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Abstract 

This paper examines the problem of modeling 
multiple agents within an intelligent simulation-based 
tutor. Multiple agent and planning technology were 
used to enable the system to critique a human agent’s 
reasoning about multiple agents. This perspective 
arises naturally whenever a student must learn to lead 
and coordinate a team of people. The system 
dynamically selected teaching goals, instantiated plans 
and modeled the student and the domain as it 
monitored the student’s progress. The tutor provides 
one of the first complete integrations of a real-time 
simulation with knowledge-based reasoning. Other 
novel techniques of the system are reported, such as 
common-sense reasoning about plans, reasoning about 
protocol mechanisms, and using a real-time simulation 
for training. 

Introduction 

Simulation-based tutoring provides students with valuable 
practice, which is often impossible to obtain in the real 
world. A simulation coupled with an intelligent tutor can be 
particularly effective because students can practice 
problem-solving in a realistic setting while the tutor can 
recognize when situations arise that are well suited for 
targeting specific learning activities. Properly situated 
teaching is effective because the student can comprehend 
the significance of knowledge immediately applied to solve 
a current problem. We built a simulation-based tutor 
incorporating these ideas for teaching Advanced Cardiac 
Life Support (ACLS) to medical personnel. 

In the Cardiac Tutor the student was required to 
supervise several independent assistants. Each assistant 
performed tasks critical to the procedure and these agents 
were coordinated by the student team leader. Monitoring 
the student required reasoning about the roles and state of 
all agents in order to evaluate student actions. This problem 
differs from distributed reasoning because tasks are 
distributed but reasoning is not. All problem-solving and 
coordination was centralized as the student team leader 
reasoned about multiple-agents executing tasks in parallel. 

The problem is significant because it appears whenever 
people must be trained to coordinate working teams. The 

tutor was designed to meet the practical needs of medical 
personnel, and was used by students training in ACLS. The 
mechanism was implemented within a complete tutor and 
partially validated during formative studies of the system. 

The Cardiac Tutor integrated a number of advanced 
technologies, including knowledge-based tutoring, 
simulation, plan recognition, student modeling, domain 
reasoning and multimedia. Integration of these diverse 
elements is one of the novel aspects of this system. The 
user model for the Cardiac Tutor has been described 
elsewhere in [Eliot and Woolf, 1994, 19951 and the 
iterative development and evaluation process are described 
in [Eliot and Woolf, 19961. 

This paper presents an overview of the system and then 
focuses on the planning mechanism showing how it reasons 
about multiple agents. The description of the planning 
mechanism includes examples of how it works, its relation 
to a transition network representation, and its use within the 
larger system. Novel aspects of this technique include 
meta-level reasoning about multiple agents, partial 
matching of student actions, using a linear formalism to 
efficiently encode parallel actions with support for multiple 
roles, subprotocols, conditional steps and synchronization. 

An Overview of The Cardiac Tutor 

The Cardiac Tutor instructs medical professionals to lead 
Advanced Cardiac Life Support (ACLS) teams [AMA, 
1992; Cummins, 19941. Proper training for ACLS leader- 
ship requires approximately two years of closely super- 
vised clinical experience. Computerized instruction has the 
potential to significantly reduce the cost of this training. 

Instruction in the Cardiac Tutor was based on a realistic 
simulation of a cardiac resuscitation situation allowing the 
student to practice while receiving knowledge-based 
feedback. The mechanisms for simulation-based tutoring 
were broken down into four fundamental components: 

* Goal selection: reasoning about 
the best context for meeting them. 

the student’s needs and 

e Plan formation: moving 
based on goal satisfaction. 

from one context to another 
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0 Plan instantiation: simulating a new context/plan, even 
when this included the revision or abandonment of 
outstanding plans. 

0 Situated reasoning: applying situation-specific knowl- 
edge to help the student achieve learning goals when the 
system reached a desired context. 

