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Abstract 

This paper continues Nebel and Biirckert’s investi- 
gation of Allen’s interval algebra by presenting nine 
more maximal tractable subclasses of the algebra (pro- 
vided that P # NP), in addition to their previously 
reported ORD-HO~PE subclass. Furthermore, twelve 
tractable subclasses are identified, whose maximality 
is not decided. Four of these can express the notion 
of sequentiality between intervals, which is not possi- 
ble in the ORD-Horn algebra. The satisfiability algo- 
rithm, which is common for all the algebras, is shown 
to be linear. 

Introduction 
For specifying qualitative temporal information about 
relations between intervals, Allen’s interval algebra 
(Allen 1983) is often considered a convenient tool. 
However, due to its expressiveness (the satisfiabil- 
ity problem is NP-complete (Vilain, Kautz, & van 
Beek 1989)), it is unlikely that there will be a 
polynomial-time algorithm for reasoning about the full 
algebra. Trying to overcome this, several tractable 
fragments of the algebra have been identified (e.g. 
(Nebel & Biirckert 1995; van Beek 1989; Golumbic & 
Shamir 1993)), of which the largest known is Nebel 
and Biirckert’s ORD-Horn algebra (Nebel & Biirckert 
1995). Furthermore, this algebra has been proved 
(Nebel & Biirckert 1995) to be the unique maximal 
algebra containing all the basic relations, comprising 
approximately 10 percent of the full algebra. 

None of these algebras, however, are capable of ex- 
pressing the notion of sequentiality, which is that of 
specifying that some intervals have to occur in se- 
quence in time, without any overlap. This is required 
e.g. in some cases of reasoning about action (Sande- 
wall 1994). The maximality result of the ORD-Horn 
algebra then implies that the requirement that the al- 
gebra contain all the basic relations has to be sacrificed. 
Golumbic and Shamir (Golumbic & Shamir 1993) come 
close to expressing sequentiality, but require that any 
two intervals are related. 

In this paper, we exploit a simple graph algorithm, 
similar to that of van Beek (van Beek 1992), and show 

that we can construct 21 algebras for which this algo- 
rithm solves satisfiability in linear time, and further- 
more, that four of these can express sequentiality, and 
nine of them are maximal tractable algebras (assum- 
ing P # NP, which we take for true in the rest of the 
paper) * 

The structure of the paper follows. First we present 
the necessary background material, about Allen’s in- 
terval algebra, and some results on the ORD-Horn al- 
gebra. Then, the concepts of “acyclic” and “DAG- 
satisfying” relations are introduced, after which the 
main results of the new tractable algebras are pre- 
sented. Finally, a discussion concludes the paper. 

Allen’s Interval Algebra 
Allen’s interval algebra (Allen 1983) is based on the no- 
tion of relations between pairs of intervals. An interval 
X is represented as an ordered pair (X- , X+) of real 
numbers with X- < X +, denoting the left and right 
endpoints of the interval, respectively, and relations 
between intervals are composed as disjunctions of ba- 
sic interval relations, which are those in Table 1. Such 
disjunctions are represented as sets of basic relations, 
but using a notation such that e.g. the disjunction of 
the basic interval relations 4, m and f- is written 
(4 m f-). Thus, we have that (4 f-) C (4 m f-‘). 

The algebra is provided with the operations of con- 
verse, intersection and composition on interval rela- 
tions, but we shall only need the converse operation. 
The converse operation takes an interval relation i to 
its converse i”, obtained by inverting each basic re- 
lation in i, by exchanging X and Y in the endpoint 
relations of Table 1. 

By the fact that there are thirteen basic relations, we 
get 213 = 8192 possible relations between intervals in 
the full algebra. We denote the set of all interval rela- 
tions by A. Subclasses of the full algebra are obtained 
by considering subsets of A. 

Although there are several computational problems 
associated with Allen’s interval algebra, this paper fo- 
cuses on the problem of satisfiability (ISAT) of a set of 
interval variables with relations between them, i.e. de- 
ciding whether there exists an assignment of intervals 
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Basic relation Example 1 Endpoints 

X during Y d xxx x- > Y-, 
Y includes X d ” YYYYYYY x+<y+ 
X starts Y s xxx X- = Y-, 
Y St.-by X - YYYYYYY x+<y+ 
X finishes Y ; xxx x+ = y+, 

YYYYYYY x- >Y- 
X equals Y f xxxx X- = Y-, 

I I YYVY I x+ = Y+ 1 

Table 1: The thirteen basic relations. The endpoint 
relations X- < X+ and Y- < Y+ that are valid for 
all relations have been omitted. 

on the real line for the interval variables, such that all 
of the relations between the intervals hold. Such an as- 
signment is said to be a model for the interval variables 
and relations. For A, we have the following result. 

