
James I?. Delgrande and Arvind Gupta
School of Computing Science,

Simon Fraser University,
Burnaby, BC, V5A lS6

Canada
email: {jim, arvind}@cs.sfu.ca

Abstract

It has been observed that the temporal reasoning com-
ponent in a knowledge-based system is frequently a
bottleneck. We investigate here a class of graphs ap-
propriate for an interesting class of temporal domains
and for which very efficient algorithms for reasoning
are obtained, that of series-parallel graphs. These
graphs can be used for example to model process ex-
ecution, as well as various planning or scheduling ac-
tivities. Events are represented by nodes of a graph
and relationships are represented by edges labeled by
5 or <. Graphs are composed using a sequence of se-
ries and pcaraldel steps (recursively) on series-parallel
graphs. We show that there is an 0(n) time pre-
processing algorithm that allows us to answer queries
about the events in O(1) time. Our results make use
of a novel embedding of the graphs on the plane that
is of independent interest. Finally we argue that these
results may be incorporated in general graphs repre-
senting temporal events by extending the approach of
Gerevini and Schubert.

Introduction
It has been observed that in knowledge-based systems,
planning systems, and the like, that the temporal rea-
soning component is frequently a severe bottleneck.
The difficulty is that scadabidity is a problem: even if
an algorithm requires, say, O(n2) time and/or space,
such a bound is unacceptable for large databases, par-
ticularly if frequent use is to be made of such an algo-
rithm. Consequently it is of interest to investigate not
just efficient algorithms for temporal reasoning, but
very efficient algorithms for such reasoning. An impor-
tant and interesting problem, then, is concerned with
identifying classes of problems for which very efficient
algorithms exist.

In this paper, we investigate a class of graphs appro-
priate for an interesting class of temporal domains, and
for which we have obtained very efficient algorithms
for reasoning. In these graphs, events are represented
by nodes and temporal relationships between events
are represented by labeled edges. These graphs, which
we call (<, I)-series-parallel graphs, are composed us-
ing a sequence of series and paradded steps (described

later), where edges are directed and labeled by < or
5. We show that following a linear (in the size of
the graph) time preprocessing step that we can answer
queries concerning the temporal relationship between
two nodes in constant time.

So there are two steps in dealing with these graphs:
first there is a preprocessing step; second, queries are
answered with respect to this processed information.
Clearly, for the representation of temporal precedence
in arbitrary graphs, one can store precedence infor-
mation in an adjacency matrix - the difficulty is that
the O(n2) space and preprocessing requirements do
not permit large-scale applications. Consequently we
require linear (or near linear) preprocessing time and
storage requirements, with constant (or near constant)
time query answering. We show that for the classes of
graphs we consider, there is an Q(n) time preprocess-
ing algorithm that allows us to answer queries about
the order of events in O(1) time, with the addition of
constant space overhead. Therefore, query answering
effectively becomes information retried, and so the
approach can be looked on as compiling temporal in-
formation into a highly efficient representation.

In more detail we have the following. Our results
centre on what we call (<, I)-series-padled graphs.
A series-parallel graph (VTL82) is perhaps best en-
visaged as comprising a qualitative temporal trace of
process execution, where a process can overlay itself
with another, or spawn subprocesses but must wait for
all spawned processes to terminate before it can ter-
minate. Slightly more formally (a formal definition is
given in the Preliminaries to follow), a series parallel
graph consists of a directed edge between two nodes,’
or (recursively) some number of such graphs connected
in series or in parallel (i.e. with common source and
sink in the last case). A (<, <)-series-parallel graph is
a series-parallel graph where edges are labeled either
< or 5.

We show that every (<, <)-series-parallel graph can
be embedded in the plane such that for nodes u and

‘In practice a single node should also constitute a series
parallel graph; however the development is simplified by
omitting this trivial case.

Temporal Reasoning 381

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

21 with coordinates (zU, ylu) and (xv, yU), u 5 21 (i.e.
there is a path from u to w) if and only if 2, < x, and
yU < yv. We show that this embedding can be carried
out in 0(n) time, where n is the number of nodes in
the graph. Clearly, given the embedding of a graph,
determining < relations can be carried out in constant
time. It is a bit more complex determining < relations
between time points. In this paper we show how the
original embedding can be “perturbed” such that for
points u and ZI where xU < x, and yU < yv, if their
co-ordinates are unperturbed then the relation is 5;
otherwise it is <.