Figure I shows a time-varying trace of the integrated 
simulation, planner, plan recognition system, and student- 
model reflecting the actions of the student, the system and 
their effects on each other. The bottom line, Patient, 
represents simulated clinical reality. The user actions, 
Student, could be inconsistent with the desired behavior, 
Expert. To detect such inconsistencies, a plan recognition 
phase, Planner, compared expert and student actions. 
Because the instructional feedback, Tutor, reflected the 
current context of the simulation model, the rec- 
ommendations were robust. 

Act-23 Act- I 9 Act-17 Act-14 Act-33 
Correct Incorrect Missed Late Early 

Tutor: ,, 8 z. / / / -\ -.. , ,. , \ 1 

Student: k / / , , , , , , ,, ..:...., >:., _: ,., \-%\\I 

t 
t Act-19 

Planner: Act- 3 IIf 

Expert: k , k, , fGA 
Act-17 Act-14 Act-33 

.c.. . . ,_ _.: : . . . . . . . . _,...:: ,: :,. _. 

Patient: 
Rhythm- 1 Rhythm-2 Rhythm-3 

rm4pih,, \, \, X q _...:. .:., :.: : ,.:_ : .: : :., ,.:: . . .:. 
Time: 

Figure 1. Functionality of the Simulation and Planning 
Mechanisms. 

The Student’s View of the Tutor 

The simulated patient, Figure 2, underwent simulated 
cardiac arrest, while the student employed a variety of 
interventions, including defibrillation, intubation, IV, or 
medications. The patient’s clinical state and ECG were 
depicted as a realistic real-time multimedia presentation. 

Figures 2 and 3 show the simulation of a patient 
undergoing a series of arrythmias. Figure 2 shows five 
separate actions being selected by the student using pop-up 
menus. The student later tried a sequence of drugs but the 
ECG degenerated to ventricular fibrillation, Figure 3. The 
student had to recognize the changed patient condition and 
select the appropriate treatment. 

Following each simulation the recorded history of the 
student’s actions was made available for review, providing 
retrospective feedback. Each action in the history was 
connected to records of the simulation state and the 
knowledge base, so the student could re-examine his 
decisions and their context in detail. 

Figure 2. The Simulated Patient 

I ECG Trace 

Figure 3. Simulated ECG Trace. 

Several important observations of the system were made 
during formative evaluations. These studies involved two 
classes of fourth year medical students. The computerized 
training appeared to be equivalent to time spent with a 
human instructor during traditional training. Students 
perceived the cardiac simulation as it was intended, i.e., 
clinical interventions applied to simulated patients 
undergoing cardiac arrest. The same cognitive skills were 
required to operate the simulation as required during 
traditional training. We have yet to obtain data providing 
definitive support for each of these claims, as explained in 
[Eliot and Woolf, 19961, but evidence supports the claim 
that ongoing practice using the Cardiac Tutor is an 
effective way to maintain medical skills and that group 
practice using the Cardiac Tutor was particularly effective 
for creating a positive learning environment. 
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Prior Research 

Early results with medical reasoning systems provide the 
clearest indication of how difficult is the presentation of 
coherent explanations [Szolovits, 19791. Canned-text and 
simple translations of execution traces do not provide high 
quality explanations. Work on knowledge representation 
and reasoning [Rissland, 1978; de Kleer, 1979; Patil, 19811 
illustrate that multi-dimensional representations are needed 
for full use of a system’s knowledge. Current explanation 
systems attempt to present “correct” information within 
context based on understanding a user’s immediate 
knowledge and learning needs [Suthers et al., 19921. 

Attempts have been made to make simulations give 
causal explanations in addition to merely generating 
descriptions of a system’s behavior [Kuipers, 1986; 
Amador et al., 19931. For example, Amador et al. provide 
techniques for obtaining explanations from equations and 
numeric simulations. Currently, few intelligent tutors can 
modify a simulation in order to customize their curriculum 
to the user’s needs, but see [Katz et al., 19921. 

User and student modeling techniques focus on 
stereotypes [Kay, 1994; Orwant, 19941; plan recognition; 
bug libraries [Van Lehn, 19881 and overlay models 
[Suthers et al., 19921. Plan recognition normally is based 
upon goal decomposition [Broverman, 19911; our system 
instead is based upon linear protocols. 

