
easo

Christopher Rhodes Eliot III and Beverly Park Woolf

Department of Computer Science
University of Massachusetts, Amherst

Amherst, Ma. 01003
{Eliot, Bev @cs.umass.edu}

Abstract

This paper examines the problem of modeling
multiple agents within an intelligent simulation-based
tutor. Multiple agent and planning technology were
used to enable the system to critique a human agent’s
reasoning about multiple agents. This perspective
arises naturally whenever a student must learn to lead
and coordinate a team of people. The system
dynamically selected teaching goals, instantiated plans
and modeled the student and the domain as it
monitored the student’s progress. The tutor provides
one of the first complete integrations of a real-time
simulation with knowledge-based reasoning. Other
novel techniques of the system are reported, such as
common-sense reasoning about plans, reasoning about
protocol mechanisms, and using a real-time simulation
for training.

Introduction

Simulation-based tutoring provides students with valuable
practice, which is often impossible to obtain in the real
world. A simulation coupled with an intelligent tutor can be
particularly effective because students can practice
problem-solving in a realistic setting while the tutor can
recognize when situations arise that are well suited for
targeting specific learning activities. Properly situated
teaching is effective because the student can comprehend
the significance of knowledge immediately applied to solve
a current problem. We built a simulation-based tutor
incorporating these ideas for teaching Advanced Cardiac
Life Support (ACLS) to medical personnel.

In the Cardiac Tutor the student was required to
supervise several independent assistants. Each assistant
performed tasks critical to the procedure and these agents
were coordinated by the student team leader. Monitoring
the student required reasoning about the roles and state of
all agents in order to evaluate student actions. This problem
differs from distributed reasoning because tasks are
distributed but reasoning is not. All problem-solving and
coordination was centralized as the student team leader
reasoned about multiple-agents executing tasks in parallel.

The problem is significant because it appears whenever
people must be trained to coordinate working teams. The

tutor was designed to meet the practical needs of medical
personnel, and was used by students training in ACLS. The
mechanism was implemented within a complete tutor and
partially validated during formative studies of the system.

The Cardiac Tutor integrated a number of advanced
technologies, including knowledge-based tutoring,
simulation, plan recognition, student modeling, domain
reasoning and multimedia. Integration of these diverse
elements is one of the novel aspects of this system. The
user model for the Cardiac Tutor has been described
elsewhere in [Eliot and Woolf, 1994, 19951 and the
iterative development and evaluation process are described
in [Eliot and Woolf, 19961.

This paper presents an overview of the system and then
focuses on the planning mechanism showing how it reasons
about multiple agents. The description of the planning
mechanism includes examples of how it works, its relation
to a transition network representation, and its use within the
larger system. Novel aspects of this technique include
meta-level reasoning about multiple agents, partial
matching of student actions, using a linear formalism to
efficiently encode parallel actions with support for multiple
roles, subprotocols, conditional steps and synchronization.

An Overview of The Cardiac Tutor

The Cardiac Tutor instructs medical professionals to lead
Advanced Cardiac Life Support (ACLS) teams [AMA,
1992; Cummins, 19941. Proper training for ACLS leader-
ship requires approximately two years of closely super-
vised clinical experience. Computerized instruction has the
potential to significantly reduce the cost of this training.

Instruction in the Cardiac Tutor was based on a realistic
simulation of a cardiac resuscitation situation allowing the
student to practice while receiving knowledge-based
feedback. The mechanisms for simulation-based tutoring
were broken down into four fundamental components:

* Goal selection: reasoning about
the best context for meeting them.

the student’s needs and

e Plan formation: moving
based on goal satisfaction.

from one context to another

Education 409

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

0 Plan instantiation: simulating a new context/plan, even
when this included the revision or abandonment of
outstanding plans.

0 Situated reasoning: applying situation-specific knowl-
edge to help the student achieve learning goals when the
system reached a desired context.

Figure I shows a time-varying trace of the integrated
simulation, planner, plan recognition system, and student-
model reflecting the actions of the student, the system and
their effects on each other. The bottom line, Patient,
represents simulated clinical reality. The user actions,
Student, could be inconsistent with the desired behavior,
Expert. To detect such inconsistencies, a plan recognition
phase, Planner, compared expert and student actions.
Because the instructional feedback, Tutor, reflected the
current context of the simulation model, the rec-
ommendations were robust.

Act-23 Act- I 9 Act-17 Act-14 Act-33
Correct Incorrect Missed Late Early

Tutor: ,, 8 z. / / / -\ -.. , ,. , \ 1

Student: k / / , , , , , , ,, ..:...., >:., _: ,., \-%\\I

t
t Act-19

Planner: Act- 3 IIf

Expert: k , k, , fGA
Act-17 Act-14 Act-33

.c.. . . ,_ _.: : _,...:: ,: :,. _.

Patient:
Rhythm- 1 Rhythm-2 Rhythm-3

rm4pih,, \, \, X q _...:. .:., :.: : ,.:_ : .: : :., ,.:: . . .:.
Time:

Figure 1. Functionality of the Simulation and Planning
Mechanisms.