These graphs are of independent interest: for exam-
ple they model process execution, wherein if a process
spawns others, it must wait for the spawned processes
to terminate before it can terminate. In reasoning
about the state of a database for example, temporal
precedence of processes is required to determine which
process might have last accessed a portion of memory.
Similarly for planning systems and various scheduling
problems: If a task or action must precede another,
and that task is composed of some number of subtasks,
then each of these subtasks must precede the second
task. For example, if Pat wishes to go to the airport,
and going there consists of getting ready, travelling
to the airport, and checking in, then any subtasks in-
volved in getting ready must necessarily finish before
any involved with travelling or checking in can begin.
That queries concerning strict and non-strict temporal
precedence can be answered in constant time clearly
would be useful for systems employing such structures.

While we argue that these results are of independent
interest, we also indicate how they may be extended to
arbitrary graphs, representing assertions in the point
algebra (VK86), and from there to stronger systems.
We present a brief synopsis suggesting how the ap-
proach may be used to extend that of (GS95). While
this constitutes preliminary work, nonetheless it is easy
to show that the approach of Gerevini and Schubert is
ill suited to deal with series parallel graphs; moreover,
even a naive incorporation of the present approach into
theirs would represent a useful extension.

The next section briefly reviews related work. We
then introduce notation, and give precise definitions
of the problems considered in the paper. Following
this is a linear time algorithm for preprocessing series-
parallel graphs such that temporal precedence can be
determined in constant time. We then present an out-
line of how this algorithm can be extended to deal with
general graphs. Finally, we finish the paper with brief
conclusions and open problems. Complete proofs are
contained in the full paper.

Related Work
In temporal reasoning there is a fundamental choice
between whether time points or time intervals are the
primitive objects. In Artificial Intelligence, (Al183) has
proposed the interval algebra (IA) framework of tem-

poral relations. Reasoning with this algebra (that is,
reasoning about implied interval relations or determin-
ing the consistency of a set of assertions) however has
been shown to be NP-complete (VK86). The point ul-
gebru (PA) is introduced in (VK86; VKvBSO), based
on the notion of a time point in place of an interval.
The basic relations of the PA that can hold between
two points are <, =, and >. Allowing the relation
between two points to be a disjunction of the basic re-
lations gives the set {<, 5, >, 2, =, #, 0, ?}. The subset
of the IA that can be translated into the PA is called
the pointisubde interval algebra (SIA). Finding a con-
sistent scenario (i.e. interpretation
tions in the PA and SIA takes O(n a

for a set of asser-
) time for n points

while computing the closure takes O(n4) time (vBC90;
vB92). Again, these bounds are too big to permit large
scale applications. Finally, (GS93) consider complex-
ity characteristics of various restrictions of the IA.

Other approaches have attempted to provide good
expected performance, rather than providing guaran-
teed bounds. (GM89) uses a spanning tree under-
lying a lattice of time points for achieving efficient
indexing. Performance for retrieving and updating
temporal relations is argued experimentally to be lin-
ear. (Dor92) develops the notion of a sequence graph,
based on the observation that frequently in applica-
tions, processes, for example, will execute or recur se-
quentially. In sequence graphs, only “immediate” re-
lations are stored. No information is lost, and the
reduction in complexity is claimed to be significant.
In the work of Schubert and collaborators (MS90;
GS95) temporal reasoning is centred on chains of
events. Assuming that temporal event histories are
dominated by such chains, along with assertions be-
tween them, Gerevini and Schubert obtain efficient
algori thms for reasoning. Reasoning within a chain
takes constant time; reasoning between chains is less
efficient, but is determined by a graph significantly
smaller2 than the original.

The work reported here can be considered as be-
longing to both groups of approaches described above.
On the one hand we identify an interesting and useful
class of graphs for which, using these graphs to repre-
sent temporal information, we can guarantee very ef-
ficient query-answering. On the other hand, we argue
that this work can be used to extend existing general
systems for (more) general temporal reasoning, with
guaranteed improved performance.

Preliminaries
Graphs: Our results will rely substantially on graph
theoretic concepts; we refer the reader to (BM76) for
terms not defined here. The graphs that we use are
simple, finite and directed. For a graph G, we denote
the vertex and edge sets of G by V(G) and E(G) re-
spectively. An edge e E E(G) from u to 21 is denoted

2if the original graph is dominated by chains.

382 Constraint Satisfaction

by the tuple (u, v). Edges will generally be labeled with
labels drawn from a finite set.

A directed acyclic graph (dag) is a directed graph
with no directed cycles. For G a dag, 6-l is the graph
obtained from G by reversing the direction of all edges.
That is, V(G-‘) = V(G) and E(G-I) = {(u,zf) 1
(v, u) E E(G)). For G a dag, every vertex w of G can be
assigned a rank, rank(v), as follows: The rank of the
sources of G is 0. For any other vertex w with parents
w,..., wk, rank(v) = max{ 1 + rank(wi) : 1 5 i 5 L}.
Notice that the rank of all vertices of a dag can be com-
puted in O(lEl) t ime using breadth-first search. Our
algorithms will rely on computing variants of rank.