Distributed AI work focuses on communication of 
agents and techniques that allow agents to create plans 
semi-independently to achieve a single global goal 
[Neiman et al., 1994; Kuokka et al., 1994; Durfee et al., 
19851. Our system describes actions of multiple agents, but 
avoids the problem of plan coordination because we are 
training a single human agent to perform the leadership 
role. Because planning and problem-solving are centralized 
in our system there is no need to account for separately 
constructed sub-plans. 

Multiple Agents in a Simulation-Based Tutoring System 

The plan recognition system served as a model of the 
domain for comparison with the student’s actions. In the 
simulation-based tutor, the student performed actions 
which were evaluated by the tutor to assess consistency 
with the expert’s actions, encoded as a planning formalism. 

Medical domain experts often express their knowledge 
in a different form than knowledge engineers would like, 
typically describing examples or linear sequences of 
actions, rather than giving general principles, rules or 
plans. The domain model consisted of a set of protocols 
integrated with a real-time simulation of cooperating agents 
following the student’s orders. The plan recognition system 
used a protocol formalism designed to approximate the 
conceptual structure of domain experts communicating 
with each other. Therefore, the protocol interpreter differed 
from most planning formalisms as it was based upon 

sequential protocols, not goals, and protocol selection was 
determined by a straightforward mapping from the current 
state of the simulation. Plans were expressed in a linear 
form and the system implicitly recognized opportunities for 
parallel activity. The recognition system supported 
recovery from incorrect user actions and accounted for 
synchronization of multiple agents. 

The tutor provided students with the opportunity to lead 
simulated resuscitations. The tutoring system reasoned 
about the student, both as an agent within the simulation 
and as a student learning a task. The student was 
responsible for directing the simulated agents and most 
student commands were simulated as orders for simulated 
assistants to perform medical tasks. In addition, the student 
was represented within the simulation and directly 
performed some actions, such as operating the simulated 
defibrillator. The simulated team leader shouted orders for 
another agent to perform when the student selected a 
command from a menu. Each order was simulated as 
realistically as possible, including an appropriate real-time 
delay as the task was performed. 

The domain required complex representations and 
reasoning mechanisms. Many features had to be 
generalized for multiple instances, such as: 

0 Multiple agents, including doctors, nurses, EMTs. 

0 Multiple roles for each agent, such as airways, 
medications. 

0 Multiple actions for each agent, such as start IV, 
intubate, defibrillate. 

a Multiple orders, since 
due to parallel activity. 

actions could be done out of order 

The Protocol Interpreter 

The system reasoned about the student’s ability, by 
comparing student actions with a model of an expert’s 
behavior. Any action or order expected of the team leader 
was accepted as a valid student action. Any other action 
was considered incorrect. Because multiple agents were 
represented and could act in parallel there was generally 
more than one correct action that the student could select. 
Any action that any agent was ready to perform was a valid 
action for the student to request, either a command for a 
secondary agent or an action to perform directly. Figure 4 
shows a simplified version of the protocol interpreter. The 
correct protocol had to be selected initially by analyzing 
the state of the simulation. In this example, Protocol-3 was 
selected so Protocol-l and Protocol-2 remained inactive. If 
the simulation had been in some other state initially then 
Protocol-l or Protocol-2 could have been selected. 

Once a protocol was selected, the interpreter normally 
followed it to the end, provided that the simulation 
remained within a specified range of states. If the 
simulation state ever satisfied a termination predicate 
associated with the current protocol then that protocol was 
terminated and the selection process was restarted. In this 
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example, the student had already completed the first action, 
namely, Act-31 so the next action required was to perform 
Act-32; any other action was incorrect. The current 
recommendation was indicated by a pointer which marks 
the last completed action in the selected protocol. 

Encoding the knowledge in this domain required a more 
sophisticated representation than depicted in Figure 4. 
Some actions were optional in some situations. For 
instance, if Act-32 was optional then the current recom- 
mendation would be the set including actions: R = {Act- 
32, Act-33}. A student action, A, was correct if A was a 
member of R. Since several actions in sequence could be 
optional the set of current recommendations could include 
many actions. If the student’s actions were always correct, 
updating the protocol pointer was comparatively straight- 
forward. However, incorrect student actions were allowed 
to affect the state of the simulation, possibly resulting in 
movement to a state where currently recommended actions 
were impossible or meaningless [Broverman. 19911. The 
protocol interpreter required additional planning knowledge 
to detect and correct such problems. 

