)- series-parallel subgraphs subsumes the 
class of time chains, this would represent a strict gen- 
eralisation of the GS approach. There is one obstacle 
to this approach; by appeal to a result in (VTL82), a 
graph is a (<, <)-series parallel graph iff it does not 
contain the graph of Figure 4 as an induced subgraph 
(where unlabeled edges are <).3 

Very briefly, we circumvent this difficulty as follows. 
For an arbitrary (<, s)-graph we consider only those 
edges (u, v) for which there is no other directed path 
from u to v. From this graph it is straightforward to 
isolate a number of vertex-disjoint maximal series par- 
allel graphs in linear time. Edges not included in this 
set of maximal series parallel graphs are considered as 
cross-edges; they may be either within a series paral- 
lel subgraph, or between series parallel subgraphs. In 
either case an arbitrary node u is linked to these cross- 
edges as follows: Consider the set of ancestors of u 
where there is a path from u to that ancestor; where 
that ancestor is a vertex of a cross-edge; and where no 
nodes on that path is a vertex of a cross-edge. 

1. If there is only a 
to that ancestor. 

single such ancestor, link u directly 

2. Otherwise link u to the nearest node v with more 
than one incoming 
these ancestors. 

edge, that discriminates among 

These cross-edges then are dealt with exactly as in the 
GS approach; moreover it is easily shown that this ap- 
proach never generates more cross-edges (again, be- 
cause series parallel graphs generalise chains). 

3We note that this graph is one that GS handles easily. 
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Conclusions and Open 
We have shown that for a broadly interesting class of 
graphs, series parallel graphs, there is a highly efficient 
algorithm for determining temporal relations. Our pre- 
processing step requires linear time (as opposed to the 
standard O(n2) time algorithm for dags) with constant 
time required for answering queries. As well our rep- 
resentation allows us to handle updates efficiently. 

Series parallel graphs are an instance of a broader 
class of graphs, which we have called elsewhere local 
graphs, and for which these results hold. Informally, a 
local graph is a dag in which nodes may be addition- 
ally ordered so that if u precedes v in this second order, 
then none of the descendants of v precede all those of 
u. This class includes, along with the series parallel 
graphs, edge parallel series graphs (VTL82), directed 
planar graphs, and as a subcase, threaded graphs, cor- 
responding roughly to sets of intersecting chains. As 
well, local graphs constitute that maximal set of graphs 
for which the embedding described in this paper may 
be used for determining paths between nodes. 

We are interested in extending this work in several 
directions. First, we are interested in studying the re- 
lation between classes of graphs for which efficient pre- 
processing and querying algorithms exist, and the class 
of general dags. As indicated, the results given here 
can be applied to general graphs so that we could ob- 
tain improved expected performance in querying gen- 
eral graphs. Nonetheless we have not fully worked out 
the details, nor has the full approach yet been imple- 
mented. We are also interested in identifying other 
classes of graphs for which efficient algorithms may be 
obtained, and relations among these classes. To this 
end we have obtained similar results for the class of 
outer graphs. Such graphs may be used to model two 
communicating agents, each of which can send mes- 
sages to the other. Messages may take an arbitrar- 
ily long time to propagate from one agent to another. 
Again, the relative precedence of events can be deter- 
mined in O(1) time following O(n) preprocessing. 
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