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Abstract 
Theory refinement systems developed in machine learn- 
ing automatically modify a knowledge base to render it 
consistent with a set of classified training examples. We 
illustrate a novel application of these techniques to the 
problem of constructing a student model for an intelli- 
gent tutoring system (ITS). Our approach is 
implemented in an ITS authoring system called ASSERT 
which uses theory refinement to introduce errors into an 
initially correct knowledge base so that it models incor- 
rect student behavior. The efficacy of the approach has 
been demonstrated by evaluating a tutor developed with 
ASSERT with 75 students tested on a classification task 
covering concepts from an introductory course on the 
C++ programming language. The system produced rea- 
sonably accurate models and students who received 
feedback based on these models performed significantly 
better on a post test than students who received simple 
reteaching. 

Introduction 
Theory rejkement methods developed in machine learn- 
ing were designed to aid knowledge acquisition by 
using a database of classified examples to automatically 
make revisions that improve the accuracy of a knowl- 
edge base (Ginsberg, 1990; Ourston & Mooney, 1990 
Towel1 & Shavlik, 1990). These learning techniques 
have been used to correct errors in an imperfect rule 
base elicited from an expert and thereby produce a more 
accurate knowledge base than purely inductive learning 
methods. In this paper, we present a particularly novel 
application of theory refinement to a very different 
problem, that of producing a student model for an intel- 
ligent tutoring system (ITS). By inverting the standard 
goal of theory refinement, we show how it can be used 
to produce a model of a student’s knowledge that is use- 
ful for automated tutoring. 

Typically, the knowledge base in theory refinement is 
considered incorrect or incomplete and the examples 
represent correct behavior which the knowledge base 
should be able to emulate. However, the refinement pro- 
cedure itself is blind to whether or not the initial knowl- 
edge base is “correct” in any absolute sense; the theory- 
refinement process merely modifies the knowledge until 
it is consistent with the examples. Thus, one can also 
start with a correct knowledge base and examples of 
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erroneous conclusions, and use theory refinement to 
introduce errors that cause the knowledge base to model 
the incorrect conclusions illustrated in the examples. In 
this way, theory refinement provides a basis for rejne- 
ment-based student modeling. Starting with a represen- 
tation of the correct knowledge of the domain, and 
examples of erroneous student behavior, theory refine- 
ment can introduce “faulty” knowledge that accounts 
for the student’s mistakes. The resulting changes consti- 
tute a model of the student which can be used directly to 
guide tutorial feedback by comparing the refinements 
with the elements of correct knowledge they replaced. 

We have implemented this approach in an ITS author- 
ing system called ASSERT, which was then used to 
develop a tutor for teaching concepts in C++ program- 
ming. A controlled experiment with 75 students was 
conducted to evaluate the resulting tutor. The system 
produced reasonably accurate models, and students who 
received directed feedback based on these models per- 
formed significantly better on a post test than students 
who received simple reteaching. 

ac~~ro~~d on Student elin 
In order to tailor instruction to individual students, one 
of the primary tasks of most intelligent tutoring systems 
is to construct a model of the student’s knowledge 
which is then used to guide the feedback and informa- 
tion presented. The simplest type of model is an overlay 
model (Carbonell, 1970; Carr & Goldstein, 1977) which 
assumes that a student’s knowledge is a subset of the 
correct domain knowledge. Unfortunately, this approach 
is unable to model incorrect student knowledge. Other 
researchers have focused on constructing databases of 
student misconceptions typically termed bug libraries 
(Brown & Burton, 1978; Sleeman & Smith, 1981). 
However, hand-constructing such libraries by analyzing 
student protocols is a difficult, time-consuming task and 
the result is incapable of modeling unanticipated student 
behavior. More recent work has focussed on using 
machine learning techniques to automate the construc- 
tion of student models. However, existing methods 
require inducing a complete model of student knowl- 
edge (both correct and incorrect) from limited training 
data (Langley & Ohlsson, 1984; Langley et al., 1990) or 
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Rl: compile-error t constant-not&it 
R2: compile-error f- constant-assigned 
R3: constant-not-init t [Dointer constant) A (pointer-init false) A 