Protocol Selection Based on Simulation State 
I I I 

t 
Protocol- 1: 

i 
‘Protocol-2: 

Protocol-3: 

Current 
Recommendation I 

Figure 4. Protocol Recognition. 

The knowledge base allowed preconditions and 
postconditions to be specified for protocol actions. When 
the protocol interpreter detected an incorrect student action 
it notified the student, then examined the preconditions of 
actions in the current set of recommendations and then 
skipped impossible actions by moving the pointer forward. 

The algorithms used in this plan recognition system have 
not been formally analyzed, but they avoid unbounded 
search. The linear protocol representation supported 
efficient reasoning about all possible combinations of 
assumptions regarding the student’s choice of optional 
actions because incorrect actions could be skipped but not 
reordered. 

An Example 

To illustrate the various steps in the protocol and planning 
mechanisms, we provide diagrams showing the state of the 
plan recognition mechanism during a sequence of states 
involved in tracking a student’s actions during a 
simulation. 

The protocol interpreter modeled multiple agents acting 
in parallel. Each action in a protocol was assigned to a role, 
by the domain expert, and each agent was dynamically 
assigned one or more roles by the system. In the cardiac 
domain the roles are leader (r&ponsible for issuing orders 
and operating the defibrillator), airways (responsible for 
ventilation and intubation), circulation (chest 
compressions) and medications (in charge of medications, 
IV lines and drugs). Every agent interpreted the protocol 
semi-independently, selecting actions appropriate to its 
assigned roles and skipping others. 

The first recommended action in this example is to 
charge the defibrillator to 200 joules. After protocol 
selection was complete and the plan recognition system 
fully initialized, the nine step universal ventricular 
fibrillation/ventricular tachycardia (VFNT) protocol was 
selected and two subprotocols were activated. The first step 
of the VF/VT protocol activated the subprotocol for a 
sequential defibrillation sequence at 200 joules, which in 
turn activated the subprotocol for a stand clear sequence, 
Figure 5. 

The simulated team leader agent is identified as ‘Lead’, 
and the other managers are named ‘Air’ for airways, ‘Circ’ 
for circulation and ‘Meds’ for medications. All- protocol 
pointers for the four agents initially pointed to the first step 
in the VF/VT plan. Each protocol pointer was moved 
forward to the first plan applicable to a role assigned to that 
agent. When subprotocol steps were encountered, the 
subprotocol was instantiated, the protocol pointer made to 
point to the first step in the subprotocol and then the 
pointer was moved forward linearly. 

r- S 1: Charge Defibrillator: 200 Joules 

r- 

S2: Stand Clear Protocol 
r- S3: Defibrillate 

S4: Synch 

Lead 

Protocol 
Pointers 

Lead Air Circ 

Figure 5. Sequential Defibrillation Procedure. 
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The protocol pointer for the team leader first pointed to a 
subprotocol step, so the sequential defibrillate subprotocol 
shown in Figure 5 was instantiated and the protocol pointer 
was made to point to the first step in that subprotocol, plan 
step Sl. This step was assigned to the team leader role, so 
the protocol pointer for the team leader agent was not 
advanced further. Hence the first (and in this case only) 
recommended action was to charge the defibrillator to 200 
joules. The other protocol pointers were initialized and 
advanced similarly, except that none of the agents other 
than the team leader could charge the defibrillator. Hence, 
those protocol pointers moved past step Sl to step S2. This 
was another subprotocol step so the stand clear subprotocol 
was activated and the three agents assigned to medications, 
airways and circulation eventually pointed to the first step 
in this subprotocol, Cl. 