A series-purudlel graph is a dag with source s and
sink t, defined inductively as follows. A single edge
e = (s, t) is a series-parallel graph with source s and
sink t called the base graph. Let Gr and 62 be series-
parallel graphs with source and sink sr, tl and ~2, t2

respectively such that V(G1) n V(G2) = 0. Then,
the graph G constructed by taking the disjoint union
of Gr and G:! and identifying s2 with tl is a series-
parallel graph with source sr and sink t2 constru-
cuted using a series step.

the graph G constructed by taking the disjoint union
of Gi and G2 and identifying sr with s2 (call this
vertex s) and tl with t2 (call this vertex t) is a series-
parallel graph with source s and sink t constructed
using a parallel step.

no graph other than those constructed using
erations above is a series-parallel graph.

the op-

Fact 1 For G a series-purudlel graph,

1. G is acyclic with a single source and sink.
2.]E(G)] 5 2]V(G)], that is, the number of edges is

linear in the number of vertices;

We will rely on being able to decompose a series-
parallel graph G into series and parallel steps in linear
time. This decomposition is in terms of a tree, the SP-
decomposition tree of G. Internal nodes of such a tree
are labeled by either “series” or “parallel” and leaves
are labeled by edges of G. With each node a! of a SP-
decomposition tree T, we will associate a subgraph of
G; we call this the subgraph induced by LY. A node cx
of T labeled by “series” has two children and the sub-
graph induced by CY is formed by taking the subgraphs
Gr and G2 induced by the children of CY and combining
them using a series step. Similarly, a node r~ labeled by
“parutted”, has two children where the the subgraph in-
duced by a is formed by taking the subgraphs induced
by the children of LY and joining them in using a parallel
step. The next result follows from results of (VTL82).

Lemma 1 For G a series-purulbel graph with two dis-
tinguished nodes s and t, a SP-decomposition tree of G
can be constructed in linear time.

Notice that for T a SP-decomposition tree of a series-
parallel graph 6, each edge of G appears at exactly one

parallel

A

b

series

A
(s.4 (d, t) /\ cc.?)

(a,b) (b.c)

Figure 1: A series-parallel graph and its SP-
decomposition tree.

leaf of 7’. Furthermore, IV(G)] is easily computed from
7’: For s the the number of nodes labeled “series”,
IV(G) I = s + 2. We will denote the quantity s + 2
by N(T). F ur th ermore, for cu a node of T, we will
denote the subtree of T rooted at Q by T,. Figure 1 il-
lustrates a series-parallel graph with its corresponding
SP-decomposition.

Temporal easoning in Series-Parallel Graphs:
To finish this section, we formally present the central
problem under consideration in thispaper. Let G be a
hag with each edge labeled by one of 2 or 5; vertices
of G represent a set of events with edge labels giving
information about their relative order of occurrence.
Let L = [a, b] b e a closed interval on the integer line;
L is a domain of interpretation of G, which we call a
time window of G. Here L represents the legal (integer)
times at which the events in G could occur. We-are
interested in labelings of the vertices of G by elements
of L such that the vertex labels are consistent with
the inequalities induced by the edge labels, that is,
labelings that satisfy the edge constraints. Formally,
a temporal labeling bf G over L is an integer-valued
function e : V(G) --+ L such that for every edge e =
(u, u), if e is labeled by < (5 respectively) then e(u) <
-e(v) (J?(U) < e(w) respectively). For a time window
L 4 [a, bi, we can assume, without loss of generality,
that a =-0 since every labeling can be translated by
--a.

Notice that the use of time windows results in algo-
rithms that are more general than those obtained by
other authors. In particular, time windows result in
events being labeled by explicit time points; if we only
want to allow implicit time points we only need make
the time window sufficiently-large. -

Formally, the problem we are interested in is the
following:

Name: Temporal reasoning.

Instance: G a dag with edges labeled by one of < or
< and L = [0, b] a closed interval on the integer Enc.

Problem: Preprocess G such that given any two

Temporal Reasoning 383

vertices u and u and a relation R E (5, <}, there
is a constant time procedure to determine whether
e(u)&?(u) for every temporal labeling J! of G over L.

There are two points to notice about our formal
problem statement. First, in Allen’s approach (All83),
the relation R is not given but rather output (that is,
given two points the relation R that holds between the
two points is generated). We feel our approach results
in a cleaner presentation since we can give a different
algorithm for each relation. Furthermore, it is easy to
use our algorithms to also solve the problem for the
= relation. However, our algorithms do not solve the
problem for the # relation.