The Student’s View of the Tutor

The simulated patient, Figure 2, underwent simulated
cardiac arrest, while the student employed a variety of
interventions, including defibrillation, intubation, IV, or
medications. The patient’s clinical state and ECG were
depicted as a realistic real-time multimedia presentation.

Figures 2 and 3 show the simulation of a patient
undergoing a series of arrythmias. Figure 2 shows five
separate actions being selected by the student using pop-up
menus. The student later tried a sequence of drugs but the
ECG degenerated to ventricular fibrillation, Figure 3. The
student had to recognize the changed patient condition and
select the appropriate treatment.

Following each simulation the recorded history of the
student’s actions was made available for review, providing
retrospective feedback. Each action in the history was
connected to records of the simulation state and the
knowledge base, so the student could re-examine his
decisions and their context in detail.

Figure 2. The Simulated Patient

I ECG Trace

Figure 3. Simulated ECG Trace.

Several important observations of the system were made
during formative evaluations. These studies involved two
classes of fourth year medical students. The computerized
training appeared to be equivalent to time spent with a
human instructor during traditional training. Students
perceived the cardiac simulation as it was intended, i.e.,
clinical interventions applied to simulated patients
undergoing cardiac arrest. The same cognitive skills were
required to operate the simulation as required during
traditional training. We have yet to obtain data providing
definitive support for each of these claims, as explained in
[Eliot and Woolf, 19961, but evidence supports the claim
that ongoing practice using the Cardiac Tutor is an
effective way to maintain medical skills and that group
practice using the Cardiac Tutor was particularly effective
for creating a positive learning environment.

410 Education

Prior Research

Early results with medical reasoning systems provide the
clearest indication of how difficult is the presentation of
coherent explanations [Szolovits, 19791. Canned-text and
simple translations of execution traces do not provide high
quality explanations. Work on knowledge representation
and reasoning [Rissland, 1978; de Kleer, 1979; Patil, 19811
illustrate that multi-dimensional representations are needed
for full use of a system’s knowledge. Current explanation
systems attempt to present “correct” information within
context based on understanding a user’s immediate
knowledge and learning needs [Suthers et al., 19921.

Attempts have been made to make simulations give
causal explanations in addition to merely generating
descriptions of a system’s behavior [Kuipers, 1986;
Amador et al., 19931. For example, Amador et al. provide
techniques for obtaining explanations from equations and
numeric simulations. Currently, few intelligent tutors can
modify a simulation in order to customize their curriculum
to the user’s needs, but see [Katz et al., 19921.

User and student modeling techniques focus on
stereotypes [Kay, 1994; Orwant, 19941; plan recognition;
bug libraries [Van Lehn, 19881 and overlay models
[Suthers et al., 19921. Plan recognition normally is based
upon goal decomposition [Broverman, 19911; our system
instead is based upon linear protocols.

Distributed AI work focuses on communication of
agents and techniques that allow agents to create plans
semi-independently to achieve a single global goal
[Neiman et al., 1994; Kuokka et al., 1994; Durfee et al.,
19851. Our system describes actions of multiple agents, but
avoids the problem of plan coordination because we are
training a single human agent to perform the leadership
role. Because planning and problem-solving are centralized
in our system there is no need to account for separately
constructed sub-plans.

Multiple Agents in a Simulation-Based Tutoring System

The plan recognition system served as a model of the
domain for comparison with the student’s actions. In the
simulation-based tutor, the student performed actions
which were evaluated by the tutor to assess consistency
with the expert’s actions, encoded as a planning formalism.

Medical domain experts often express their knowledge
in a different form than knowledge engineers would like,
typically describing examples or linear sequences of
actions, rather than giving general principles, rules or
plans. The domain model consisted of a set of protocols
integrated with a real-time simulation of cooperating agents
following the student’s orders. The plan recognition system
used a protocol formalism designed to approximate the
conceptual structure of domain experts communicating
with each other. Therefore, the protocol interpreter differed
from most planning formalisms as it was based upon

sequential protocols, not goals, and protocol selection was
determined by a straightforward mapping from the current
state of the simulation. Plans were expressed in a linear
form and the system implicitly recognized opportunities for
parallel activity. The recognition system supported
recovery from incorrect user actions and accounted for
synchronization of multiple agents.

The tutor provided students with the opportunity to lead
simulated resuscitations. The tutoring system reasoned
about the student, both as an agent within the simulation
and as a student learning a task. The student was
responsible for directing the simulated agents and most
student commands were simulated as orders for simulated
assistants to perform medical tasks. In addition, the student
was represented within the simulation and directly
performed some actions, such as operating the simulated
defibrillator. The simulated team leader shouted orders for
another agent to perform when the student selected a
command from a menu. Each order was simulated as
realistically as possible, including an appropriate real-time
delay as the task was performed.