Step Cl was a synchronization step, with sequence 
number 4. As each protocol pointer was moved to this step 
another check was performed to determine if the 
synchronization condition was satisfied on all protocol 
pointers for all agents. In the state depicted in Figure 5, the 
protocol pointer for the team leader was located at step Sl 
which had sequence number 2 which was less than the 
sequence number for the synchronization step Cl (i.e., 2 < 
4) so the synchronization condition was not satisfied. 
Since the synchronization was not complete the agents 
assigned to airways, circulation and medications had to 
wait for the team leader to charge the defibrillator. Those 
three agents were not recommended to perform any action 
in the state shown. 

This example continues until all the action items are 
complete. 

Actions and Synchronization 

Actions are not as simple as suggested above. In the 
following discussion we replace specific actions with the 
generic ‘Act-nn’ to explain actions and synchronization in 
detail. 

The role assigned to each action was part of the static 
knowledge about actions. The assignment of roles to agents 
was automatically defined at the beginning of each 
simulation depending upon how many helper agents were 
available. The number of helpers and their role assignments 
did not change during a simulation. The simulated team 
leader was controlled by the student and assigned the single 
role of leader. The other roles were distributed among the 
available helper agents as equally as possible. 

The team leader was responsible for directing all the 
agents; hence user commands were interpreted as orders 
carried out by agents. Each agent was assigned one or more 
roles and each action was assigned a specific role. The key 
to plan recognition using protocols is the computation of 
the set of actions that are currently recommended, Figure 6. 
In this example actions Act-31 and Act-35 are recom- 
mended; other actions are incorrect. Each agent had a 
separate protocol pointer and interpreted the protocol semi- 
independently, selecting actions belonging to its assigned 

roles while skipping other actions. Synchronization steps 
served to coordinate agents. Any agent reaching a 
synchronization step paused, waiting for the other agents to 
catch up, then all agents continued. 

Initially the protocol pointer for each agent was set to the 
start of the selected -protocol. Then -the pointer was 
advanced past any actions that were irrelevant to the roles 
assigned to the- associated agent. The set of actions 
recommended for any agent included the current steps for 
each role assignment. If a recommended action was 
optional then the following step was also recommended. A 
sequence of several actions could all be in the current set of 
recommended actions in this way. 

Action 
For Role- 1 

Action 
For Role-2 

Action 
For Role-3 

Agek Gl 
Assigned 

Roles 1 & 2 

Agent G2 
Assigned 

Role 3 Recommendations 

Figure 6. Multiple Agent Protocols. 

The set of recommended actions included the action fol- 
lowing the last action completed and any subsequent ac- 
tions if that action was optional. Synchronization steps 
could be optional, but determining this required reasoning 
about all the agents. A copy of all of the protocol pointers 
was created as the first step in determining the recom- 
mended actions. These duplicate pointers were then ad- 
vanced as far as possible past all optional steps to deter- 
mine an upper bound. A second scan of the protocol for 
each agent was then done to collect the actual recom- 
mended actions using the previously determined upper 
bound to limit the search. This computation accounted for 
all possible combinations of assumptions about which op- 
tional steps the student might elect to perform. 

Figure 7 shows how a synchronization action was 
interpreted. Action steps Al and A4 had to be performed 
by the agent assigned role Rl, which in this case was agent 
Gl and, similarly, action steps A2 and A3 had to be 
performed by agent 62 who was assigned role R2. When 
action Al was performed agent 61 was updated, but had to 
wait at the synchronization step. When action A2 was 
complete then both agents Gl and G2 completed the 
synchronization step. 
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a) Before Action Al is Started 

RI R2 R2 Rl 

4 4 
Agents: Gl G2 

b) After Action Al is Complete 

Rl R2 R2 RI 

4 4 (Blocked) 
G2 Gl 

c) After Action A2 is Complete 

Rl R2 R2 Rl 

Figure 7. Synchronization of Agents. 

Optional actions could interact with synchronization 
steps, Figure 8. The recommended actions, as specified by 
the protocols are indicated by the lines forming inverted 
trees. Several steps before the synchronization step were 
optional. The analysis to determine the recommended 
actions requires several steps: 

0 Agent Gl could skip actions Al and A3, and was not 
responsible for action A2, so agent Gl can reach the 
synchronization step. 

e Agent G2 could skip action A2 and was not responsible 
for actions Al and A3, so agent G2 can also reach the 
synchronization step. 

l Since both agents can reach the synchronization step it 
was also optional and both agents may perform later 
actions. 