(integer-set no) 
R4: constant-not-init t (integer constant) A (integer-M false) 
R5: constant-assigned t (integer constant) A integer-init A (integer-set yes) 
R6: constant-assigned t (integer constant) A integer-in& A 

(integer-set by-pointer) 
R7: constant-assigned t fDointer constant) A pointer-i& A pointer-set 

Figure 1: Sample theory and examples. The original theory, 
shown in plain text, misclassifies examples 3 and 4. The 
corrected theory is shown with two deleted antecedents 

underlined and an added antecedent in boldface. 

require user interaction to determine which new bugs to 
add to an initial hand-constructed library (Sleeman et 
al., 1990). By contrast, the theory-refinement approach 
implemented in ASSERT is completely automatic, and by 
taking advantage of existing correct domain knowledge, 
it is able to learn more accurate models from limited 
training data compared to inducing a complete model 
from scratch. 

Background on Theory Refinement 
For its theory refinement component, ASSERT uses NEI- 
THER (Baffes & Mooney, 1993) a successor to the 
EITHER system developed by Ourston & Mooney (1990, 
1994). NEITHER employs a propositional Horn-clause 
knowledge representation. It takes two inputs, a propo- 
sitional rule base called the theory, which is repaired 
using a set of input examples. The examples are lists of 
feature-value pairs chosen from a set of observable 
domain features. Each example has an associated label 
or category which should be provable using the theory 
given the feature values in the example. NEITHER can 
generalize or specialize a theory, without user interven- 
tion, and is guaranteed to produce a set of refinements 
that are consistent with the training examples. 

Although space limitations prevent us from providing 
details on theory refinement (see Baffes, 1994), a sum- 
mary of the technique is as follows. Propositional Horn- 
clause theories can have four types of errors. An overly- 
general theory is one that causes an example to be 
proven in an incorrect category, i.e. a false positive. 
NEITHER adds new antecedents and deletes rules to fix 
such problems. An overly-specific theory causes an 
example not to be proven in its own category, i.e., a 
false negative. NEITHER deletes existing antecedents 
and learns new rules to fix these problems. By making 
these four kinds of syntactic rule changes, NEITHER can 
correct the semantics of the theory by altering the condi- 
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integer constant non- non- non- 
constant constant constant 

integer- true true true true 
init 

integer- by-pointer yes no no 
set 

tions under which rules are satisfied.l A sample theory 
and examples are shown in Figure 1. 

escription of ASSERT 
ASSERT views tutoring as a process of communicating 
knowledge to a student, where the contribution of the 
modeling subsystem is to pinpoint elements of the inter- 
nal knowledge base to be communicated. Figure 2 
shows a schematic of the ASSERT algorithm. It is 
assumed that all actions taken by a student can be bro- 
ken down to a set of classification decisions. That is, 
given a set of inputs, called problems, the student will 
produce a set of labeled examples which classify each of 
the problems into one category. Each problem consists 
of one or more feature vectors describing some aspect of 
the problem. The task of the student is to produce a 
label for each feature vector, selected from among some 
predetermined set of legal labels given to the student. 

In its simplest form, a problem consists of a single 

Figure 2: Basic design of the ASSERT algorithm 

1. NEITHER’S running time is linear in the size of the theory. 



feature vector presented to the student in a multiple- 
choice format, where the answers available to the stu- 
dent are taken from among a list of possible categories. 
This allows ASSERT to be used in concept learning 
domains, which are common applications for automated 
training systems. It also means that student actions will 
translate directly into a form usable by theory refine- 
ment. Once collected, the labeled examples generated 
by the student are passed to the NEITHER theory-refine- 
ment system which modifies the rule base until it repro- 
duces the same answers as the student. 