A Note on the Model of Computation: We as-
sume throughout that basic operations on small inte-
gers (of size log n) can be performed in constant time
and that such numbers take unit space for storage.
This is a standard complexity-theoretic assumption -
for example, in sorting algorithms, it is assumed that
a comparison of two numbers is performed in constant
time. This approach also consistent with other work in
temporal reasoning. If a log-cost RAM model of com-
putation is used, the complexity of our algorithms is
increased by a factor of log log n.

An algorithm for series-parallel graphs
In this section we consider the temporal reasoning
problem for series-parallel graphs. Our main result for
this section is the following:

Theorem 1 There is an O(n) time preprocessing al-
gorithm for the temporal reasoning problem on series-
parallel graphs.

To
lems:

obtain the we consider three algorithm, subprob-

1. For each vertex o of G determine

L(v) = (t(u) : e is a temporal labeling of G)

in O(n) time. We call L(v) the vertex-time window
ofv.

2. Given a series-parallel graph G, generate a represen-
tation of G in O(n) time so that in O(1) time it can
be determined whether there is a directed path from
input vertex u to input vertex v.

3. Further process the representation from 2 so that
arbitrary queries &(u, v) can be answered in O(1)
time.

Throughout the remainder of this section, we will
assume that G is a series-parallel graph with one source
s and one sink t and that L = [0, b] is a time window.

We defer the proof of Theorem 1 to end of this sec-
tion, We begin with the solutions to each of the three
subproblems listed above.

Vertex Time Windows
Let G be a dag with every edge labeled by one of < or
5. Then, the strict rank of a vertex v, srunkc(v), is
the length of the shortest path from s to 21 where only
edges labeled by < are counted. Clearly, the strict
rank of all vertices of G can be computed in O(lEl)
time using breadth-first search. We will write srunk(v)
instead of srunkc(v) when G is clear from context.
We will also be interested in the strict rank of G-l; we
write srunk-’ (v) for srunk(G-l)(v) when G is clear.

Since all edges of our graph are labeled by one
of < and 5, it is clear that in any temporal label-
ing f of G, -e(v) is a non-decreasing function along
any directed path of G. For every 21 E V(G), let
a, = ml;n{ a(v)} and b, = mpx{ a(v)}. Then L(w) is the

closed interval [a,, b,] C L. Also, a, = srunk(v) and
b, = b - srunk-l(v); we show that {L(v) : v E V(G)}
can be computed in O((E[) time.
Theorem 2 For G a series-parallel dug and L a time
window, there a’s a linear time algorithm for determin-
ing whether there are any temporal lubelings of G and
if so, determining L(v) for every vertex v of G.

Proof. For n = IV(G)1 notice that JE(G)) E O(n). We
can use breadth-first search to compute srunk(v) and
srunk- 1 (w) for every vertex v of G. If srank(v) _< b
for every vertex 21 then at least one temporal labeling
of G exists and L(w) = [srunk(v), srunk-l(v)]. II

Determining paths quickly
In this section we give an O(n) time representation of a
series-parallel graph so that we can determine the exis-
tence of paths between arbitrary vertices in O(1) time.
Our techniques are partially inspired by work of Valdes
et al (VTL82) who also use a geometric representation
for another class of graphs.

Given a series-parallel dag G, we will assign to each
vertex w of G a coordinate (x,, , yv) on the integer plane
such that for any other vertex w, there is a path from
2, to w if and only if xv < xw and yv < yw .

For integers al, bl, aa, b2 , al < u2 and bl < b2,
we call the set of (integer) points {(x,y) : al 5 x 5
~2, bl 5 y 5 bz} a (al, bl) x (~2, b2)-box. Then, given
(~1, h) and (Q, b), our general strategy is to induc-
tively (on the structure of G) solve the following prob-
lem: Assign coordinates inside the (al, bl) x (~2, b2)-
box to all vertices of G such that the source s has
coordinates (al, br), the sink t has coordinates (~2, b2),
and a vertex u is an ancestor of a vertex 21 if and only if
x, < x, andy, < yv. We call this the (al, bl)x(ua, b2)-
embedding problem of G. In general, for a graph G on
n nodes, we will require a box of size n x n, that is,
a2 - ui+1= b2 - bl + 1 = n.

Algorithm: (al, bl) x (~2, b2)-embedding problem.
Inputs: ((al, bl) x (~2, bz), T) where (al, bl) x (~2, b2)
is a box with u2 - al = b2 - bl = N(T) - 1 and T is
an SP-decomposition tree.