Proposition 1 1SAT(d) is NP-complete. 
Proof: See Vilain et al (1989). •I 

The following auxiliary concept shall be needed. 

Definition 2 (“satisfied as”) 
Let Z be an instance of the satisfiability problem, M a 
model for Z and P E d a relation between two interval 
variables 11 and 12 in Z. Then r is said to be satisfied as 
r’ for any relation r’ E d, such that Ilr’lz is satisfied 
inM. 0 

Example 3 Let 11, 12 be interval variables related by 
11(4 +)12, and M a model where 11 is interpreted as 
[l, 2] and I2 as [3,4]. Then in M, (4 >-) is satisfied as 
(+), but also as (4 >). 0 

The ORD-Horn Subclass 
Nebel and Biirckert (Nebel & Biirckert 1995) identify 
a subclass of the interval algebra, having the property 
that it is a maximal subclass containing all the basic 
interval relations, for which satisfiability can be solved 
using a polynomial-time algorithm, and is in fact the 
unique such maximal classl. This algebra, the ORD- 
Horn algebra, contains 868 relations, and thus covers 
slightly more than 10 percent of A. 

One of the main tools for analysing the ORD-Horn 
subclass is a closure operation on subclasses of the al- 
gebra, which preserves tractability. 

‘The uniqueness is proved under the assumption that Proposition 12 Let r be an acyclic relation, and 
the subclass shall contain the empty relation ( ) and the 
full relation (4 >- m m’ o o- d d’ s s- f f’ G). 

A, A’ sets such that A & {r’lr’ E r), and 
A’ = {au (r)la E A}. Th en, every cycle C labelled 

Definition 4 (Closure) 
Let S C A. Then we denote by 3 the closure of S 
under converse, intersection and composition, i.e. the 
least subalgebra containing S closed under the three 
operations. 0 

The key result for extrapolating tractability results is 
the following. 

Proposition 5 Let S C A. Then ISAT is polyno- 
mial iff ISAT@) is. 
Proof: See Nebel and Biirckert (1995). IJ 

The following stronger result follows from the proof of 
Proposition 5, although it is not stated explicitly in 
(Nebel & Biirckert 1995). 

Corollary 6 Let S C A. If ISAT E O(f(n)) for 
some f(n) E Q(n), then also ISAT E O(f(n)). 
Proof: In the proof of Proposition 5,the amount of 
time needed to transform a problem in S to a problem 
in S is linear in the size of the problem. 0 

Acyclic and DAG-satisfying Relations 
This section introduces some auxiliary notions and re- 
sults needed for defining the new algebras, and proving 
their properties. 

Note that a satisfiability problem instance of the in- 
terval algebra can be represented by a directed graph, 
where the nodes are intervals variables, and the arcs 
are labelled by relations between intervals. Thus, 
in the rest of this paper, we let P be an arbitrary 
ISAT instance for X E d, and G = (V, E) the 
labelled directed graph representing it. 

Definition 7 (Acyclic relation) 
A relation P is said to be an acyclic relation iff any 
cycle in any G with T on every arc is never satisfiable. 
0 

Example 8 4 is an acyclic relation, and so is (+ m). 
cl 

Corollary 9 Let f be an acyclic relation. Then every 
relation r’ & r is acyclic. 
Proof: Since taking subsets of r constrains satisfia- 
bility further, the result follows. 0 

Corollary 10 Let r be an acyclic relation, and A such 
that A C {r’lr’ 5 r}. Then, any cycle in G where every 
arc is labelled by some relation in A is unsatisfiable. 
Proof: Same argument as in Corollary 9. 0 

Definition 11 (Maximal. acyclic relation) 
An acyclic relation r for which there is no acyclic re- 
lation r’ > r, is said to be a maximal acyclic relation. 
Cl 

In Proposition 13, we shall list all possible maximal 
acyclic relations. 
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by relations in A U A’ is satisfiable iff it contains only 
relations from A’, and, furthermore, all relations in the 
cycle have to be satisfied as 3. 
Proof: 