Using the refinements produced by NEITHER, ASSERT 
generates explanations and examples to reinforce the 
correct form of the rule or rules modified. The underly- 
ing approach, called rejkement-based remediation, is 
based on fundamental units of explanation called units 
of remediation. Rather than implementing any particular 
pedagogy, ASSERT supplies the most elementary infor- 
mation required: an explanation with one or more exam- 
ples. For each refinement detected by NEITHER, ASSERT 
provides two functions: the ability to explain a correct 
use of the rule which was changed, and the ability to 
generate an example which uses the rule. The designer 
of a tutoring system using ASSERT has the option to gen- 
erate multiple explanations or examples, to determine 
the circumstances when such feedback is given, and to 
decide whether the system or the student controls which 
explanations and examples are generated. 

Explanations focus on describing how the correct 
form of the rule (not the revised version) fits into the 
originally correct rule base. Each rule has an associated 
piece of stored text, describing its role in the rule base. 
A full explanation is generated by chaining together the 
stored text for the rules lying on the proof path for the 
correct label (not the student’s label) for the example, 
i.e., the label which is produced by the correct rule base 
for the given feature vector. 

Examples are constructed dynamically rather than 
being drawn from storage. Recall that each refinement 
made by NEITHER results in the addition or deletion of 
literals from a rule in the theory. Using normal deduc- 
tive methods, the added and removed literals can be 
traced down to the feature vector. The result is a set of 
conditions in the feature vector which the student is 
ignoring or a set of extra conditions not present in the 
feature vector which the student thinks are necessary. 
ASSERT can thus generate an example which is correct 
in every way except for the added or missing conditions 
in the refinement. The result is then presented as a 
counter example to the student, and the various added or 
missing conditions highlighted. Note that this corre- 
sponds very closely to tutorial methods outlined for 

EXPLANATION 

One way to detect a compilation error is to look for an identifier 
which is declared constant and initialized, then later assigned. 

A constant identifier is erroneously assigned when it is declared 
as a constant pointer to an integer, initialized to the address of 
some integer, and later set to the address of another integer. It 
does not matter if the identifier is a pointer declared to point to 
a constant integer or a non-constant integer; once a constant 
pointer is initialized it cannot be reset to another address. 

Specifically, note the following which contribute to this error: 
* There must be a pointer declared to be constant. 
* A pointer declared constant must be initialized. 
* A pointer declared constant and initialized must be set after its 

initialization. 

Here is an example to illustrate these points: 

Example 
Here is an example which 
but is actually CORRECT: 

might appear to be a compile error 

void main0 { 
const int x = 5, y, w, *z = &x; 
z=&w; 
cin>>w>>y ; 

coutc<((y *= x) II (y > w)); cout<c(w -= x); 
1 

This example is NOT a compile error because: 
* The pointer ‘z’ is declared as a NON-CONSTANT pointer to a 

constant integer, so it does not have to be initialized and can 
be reset. 

Figure 3: Example remediation given to a student 

conceptual domains by (Tennyson and Park 1980). An 
explanation and example pair is shown in Figure 3. Thic 
is the explanation generated for the deleted antecedent 
of the last rule of Figure 1. 

The ultimate test of any tutoring system design is 
whether or not it enhances student performance. This is 
especially true for student modeling; if the use of a 
model cannot significantly impact the educational expe- 
rience, then there is little reason to construct one. Fur- 
thermore, this evidence must come from experiments 
involving large numbers of students in a realistic setting 
so that the significance of the data can be determined. 
The importance of student modeling is currently a con- 
troversial issue (Sandberg & Barnard, 1993); however 
there are very few controlled studies, with somewhat 
contradictory results (Sleeman, 1987; Nicolson, 1992). 
In this section, we presented evidence supporting the 
claim that ASSERT can be used to construct tutorials 
which significantly impact student performance. 
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C++ Tbtor Tests 
The C++ Tutor was developed in conjunction with an 
introductory C++ course at the University of Texas. The 
tutorial covered two concepts historically difficult for 
beginning C++ students: ambiguity involving statements 
with lazy operators and the proper declaration and use 
of constants. These two concepts plus examples of cor- 
rect programs formed three categories into which exam- 
ple programs could be classified. A set of 27 domain 
rules was developed to classify problems, using a set of 
14 domain features, as being either ambiguous, a com- 
pile error (for incorrectly declared or used constants) or 
correct. The latter category was the default category 
assumed for any example which could not be proved as 
ambiguous or a compile error. 