0 Since A4 was optional, agent G2 could next perform any 
of the actions { A2, A4, A7 } . 
* Since A5 was required, agent Gl could next perform any 
of the actions {Al, A3, A5) but not A6. 

In this state the recommended action set was 
{Al, A2, A3, A4, A5, A7). Action A6 was not 
recommended because it must be performed by agent Gl 
who must complete action A5 first in every allowed 
sequence of actions. 

Suppose that the student selected action A4 next. 
Because action A4 was recommended on the assumption 
that the synchronization step was satisfied, the student must 
have elected not to perform any of the steps Al, A2 and 
A3. Consequently, selecting action A4, which was 
performed by agent G2, affects the set of actions which 
agent Gl may next perform; actions Al and A3 are no 
longer allowed because the sequences <A4, Al> and 

<A4, A3> did not satisfy the synchronization step before 
action A4 was taken. Hence, following action A4 the 
recommended action set consisted of { A5, A7). 

Rl R2 Rl R2 Rl Rl R2 

Recommended Action Set 

Figure 8. Optional Actions and Synchronization. 

Transition Networks 

Medical experts presented domain knowledge in a format 
very similar to the linear protocol representation of 
Figures 4 to 8. We chose to directly implement knowledge 
in this form so that changes suggested by the domain 
experts could be easily incorporated into the system. 
However, the underlying semantics of the protocols may be 
more clearly understood by observing how they may be 
transformed into transition networks, Figure 9. 

0 Protocol-32, before agents are assigned 

aYN@+ 
Rl R2 R3 

a) Protocol-32 with 1 Agent Assigned 

Al- A2 - A3- SYNCH 

b) Protocol-32 with 2 Agents Assigned 

SYNCH 

c) Protocol-32 with 3 Agents Assigned 

A2- 
A1 LA3 

A3 
-A2 

Al- 
A2 -A3 

A3 
-Al 
-Al 
-A2 

SYNCH 

Figure 9 Transition Networks Induced by a Protocol. 

The shape of the transition net varies depending upon 
how many agents are available for parallel activity. Our 
system did not explicitly perform this transformation; the 
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plan recognition process implicitly implemented equivalent 
semantics. In Figure 9 the nodes are labeled with the action 
leading from the previous state into the node. 

Several additional mechanisms were implemented which 
improved the expressive power of the formalism and made 
it easier to use. Conditional actions extended the concept of 
optional actions and were used to restrict protocol actions 
to certain simulation states. Many actions require this 
context sensitivity, such as: Start-IV, unless the IV is 
already in place or Charge-Defibrillator, when defibrillator 
is not charged. 

Conclusions 

The tutor implemented mechanisms for goal selection, 
plan formation, and plan instantiation within situated 
contexts. It included an accurate descriptive model of the 
emergency room environment and general patient status, 
combined with a causal model of cardiac function and 
related physiologic systems. The tutor consisted of: 
0 a simulation, 
environment; 

representing the problem-solving 

0 a student model, to guide the learning process; 

0 a bias mechanism, making the simulation adaptive; and 

0 a plan 
model. 

recognition system, for constructing the student 

Multiple agent and planning technology enabled the 
Cardiac Tutor, unlike typical teaching systems, to go 
beyond simple classification of student actions as correct or 
incorrect by specifying how an incorrect user action related 
to the expert action. 

Dynamic construction of the student model involved 
monitoring student actions during the simulations and 
evaluating these actions in comparison with an expert 
model encoded as a multi-agent plan. The plan recognition 
techniques are novel and allowed the expert knowledge to 
be expressed in a form that is natural for domain experts. 
The multi-agent reasoning used in this system differs from 
most distributed AI reasoning because the system reasoned 
about a human agent reasoning about multiple agents. 
Consequently, the difficult issues involving combinations 
of separately developed partial plans does not arise in this 
research. Issues of reasoning about multiple agents, using a 
real-time simulation for training, and reasoning about 
protocol mechanisms were addressed. 
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