384 Constraint Satisfaction

Figure 2: The planar embedding of the series-parallel
graph given in Figure 1

1. let ~11 be the root of T.
2. if IV(T)1 = 1 then
2.1. let e = (s,t) be the label on T.
2.2. assign (al, br) to s and (~2, b2) to t.
3. if o is labeled by “series” then
3.1 let pr and @2 be the children of o.
3.2 let a’ = a1 + N(Tp,) - 1.
3.3 let b’ = bl + N(Tp,) - 1.
3.4 solve ((alA) x (a’,b’),Tpl).
3.5 solve ((a’, b’) x (a~, b), Tp,).
4. if o is labeled by “parallel” then
4.1 let /3r, ,& be the children of o.
4.2 let a’ = al + N(Tp,) - 1.
4.3 let b’ = b2 - N(Tp,) + 1.
4.4 solve ((al, b’) x (a’, b), Tpl).
4.5 let a” = a2 - N(Tp,) + 1.
4.6 let b” = b1 + N(T’,) - 1.
4.7 solve ((a”, bl) x (~2, b”), Tp,).
4.8 assign s the coordinates (ai, bl).
4.9 assign t the coordinates (~2, b2).

We initially call the algorithm to solve the
(0,O) x (n - 1,n - 1)-embedding problem on a SP-
decomposition tree 7’ of G, n = IV(G) I. Figure 2 il-
lustrates the coordinates assigned by the algorithm to
the graph given in Figure 1.

We must show that the coordinates assigned to each
vertex are well-defined. This is straight-forward by in-
duction except for the parallel step. Here, the sub-
graphs T’, and Tpz are embedded so that their sources
and sinks do not have the same coordinates yet the
two sources (respectively sinks) are actually the same.
This is handled by steps 4.8 and 4.9 of the algorithm
where we assign new coordinates to these nodes.

Lemma 2 If the above algorithm is initial/y called to
solve the (0,O) x (n- 1, n - I)-embedding problem on T
then for any subsequent cad/ to the algorithm to solve
the (al, bl) x (~2, b2)-embedding problem on a subtree
T’ ofT, a2-aI+l=bz--bl+l=n/(T’).

Lemma 3 For G a series-parallel graph and T a SP-
decomposition tree of G, let (xU, yU) and (xv, yv) be the
coordinates associated with vertices u and v of G by the

algorithm. Then, there is a path from u to v in G if
and only xU < xv and yU < yU.

Proof. (outline) First suppose there is a path from u
to v in G. Then either (u, v) is an edge or there are
subgraphs G1 and G2 of G such that u E V(Gl), v E
V(G2) and Gr and G2 are joined in a series step. If
the former, we can directly verify the result. If the
latter, then if Gr is embedded in a (ai, bl) x (~2, b2)-
box then G2 is embedded in a (~2, b2) x (as, bs)-box
where al < a2 < a3 and bl < b2 < b3 and the result
follows.

Conversely suppose that x, < xv and yU < yU but
that u is not an ancestor of v. Then either v is an
ancestor of u or u and v are incomparable. In the
first case, it follows by the above argument that xv <
xu and yv < yu, a contradiction. In the second case,
there must be subgraphs Gi and G2 of G such that
u E V(Gl), v f V(G2) and 61 and G2 are joined in a
parallel step and u and v are not the source or sink of
Gi or G2. Now, we can verify by structural induction
on G that for all vertices u’ of Gi and v’ of G2 either
xU’ < xv’ and yU’ > yV’ or xv’ < xU’ and yU’ > yU’, a
contradiction.

Tkaeorem 3 Let G be a series-parallel graph. Then,
there is an O(n) time algorithm for the temporal reson-
ing problem restricted to 5 relations.

Proof. We begin by constructing the temporal time
window L(u) = [a,, b,] for all vertices u of G. By
Lemma 1, we can construct a SP-decomposition tree
T of G in O(n) time and then use this in our embedding
algorithm to assign coordinates to all vertices of G.

Let (xU, yU) be the coordinates of vertex u. Now
answering a query Q(u, v) is performed as follows: If
b, < a, then e(u) < f(v) for all temporal labelings
J?. Similarly, if b, < a, then e(v) < e(u) for all l.
Otherwise, l(u) < e(v) for all temporal labelings e if
and only if u is an ancestor of v, that is, if and only
if xU < x, and yU < yV. Notice that the query is
answered in O(1) time.

Answering arbitrary queries
In the previous section, we presented an algorithm for
embedding a series-parallel graph on the plane that al-
lows ancestor information to be computed in constant
time. Here we augment that representation so that
if there is a path from u to v we can also determine
whether there is an edge on the path labeled by a “<“.