Students who used the tutorial did so on a voluntary 
basis and received extra credit for their participation. As 
an added incentive, the material in the tutorial reviewed 
subjects which would be present on the course final 
exam. This established a high level of motivation among 
the students who participated in the test. Due to the 
large number of students involved (73, the tutorial was 
made available over a period of four days and students 
were encouraged to reserve time slots to use the pro- 
gram. 

Three major questions were the focus of the test. 
First, it was important to establish whether or not 
ASSERT could be an effective modeler for students in a 
realistic setting. This was measured by testing the model 
produced for a student on a set of examples taken from 
the student which had not been given to ASSERT. The 
predictive accuracy of the model on such novel exam- 
ples was expected to be higher than simply using the 
correct rule base or one induced from scratch from stu- 
dent behavior. Second, even with a perfect model one 
may not see any increase in student performance. Our 
hypothesis was that remediation generated using models 
built by ASSERT would result in increased student per- 
formance over a control group which received no feed- 
back. Third, as in previous student modeling studies, we 
wanted to test how students receiving feedback based on 
student models would compare against students receiv- 
ing a simple form of reteaching feedback. The expecta- 
tion was that remediation based on modeling would 
result in greater post-test performance. Testing these 
hypotheses was accomplished with two experiments: 
one to measure the effects of remediation and another to 
measure the accuracy of modeling. 

Effect of Remediation on Student Performance 
For the remediation test, students who used the C++ 
Tutor were divided into three groups. One group 
received the benefits of ASSERT, the second received a 
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very simple form of reteaching, and the third was a con- 
trol group given no feedback. 

To test whether ASSERT can impact student perfor- 
mance, one needs to collect information for each student 
that has certain characteristics. To begin with, data must 
be collected both before and after any feedback given to 
the student to detect any change in performance. Thus 
the Cs+ Tutor was constructed as a series of two tests 
with a remediation session in between. Secondly, the 
data from the two tests must be equally representative of 
the student’s capability and must be collected in similar 
ways. 

To that end, a program was written to generate 10 
example questions as follows. The questions were 
divided equally among the categories: three questions 
were correctly labeled as compilation errors, four were 
examples of ambiguous programs, and three were ques- 
tions with no errors. This process was used to generate 
two sets of 10 questions, both of which covered the 
same subset of the correct rule base. This ensured that 
the two sets of questions covered the same concepts at 
the same level of difficulty, though no two questions 
were identical. These two sets of questions represented 
the pre-test and post-test to be given to each student. 
One set of questions was used as the pre-test for all the 
students, the other as the post-test, thus the same pre- 
test and post-test was given to every student. To dis- 
courage cheating, the order in which the 10 questions 
were presented was randomized. Thus every student 
answered the same questions, and the only difference 
was the feedback given between the pre-test and post- 
test. 

Students were randomly assigned to three groups of 
25, each of which received a different kind of feedback 
from the C++ Tutor. One group of 25 received no feed- 
back, acting as the control group. The other two groups 
were given feedback using explanations and examples 
as described previously. To ensure that the only differ- 
ence between feedback groups was the type of feedback 
received, both groups were given the same amount of 
feedback; specifically, four examples and four explana- 
tions for each student. 

For the “Reteaching” group, ASSERT selected four 
rules at random from the rule base, and an explanation 
and example was generated for each rule. The ASSERT 
group received feedback based on the models con- 
structed for the student from his or her answers to the 
pre-test questions. Bugs were selected for remediation 
based on the order they were found by NEITHER.~ If 
fewer than four bugs were found, the remainder of the 
feedback was selected at random as with the Reteaching 

2. NEITHER orders its refinements by preferring those 
increase accuracy the most with the smallest change. 

which 



Pre-test Score Post-test Score Increase ~1 
Table 1: C++ Tutor remediation test. Scores are percentage of 
post-test problems answered correctly. Increase is significant 

between ASSERT and the other two groups 

group. 
Since the four groups of students each had a different 

average accuracy on the pre-test and post-test, they were 
compared using the average improvement in accuracy 
between pre-test and post-test. Also because each group 
consisted of different students with no pairing between 
groups, significance was measured using an ANOVA 
test. As the only variable between groups was the feed- 
back received, the significance test used was a l-way 
unpaired ANOVA test at the 0.05 level of confidence. 
The average improvement in performance for the four 
groups is shown in Table 1. As predicted, the average 
performance decreased as the feedback varied from 
ASSERT to reteaching to nothing and the ASSERT group 
performed significantly better than the other two groups. 