+) Suppose that a cycle C is satisfiable, and that 
it contains some relation from A. Induction on the 
number n of arcs in the cycle. For n = 1, we get a 
contradiction by the assumption. So, suppose for the 
induction that C contains n+l arcs. Let M be a model 
for the relations in C. We cannot have that every re- 
lation in C is satisfied in M as some relation in A, by 
Corollary IO. Thus, some relation r’ in C has to be 
satisfied as G. But then we can collapse the two inter- 
val variables connected by r’ to one interval variable, 
and we have a cycle of size n containing a relation from 
A. This contradicts the induction hyphothesis. 

-+) Suppose that a cycle C contains only relations 
in A’. Then C can be satisfied by choosing EE on every 
arc, thus forcing the satisfying intervals to be identical. 
cl 

Next, we find all possible acyclic relations. 

Table 2: The effect of relations on interval endpoints. 

Proposition 13 The only maximal acyclic relations 
in A are (m 4 o d’ r s), (m 4 o d” f- s-), 
(m 4 o d f s), ( m 4 o d f’- s), and their respective 
converses. 
Proof: Obviously, a maximal acyclic relation cannot 
contain both a basic relation and its converse, and thus 
cannot contain E. One consequence of this is that a 
maximal acyclic relation cannot contain more than six 
basic relations. So, if the above relations are shown to 
be acyclic, then they are also maximal. 

Now, consider Table 2, which extracts from Table 1 
how the basic relations (except for Z) relate the ending 
points of intervals. The table is to be read as follows. 
Suppose that the intervals ii and iz are related by some 
basic relation b, i.e. il (b)iz, and consider the I row entry 
for b. 

e If it is +, then the starting point of iz must be 
strictly after the starting point of ii 

69 If it is - then the starting point of iz must be 
strictly before the starting point of il 

0 Ifitis=, then the starting points of ii and i2 have 
to coincide. 

Similarly, the r row states the same information for 

Now consider the I row. If we choose a relation r’ 
to contain exactly the basic relations which have a + 
there, we know that r’ will be an acyclic relation, be- 
cause if in a cycle, the left ending points of the intervals 
have to increase at every arc, it cannot be satisfied. In 
addition to those basic relations in r’, we can include 
in r’ one basic relation b’ which has a = in the I row, 
yielding the relation r”, since then, a cycle labelled by 
r” on every arc has to be satisfied as b’ on every arc 
(otherwise, we would get a contradiction, by strictly 
increasing starting point values). But since neither of 
sands” hasa= in their r row, this is impossible. This 
gives us two choices of acyclic relations, which are the 
two first ones listed. 

Symmetrically, by inspecting the r row, we see that 
we get the next two relations listed. Finally, by tak- 
ing the - entries instead of the + entries, we get the 
converse relations of the listed ones. 

It remains to prove that these are the only maximal 
acyclic relations. So, suppose that some acyclic rela- 
tion e is not a subset of (or equal to) any of the relations 
in the statement of the proposition. First, note that e 
cannot be a basic relation, since every basic acyclic re- 
lation is included in some of the listed relations. Thus, 
e has to contain at least two distinct basic relations bl 
and ba. Without loss of generality (using Corollary 9), 
we have that e = (blbz). 

By the choice of the listed relations, bl and bz must 
have opposite signs either in their 1 or r rows (or both). 
Suppose that bl and b2 do not have opposite signs in 
their I row, i.e. that either they have the same sign, or 
at least one of them has a =. If both of them have a 
=, they have to be s and s-, which is impossible. If 
they have the same sign, which is not =, then they are 
included in one of the listed relations, by definition. If 
at least one of them, say bl, has = there, i.e. bl is either 
sors-, we see that for any basic acyclic relation c, c 
and bl occur together in some of the listed relations (or 
their converses), and in particular, this holds when c is 
ba. Thus bl and b2 have to have opposite signs in the 
I row. Symmetrically, bl and b2 must have opposite 
signs also in the r row. 

Now, the only remaining choice of bl and b2, for 
which the signs of the I and r rows do not coincide, is 
for the basic intervals d and d”. But trivially, these 
cannot together be part of any acyclic relation, and 
thus bl and b2 have to be chosen such without loss of 
generality, bl has + in both its I and r rows, and simi- 
larly for ba, - in both its I and r rows. Obviously, also 
every choice when bl and b2 are converses is impossible. 