The basic idea is to associate with each vertex u both
a coordinate (xU , yU) as before and a line with equation
Y = --2 + cU such that there is a path from a vertex u
to a vertex v if and only if xU < xv and yU < yV and
there is an edge on some u to v path labeled by “<” if
and only if yU > -2, + cV and yU < -z, + cV. Notice
that in general, for vertex u, we need only specify the
y-intercept cU of the associated line. We can therefore

Temporal Reasoning 385

view this as associating the triple (xU, yU, cU) with the
vertex u.

For our algorithm, we will allow the coordinates
(xU, yU, cU) to lie at rational points; it is not difficult
to subsequently translate these to integer coordinates.
As well, once again when we are embedding a graph G
with source s and sink t, we will associate a box B on
the plane in which all the vertices must lie. With B
we will associate three lines, call them II, 12,/s. Sup-
pose y = --2 + ci is the equation of line li. Then,
cl < c2 < es, Ir will be below B, and /2 and /s will
pass through B. All vertices of G will be mapped to
points in B that lie between 62 and 1s. Furthermore,
line II will be associated with a vertex v of G if and
only if all paths from s to v are only labeled by 5.

Algorithm: Modified embedding problem.
Inputs: SP-decomposition tree T, box B = (al, bl) x
(as, b2) such that a2 -al = b2 - bl , lines dl, 12, as where
li has equation y = -x + ci, cl < c2 < cs and d2 and
/a pass through B but II is outside B.
Output: A triple (xU, yU, cU) for every vertex u of the
graph G induced by T.

1. let cx be the root of T.
2. if IV(T)1 = 1 then
2.1 let e = (s, t) be the label on T.
2.2 assign s the coordinates (al, bl, cl).
2.3 if e is labeled by 5 in G then
2.2.1. assign t the coordinates (al, bl , cl).
2.2.2. else assign t the coordinates (al, bl, ~2).
3. if cx is labeled by “series” then
3.1 let ,Br and ,& be the children of Q.
3.2 choose (as, b3) in B such that

-a3 -I- c2 < b3 < -a3 + ~3.
3.3 let !& be a line y = -x + ck passing through

Bl = (al, bl) x (a3, h), ~2 < CL.
3.4 embed Tpl in Br with lines II, 62, a$.
3.5 let a; be a line y = -x + CL passing through

& = (a, b3) x (m, h), ~‘2 < ~3.
3.6 embed Tpz in B2 with lines a&, al,, 6s.
4. if (Y is labeled by “parallel” then
4.1 let pr and ,& be the children of cy.
4.2 choose (a3, b3) in B so that

-a3 + c2 < b3 < -a3 + ~3.
4.3 let Br = (al, b3) x (as, b2) and

& = (a, bl) x (a2, h).
4.4 adjust 62, /s so they pass through both &.
4.5 embed TpI in Br with lines II, /2,6s.
4.6 embed Tp2 in B2 with lines II, 62,6s.
4.7 assign s coordinates (al, bl, cl).
4.8 let (a3, b2, c’) and (az, bs, c”) be the

coordinates of t in B1 and B2.
4.9 assign t coordinates (a2, ba, min{c’, c”)).

For G the graph induced by a, let u be a vertex of G.
If all paths from the source s to vertex u do not have
any edges labeled by “<“, then we choose coordinates
(zU, yU , cU) for u such that (xU, yU) lie between the lines
II and 62 and cU = cr. Similarly, for all vertices v such

Figure 3: The planar embedding of one labeling of the
series-parallel graph given in Figure 1. All unlabeled
edges of the graph are assumed to be 5. The sets of
points associated with a particular line in the embed-
ding is indicated on the line.

that all paths in G-l from t to v only involve edges la-
beled by “I”, we assign coordinates (xv, yV, cV) where
Yw > -2, + cs and assign c,, = cg. Any other vertex
w is given coordinates (x~ , y,,, , ~2) where (x~ , yw) lies
between 12 and 63.

Notice that the algorithm does not specify, for ex-
ample, how the point (as, b3) is chosen. One simple
method is to choose a point half way between the lines
d2 and ds. Similarly, we can use any simple method of
choosing the lines-l: and /i in the series step. More
difficult is the adjustment of /2 and /s in step 4.4 of
the parallel case. A simple method of making-this ad-
justment is to move /2 and 63 closer together until they
both lie in B1 and B2. However, if there are a sequence
of parallel steps in the SP-tree, this will affect the co-
ordinates assigned to other points outside of Tp, and
Tbs. Instead, we do this embedding the entire sequence
of-parallel graphs at the same time. This then allows
for a straightforward choice of 62 and /a.