Accuracy of Student Models 
To test the accuracy of the learned models at predicting 
subsequent student behavior, the data from the No Feed- 
back group was used. This is because no remediation 
occurred between the pre-test and post-test for the stu- 
dents in this group; thus, their 20 questions could be 
treated as a single unit from which training set and test 
set examples could be drawn. Training-test splits were 
generated so as to be equivalently representative across 
both data sets. The 20 examples from the pre-test and 
post-test were grouped into 10 pairs, where each pair 
consisted of the two examples (one from the pre-test and 
one from the post-test) which covered the same domain 
rule. Then, training and test set splits were generated by 
randomly dividing each pair. 

The result was 2” possible training-test set splits. For 
each of the 25 No Feedback students, 25 training-test 
splits were generated, yielding 625 samples. For com- 
parison purposes, we also measured the accuracy of 
both an inductive learner, using the same training and 
test set splits, and the correct domain rules. The induc- 
tive learner was run by starting NEITHER with no initial 
theory, in which case NEITHER builds rules by induction 
over the training examples using a propositional version 
of the FOIL algorithm (Quinlan, 1990). Each system was 
trained with the training set and accuracy was measured 
on the test set by comparing what the system predicted 

Table 2: Results of accuracy test. All differences significant 

with what the student from the No Feedback group actu- 
ally answered. For the correct theory, no learning was 
performed, i.e. the correct domain rules were used with- 
out modification to predict the students’ answers. The 
results are shown in Table 2. Statistical significance was 
measured using a two-tailed Student t-test for paired 
difference of means at the 0.05 level of confidence. As 
predicted, ASSERT produced more accurate models. 
Note that induction was even less accurate than simply 
assuming the student possessed totally correct knowl- 
edge, clearly indicating the problems with this approach 
in the typical, limited-data situation. 

The form of reteaching used in the current experiment is 
very simple and does not employ any knowledge about 
the individual student or any knowledge of common 
mistakes or misconceptions. It does not even consider 
which questions were answered incorrectly. The experi- 
ment was designed to test if models constructed by 
ASSERT were better than no model at all. Experiments 
comparing ASSERT'S approach to alternative model- 
based methods are needed to evaluate the specific 
advantages of the refinement-based approach with 
respect to remediation. 

Unlike previous modeling efforts which focus on pro- 
cedural tasks, ASSERT is designed for classification 
domains. As an example of this difference, several pre- 
vious student modeling efforts have focused on the 
domain of writing computer programs (Soloway et al., 
1983), whereas this research was tested using a classifi- 
cation task where students were asked to judge the cor- 
rectness of program segments. This tie to classification 
domains is largely due to the fact that the most mature 
theory-refinement algorithms developed thus far are 
designed for classification and is not a limitation of the 
general framework of ASSERT per se. As first-order 
logic refinement methods are enhanced (Richards and 
Mooney, 1995), ASSERT can be updated accordingly, 
enabling it to address a wider range of applications. 
However, note that it is not immediately clear how easy 
it would be to map ASSERT to a procedural domain. 
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Conclusions 
ASSERT demonstrates how theory refinement techniques 
developed in machine learning can be used to effec- 
tively build student models for intelligent tutoring sys- 
tems. This application is unique since it inverts the 
normal goal of theory refinement from correcting errors 
in a knowledge base to introducing them. A comprehen- 
sive experiment involving a large number of students 
interacting with an automated tutor for teaching con- 
cepts in C++ programming was used to evaluate the 
approach. This experiment demonstrated the ability of 
theory refinement to generate more accurate student 
models than raw induction, as well as the ability of the 
resulting models to support individualized feedback that 
actually improves students’ subsequent performance. 
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