This leaves us with six relations to check: (m +), 
(m 0’) and (4 0”) and their converses, and it is 
enough to check the first three ones due to symmetry. 
Now, it is easy to construct satisfiable cycles using re- 
lations containing either of these relations. 0 

Definition 14 (DAG-satisfying relation) 
A basic relation b is said to be DAG-satisfying iff any 
DAG (directed acyclic graph) labelled only by relations the ending points. 
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containing b is satisfiable. •I 

Now, we shall classify the DAG-satisfying relations, 
after an auxiliary definition. 

Definition 15 (Minimal node) 
Let G be a DAG. Then a node v in G is said to be 
minimal iff there are no arcs which end in V. 0 

Proposition 16 The basic relations I’, d, o, f, s 
and =, and their respective converses, are DAG- 
satisfying . 
Proof: We show that any DAG labelled only by rela- 
tions containing a fixed basic relation b, when b is one 
of the above relations, is satisfiable with some model 
M. Indeed, we prove the stronger result that we can 
choose the satisfying M such that 

o when b 
interval 

e when 
point 

o when 
point 

b is f, every interval has the same right ending 

b is s, every interval has the same left ending 

is d or o, all intervals overlap at some open 

e when b is E, all intervals are identical. 

The result for the converse relations follows by an anal- 
ogous construction. 

Induction on the number of nodes in the DAG G. 
The case when n = 0 is trivial. Suppose that G has 
n + 1 elements, and remove a minimal node g. By 
induction, the remaining graph G’ is satisfiable by a 
model M satisfying the required condition for the re- 
lation b. We shall now construct a model M’ of G, 
which agrees with M on every interval variable in G’. 
The satisfying interval, denoted s, for the remaining in- 
terval variable represented by the node g, is chosen as 
follows, depending on b and M. Note that M satisfies 
the above conditions. 

o When b is 4, choose s to be any 
before every interval in M 

interval strictly 

e When b is d, choose s to be an interval which is 
within the common open interval of the intervals in 
M 

e When b is o, choose s to have its left ending point to 
the left of every interval in M, and its right ending 
point to be in the middle of the common interval of 
the intervals in M 

e When b is f, choose s to have the same right ending 
point as the intervals in M, and the left ending point 
to be in the middle of the interval in M which has 
the rightmost left ending point 

o When b is s, choose s to have the same left ending 
point as the intervals in M, and the right ending 
point to be in the middle of the interval in M which 
has the leftmost right ending point 

o When b is -, choose s to be identical to the intervals 
in M. 

Obviously, M’ is a model of G satisfying the require- 
ments. 0 
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We may note that m is not DAG-satisfying: take inter- 
val variables Ii, 12 and 13 related by 11 (m)lz , 12( m)1s 
and 11 (m)&. This is a DAG which is not satisfiable. 

Tractable Algebras 
Now we define the class of algebras which is to be anal- 
ysed. 

Definition 17 (The subclasses A(r, b)) 
Let b be a DAG-satisfying basic relation and r an 
acyclic relation. First define the subclasses Al(b) 
and As(r, b) by Al(b) = (r’ U (b b”)lr’ E d} and 
Ax(r, b) = {r’U(E b)lr’ E r}. Then define the subclass 
A(r, b) by A(r, b) = Al(b) U As(r, b). 0 

Corollary 18 Let r be an acyclic relation, r’ C r, 
and b be some DAG-satisfying basic relation. Then 
A(r’, 6) E A(r, b). 
Proofk By the construction of A(r, b). 0 

Thus, by Corollary 18 and Corollary 9, it is sufficient 
to use maximal acyclic relations when constructing the 
algebras A(r, b). We now state the algorithm which we 
shall show in Theorem 23 solves satisfiability for these 
algebras, after a short definition. 

Definition 19 (Strong component) 
A subgraph C of a graph G is said to be a strong com- 
ponent of G iff it is maximal such that for any nodes 
a, b in C, there is always a path in G from a to b. •I 

Algorithm 20 (ISAT(A(r, b))) 
Let G’ the graph obtained from G by removing arcs 
which are not labelled by some relation in AZ(r, b). 