Finally,we note that the above algorithm places co-
ordinates at rational points instead-of integer points.
However, it is not difficult to see that since there are
O(n) different values of each coordinate, a common de-
nommator can be found of size O(n3); a more careful
study shows that O(n2) points suffice. Figure 3 illus-
trates an embedding df the
particular labeling of edges.

graph of Figure 1 for a

Proof of Theorem 1
Our proof of Theorem 1 relies on the following lemma
whose proof is similar to that of Theorem 3. -
Lemma 4 Suppose G is a series-parallel graph with
each edge dabeded by either “<” or “5” and L = [0, b]
is a time window. Then, for u and v vertices of G,
l(u) < l(v) for every temporal labeling C if and only if
one of the following holds:

1. For L(u) = [a,, b,] and L(v) = [a,, b,], b, < a,; or
2. u is an ancestor of v and there is some directed path

from u to v with an edge labeled by “< “.

Constraint Satisfaction

Proof. (Theorem 1) We first solve the three subprob-
lems outlined above in O(n) time. To answer a query
&(u, v) in O(1) time, we check whether either of the
two conditions in Lemma 4 holds. The first condition is
easily checked once we have vertex time windows. For
the second condition we need to check whether there
is a path from u to v (the second subproblem) and if
so whether there is a edge of this path labeled by “<”
(the third subproblem).

Extending the Approach
In this section we indicate how the preceding re-
sults may be extended to arbitrary graphs, represent-
ing arbitrary assertions in the point algebra (VK86;
VKvBSO), and from there to stronger systems. This
represents work in progress; however we argue that
the direction and benefits of this extension are clear.
Again, events are represented by nodes but relation-
ships now are represented by directed edges labeled by
< or <, and undirected edges labeled = or #. Our
development borrows from (vB92) and (GS95). Given
an arbitrary graph, we can efficiently eliminate = re-
lations by identifying the strongly-connected compo-
nents. As well we can efficiently determine (so called)
implicit < relations and make these relations explicit.
Lastly we can isolate # relations, so that determining
relationships can be accomplished by table lookup.
So we obtain a graph where we have < and _< edge re-
lations only. Call the resultant graph the (<, L)-graph
of the original.

The second part of this development borrows from
(and extends) the timegraph approach of (GS95). In
Gerevini and Schubert’s (GS) approach, temporal rea-
soning is centred on chains of events. GS asume
that temporal event histories are composed of such
chains, along with assertions (cross-edges) between
them. Reasoning within a chain is constant time; rea-
soning between chains is less efficient, but is deter-
mined (essentially) by the graph resulting from col-
lapsing “runs” in the chains into single nodes, rather
than the original graph.

In extending our results to arbitrary graphs, we gen-
eralise the chains of the GS approach to the more
general (<, <)- series-parallel graphs. In the result-
ing structure, reasoning within a (<, <)-series-parallel
graph is constant time; reasoning between such graphs
is less efficient, but again is determined by the graph
resulting from having the series-parallel subgraphs col-
lapsed into single nodes, rather than the original graph.
We argue that this this represents an improvement
on the GS approach, for two reasons. First, the GS
approach performs arbitrarily poorly on series-parallel
graphs. For a series parallel graph with branching fac-
tor n, in the worst case in the GS approach e of
the edges are cross-edges. Second, since (<, L)-series-
parallel graphs are essentially generalizations of chains,
if we can replace time chains by (subsuming) series

d

Figure 4: Forbidden subgraph for series-parallel
graphs.

parallel graphs, then we
formance.

would expect improved per-

The simplest means of incorporating our approach
into that of GS is to take a timegraph of GS and, wher-
ever possible, merge time chains to form series parallel
graphs. This possibility has the advantage that it is
simple and straightforward and can only improve a GS
timegraph; it has the disadvantage that it is ad hoc.

A second possibility is to decompose a (<, <)-graph
into a set of maximal (<, <)-series-parallel subgraphs,
connected by some number of cross-edges. Since the
class of (<, I)- series-parallel subgraphs subsumes the
class of time chains, this would represent a strict gen-
eralisation of the GS approach. There is one obstacle
to this approach; by appeal to a result in (VTL82), a
graph is a (<, <)-series parallel graph iff it does not
contain the graph of Figure 4 as an induced subgraph
(where unlabeled edges are <).3

Very briefly, we circumvent this difficulty as follows.
For an arbitrary (<, s)-graph we consider only those
edges (u, v) for which there is no other directed path
from u to v. From this graph it is straightforward to
isolate a number of vertex-disjoint maximal series par-
allel graphs in linear time. Edges not included in this
set of maximal series parallel graphs are considered as
cross-edges; they may be either within a series paral-
lel subgraph, or between series parallel subgraphs. In
either case an arbitrary node u is linked to these cross-
edges as follows: Consider the set of ancestors of u
where there is a path from u to that ancestor; where
that ancestor is a vertex of a cross-edge; and where no
nodes on that path is a vertex of a cross-edge.