1 Find all strong components C in G’ 
2 for every arc e in G whose relation 

does not contain E 
3 if e connects two nodes in some C then 
4 Reject 
5 endif 
6 endfor 
7 Accept 

El 

In fact, this algorithm is very similar to that of van 
Beek (van Beek 1992), improved and used by Gerevini 
et al (1993), but here used on intervals instead of 
points. 

We now state a simple result which holds for directed 
graphs in general. 

Proposition 21 Let G be irreflexive2 with an acyclic 
subgraph D. Then those arcs of G which are not 
in D can be reoriented so that the resulting graph is 
acyclic. 
Proof: Induction over the number n of nodes in G 
that are not in D. For n = 0, the result is trivial. So, 
suppose that there are n + 1 nodes in G that are not in 

2A graph is said to 
a node v to the node v 

be irreflexive if it has no arcs from 



D, and remove an arbitrary node v of these, resulting 
in the graph G’. By induction, the arcs of G’ can be 
reoriented to form a DAG G”. Now add the node v to 
G” obtaining G”‘, and reorient any arcs between G” 
and v (in either direction) towards V. Since the graph 
is irreflexive, no cycles are added by this operation, so 
G”’ is acyclic. •I 

We now specialise this result. 

Corollary 22 Let G be irreflexive with an acyclic sub- 
graph D, b a DAG-satisfying basic relation, and let the 
arcs of D be labelled by relations containing b, and the 
arcs not in D be labelled by relations containing both 
b and b’. Then G is satisfiable. 
Proof: Reorient the arcs of G like in Proposition 21, 
yielding a DAG G’. In this construction, whenever an 
arc is reoriented, also invert the relation on that arc, so 
that G’ is satisfiable iff G is. By the construction, only 
arcs containing both b and b’ have been reoriented, so 
every arc in the DAG G’ contains b and, thus, since b 
is DAG-satisfying, G’ is satisfiable, and consequently, 
also G is satisfiable. •I 

Theorem 23 Algorithm 20 correctly solves satisfia- 
bility for A(r, b). 
Proof: Suppose the algorithm finds a strong com- 
ponent of G’ (which then may contain only relations 
in A2(r, b)), in which two of the nodes are connected 
by an arc e, labelled by a relation r’, which does not 
contain 3. Then there exists a cycle C, in which the 
relation of every arc contains E, such that e connects 
two nodes in that C (e is not included in the cycle it- 
self). By the fact that the set A2(r, b) is a subcase of 
A’ in Proposition 12, C can be satisfied only by choos- 
ing the relation 3 on every arc in C, and since r’ does 
not admit the relation -, C is unsatisfiable. 

Otherwise, every such strong component can be col- 
lapsed to one interval, removing all arcs which would 
start and end in the collapsed interval, retaining the 
same condition for satisfi ability, using the same argu- 
ment as above. After the collapsing, the subgraph ob- 
tained by considering only arcs labelled by relations in 
Az(r, b) will be acyclic. Since by construction every 
relation in A2(r, b) contains the relation b, and the re- 
maining arcs are labelled by relations containing both 
bandb”, the graph is satisfiable by Corollary 22 (note 
that the graph will be irreflexive, since every node is 
contained in some strong component). 0 

Theorem 24 Algorithm 20 runs in linear time in the 
siPzr;ziG (which is IV1 + 1EI). 

: Strong components can be found in linear 
time (see e.g. (Baase 1988)), and the remaining test 
can also be done in linear time. 0 

Corollary 25 Satisfiability of A(r, b) is solvable in lin- 
ear time. 
Proof: From Theorem 24 and Corollary 6. •I 

Using Proposition 13 we can construct the A(r, b)‘s to 
get twenty A(r, b) ‘s, by choosing r to be one of the 

maximal acyclic relations above, and choosing b to be 
an element in the chosen r except for m or m”. The 
reason why we get only twenty combinations is that the 
closure of an algebra is closed under the converse op- 
eration. Note that this exhausts the choices of param- 
eters in Algorithm 20 except for the degenerate case 
when every relation contains E-, by Corollary 18 and 
Proposition 13. That case is covered in Definition 28. 