1. If there is only a
to that ancestor.

single such ancestor, link u directly

2. Otherwise link u to the nearest node v with more
than one incoming
these ancestors.

edge, that discriminates among

These cross-edges then are dealt with exactly as in the
GS approach; moreover it is easily shown that this ap-
proach never generates more cross-edges (again, be-
cause series parallel graphs generalise chains).

3We note that this graph is one that GS handles easily.

Temporal Reasoning 387

Conclusions and Open
We have shown that for a broadly interesting class of
graphs, series parallel graphs, there is a highly efficient
algorithm for determining temporal relations. Our pre-
processing step requires linear time (as opposed to the
standard O(n2) time algorithm for dags) with constant
time required for answering queries. As well our rep-
resentation allows us to handle updates efficiently.

Series parallel graphs are an instance of a broader
class of graphs, which we have called elsewhere local
graphs, and for which these results hold. Informally, a
local graph is a dag in which nodes may be addition-
ally ordered so that if u precedes v in this second order,
then none of the descendants of v precede all those of
u. This class includes, along with the series parallel
graphs, edge parallel series graphs (VTL82), directed
planar graphs, and as a subcase, threaded graphs, cor-
responding roughly to sets of intersecting chains. As
well, local graphs constitute that maximal set of graphs
for which the embedding described in this paper may
be used for determining paths between nodes.

We are interested in extending this work in several
directions. First, we are interested in studying the re-
lation between classes of graphs for which efficient pre-
processing and querying algorithms exist, and the class
of general dags. As indicated, the results given here
can be applied to general graphs so that we could ob-
tain improved expected performance in querying gen-
eral graphs. Nonetheless we have not fully worked out
the details, nor has the full approach yet been imple-
mented. We are also interested in identifying other
classes of graphs for which efficient algorithms may be
obtained, and relations among these classes. To this
end we have obtained similar results for the class of
outer graphs. Such graphs may be used to model two
communicating agents, each of which can send mes-
sages to the other. Messages may take an arbitrar-
ily long time to propagate from one agent to another.
Again, the relative precedence of events can be deter-
mined in O(1) time following O(n) preprocessing.

Acknowledgements
We thank the reviewers for their careful reading of the
manuscript and a number of useful suggestions. This
work was supported by the Natural Sciences and En-
gineering Council of Canada. The second author also
acknowledges the support of the British Columbia Ad-
vanced Systems Institute.

References
James Allen. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(1):832-
843, 1983.
J. Bondy and U.S.R. Murty. Graph Theory with Ap-
plications. North-Holland, 1976.
Jurgen Dorn. Temporal reasoning in sequence graphs.
In Proc. AAAI-92, pages 735-740, 1992.

Malik Ghallab and Amine Mounir Alaoui. Managing
efficiently temporal relations through indexed span-
ning trees. In Proc. IJCAI-89, pages 1297-1303, De-
troit, 1989.
Martin Golumbic and Ron Shamir. Complexity
and algorithms for reasoning about time: A graph-
theoretic approach. JACM, 40(5):1108-1133, 1993.
Alfonso Gerevini and Lenhart Schubert. Efficient al-
gorithms for qualitative reasoning about time. Arti-
ficial Intelligence, 74(2):207-248, April 1995.
S.A. Miller and L.K. Schubert. Time revisited. Com-
putational Intelligence, 6:108-118, 1990.
Peter van Beek. Reasoning about qualitative tempo-
ral information. Artificial Intelligence, 58(1-3):297-
326, 1992.
Peter van Beek and Robin Cohen. Exact and approx-
imate reasoning about temporal relations. Computa-
tional Intelligence, 6(3):132-144, 1990.
Marc Vilain and Henry Kautz. Constraint propa-
gation algorithms for temporal reasoning. In Proc,
AAAI-86, pages 377-382, Philadelphia, PA, 1986.
temporal reasoning.
Marc Vilain, Henry Kautz, and Peter van Beek. Con-
straint propagation algorithms for temporal reason-
ing: A revised report. In Readings in Qualitative Rea-
soning about Physical Systems, pages 373-381. Mor-
gan Kaufmann Publishers, Inc., Los Altos, CA, 1990.
Jacob0 Valdes, Robert E. Tarjan, and Eugene L.
Lawler. The recognition of series parallel digraphs.
SIAM J. Comput., 11(2):298-313, May 1982.

388 Constraint Satisfaction