Proposition 26 Each of the A(r, b) algebras contains 
2178 elements, and each contains exacly three basic 
relations, namely E, b and b’. Furthermore, all of 
these twenty algebras are distinct. 
Proof: By generating the algebras using the utility 
aclose (Nebel & Biirckert 1993). 0 

We have four algebras A(r, -x), all containing the rela- 
tions (E), (+), (-: z), (>), (+ E) and (4 +), express- 
ing the notion of sequentiality, which is useful for solv- 
ing reasoning problems under the assumption that ac- 
tions always occur in sequence (Sandewall 1994). Note 
that the ORD-Horn algebra does not contain the rela- 
tion (4 >-), and thus cannot express sequentiality. 

Proposition 27 The eight algebras A(r, b) which 
have b E {f, s} are maximal tractable algebras. 
Proof: By running the utility atry (Nebel & 
Biirckert 1993), which generates minimal extensions 
of subclasses by adding a relation and computing the 
closure of that class. For these algebras, no nontriv- 
ial extensions were found (i.e. every extension results 
in A), and since ISA?'(d) is NP-complete by Proposi- 
tion 1, the result follows by Proposition 5. 0 

For the remaining algebras, we do not have a proof of 
maximality. 

Finally, we cover the degenerate case when every 
relation contains =. 

Definition 28 (The algebra A,) 
Define the algebra AS to contain every relation that 
contains G, and the empty relation ( ). It is easy to 
see that A= contains 4097 elements. 0 

For this case, Algorithm 20 collapses to the following 
trivial algorithm. 

Algorithm 29 (Satisfiability in A,) 
1 if some arc is labelled by ( ) then 
2 Reject 
3 else 
4 Accept 
5 endif 

0 

Proposition 30 Algorithm 29 correctly solves satis- 
fiability in A= in linear time. Furthermore, it is a 
maximal tractable subclass of A. 
Proof: Correctness and complexity results are triv- 
ial. The maximality follows by running the utility atry 
(Nebel & Biirckert 1993), which generates no nontriv- 
ial extensions of the algebra. 0 

Temporal Reasoning 393 



The algebra A= certainly raises doubts about whether 
the size of a subalgebra can be used to judge its use- 
fulness, since its expressivity is obviously too weak to 
be of any use. 

Discussion 
Nebel and Biirckert (Nebel & Biirckert 1995) argue 
that the ORD-Horn algebra is an improvement in 
quantitative terms over previous approaches, since it 
covers more than 10 percent of the full algebra. Cer- 
tainly this is a valid argument only because the ORD- 
Horn algebra includes the previous algebras; otherwise 
we have a counterexample in the A=_ algebra, which is 
much larger than the ORD-Horn algebra, but is clearly 
of no use. We may mention that the 21 algebras of this 
paper covers about 92 percent of d, and that there are 
only two relations in the ORD-Horn algebra which are 
not elements of any of the algebras: (m) and (m-). 
From a cognitive perspective, the exclusion of these 
relations is not a serious restriction, as Freksa (Freksa 
1992) notes, since they are not likely to occur in any 
context reasoning about e.g. perception of the physical 
world. 

It is also argued by Nebel and Biirckert (Nebel & 
Biirckert 1995) that a useful algebra should contain all 
the basic relations, since otherwise, complete knowl- 
edge cannot be specified. However, since the unique 
maximality of the ORD-Horn class shows that there 
exists no tractable subalgebra which contains both all 
the basic relations and the relations expressing sequen- 
tiadity (notably the (4 >) relation), this argument fails. 
Furthermore, four of our algebras can indeed express 
this sequentiality requirement, which underlies many 
systems (see e.g. (Sandewall 1994)). 

Clearly, the question of maximality of the algebras 
needs to be settled. Also, as a long-term goal, it would 
be useful to classify all maximal tractable subalgebras 
of the full algebra, since then an application specifying 
a set of intervals could search for the best algebra to 
use, or otherwise report that no such algebra exists. 
Since there are 281g2 subsets of the full algebra, the task 
is clearly nontrivial, even using computer-supported 
proof met hods. 

Conclusions 
We have identified 21 new tractable fragments of 
Allen’s interval algebra, of which nine have been proved 
maximal tractable. Further, we have presented a linear 
time algorithm for deciding satisfiability of these. In 
addition, all the algebras are considerably larger (in 
quantity) than the ORD-Horn subalgebra, but thus 
cannot contain all the basic relations. Also, four of 
the algebras can express the relations (f), (*), (4 z), 
(>), (>- =) and (4 +) ( in addition to the “nonrela- 
tion”), which is necessary and sufficient for expressing 
the notion of sequentiality. 
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