The domain required complex representations and
reasoning mechanisms. Many features had to be
generalized for multiple instances, such as:

0 Multiple agents, including doctors, nurses, EMTs.

0 Multiple roles for each agent, such as airways,
medications.

0 Multiple actions for each agent, such as start IV,
intubate, defibrillate.

a Multiple orders, since
due to parallel activity.

actions could be done out of order

The Protocol Interpreter

The system reasoned about the student’s ability, by
comparing student actions with a model of an expert’s
behavior. Any action or order expected of the team leader
was accepted as a valid student action. Any other action
was considered incorrect. Because multiple agents were
represented and could act in parallel there was generally
more than one correct action that the student could select.
Any action that any agent was ready to perform was a valid
action for the student to request, either a command for a
secondary agent or an action to perform directly. Figure 4
shows a simplified version of the protocol interpreter. The
correct protocol had to be selected initially by analyzing
the state of the simulation. In this example, Protocol-3 was
selected so Protocol-l and Protocol-2 remained inactive. If
the simulation had been in some other state initially then
Protocol-l or Protocol-2 could have been selected.

Once a protocol was selected, the interpreter normally
followed it to the end, provided that the simulation
remained within a specified range of states. If the
simulation state ever satisfied a termination predicate
associated with the current protocol then that protocol was
terminated and the selection process was restarted. In this

Education 411

example, the student had already completed the first action,
namely, Act-31 so the next action required was to perform
Act-32; any other action was incorrect. The current
recommendation was indicated by a pointer which marks
the last completed action in the selected protocol.

Encoding the knowledge in this domain required a more
sophisticated representation than depicted in Figure 4.
Some actions were optional in some situations. For
instance, if Act-32 was optional then the current recom-
mendation would be the set including actions: R = {Act-
32, Act-33}. A student action, A, was correct if A was a
member of R. Since several actions in sequence could be
optional the set of current recommendations could include
many actions. If the student’s actions were always correct,
updating the protocol pointer was comparatively straight-
forward. However, incorrect student actions were allowed
to affect the state of the simulation, possibly resulting in
movement to a state where currently recommended actions
were impossible or meaningless [Broverman. 19911. The
protocol interpreter required additional planning knowledge
to detect and correct such problems.

Protocol Selection Based on Simulation State
I I I

t
Protocol- 1:

i
‘Protocol-2:

Protocol-3:

Current
Recommendation I

Figure 4. Protocol Recognition.

The knowledge base allowed preconditions and
postconditions to be specified for protocol actions. When
the protocol interpreter detected an incorrect student action
it notified the student, then examined the preconditions of
actions in the current set of recommendations and then
skipped impossible actions by moving the pointer forward.

The algorithms used in this plan recognition system have
not been formally analyzed, but they avoid unbounded
search. The linear protocol representation supported
efficient reasoning about all possible combinations of
assumptions regarding the student’s choice of optional
actions because incorrect actions could be skipped but not
reordered.

An Example

To illustrate the various steps in the protocol and planning
mechanisms, we provide diagrams showing the state of the
plan recognition mechanism during a sequence of states
involved in tracking a student’s actions during a
simulation.

The protocol interpreter modeled multiple agents acting
in parallel. Each action in a protocol was assigned to a role,
by the domain expert, and each agent was dynamically
assigned one or more roles by the system. In the cardiac
domain the roles are leader (r&ponsible for issuing orders
and operating the defibrillator), airways (responsible for
ventilation and intubation), circulation (chest
compressions) and medications (in charge of medications,
IV lines and drugs). Every agent interpreted the protocol
semi-independently, selecting actions appropriate to its
assigned roles and skipping others.

The first recommended action in this example is to
charge the defibrillator to 200 joules. After protocol
selection was complete and the plan recognition system
fully initialized, the nine step universal ventricular
fibrillation/ventricular tachycardia (VFNT) protocol was
selected and two subprotocols were activated. The first step
of the VF/VT protocol activated the subprotocol for a
sequential defibrillation sequence at 200 joules, which in
turn activated the subprotocol for a stand clear sequence,
Figure 5.

The simulated team leader agent is identified as ‘Lead’,
and the other managers are named ‘Air’ for airways, ‘Circ’
for circulation and ‘Meds’ for medications. All- protocol
pointers for the four agents initially pointed to the first step
in the VF/VT plan. Each protocol pointer was moved
forward to the first plan applicable to a role assigned to that
agent. When subprotocol steps were encountered, the
subprotocol was instantiated, the protocol pointer made to
point to the first step in the subprotocol and then the
pointer was moved forward linearly.

r- S 1: Charge Defibrillator: 200 Joules

r-

S2: Stand Clear Protocol
r- S3: Defibrillate

S4: Synch

Lead

Protocol
Pointers

Lead Air Circ

Figure 5. Sequential Defibrillation Procedure.

412 Education

The protocol pointer for the team leader first pointed to a
subprotocol step, so the sequential defibrillate subprotocol
shown in Figure 5 was instantiated and the protocol pointer
was made to point to the first step in that subprotocol, plan
step Sl. This step was assigned to the team leader role, so
the protocol pointer for the team leader agent was not
advanced further. Hence the first (and in this case only)
recommended action was to charge the defibrillator to 200
joules. The other protocol pointers were initialized and
advanced similarly, except that none of the agents other
than the team leader could charge the defibrillator. Hence,
those protocol pointers moved past step Sl to step S2. This
was another subprotocol step so the stand clear subprotocol
was activated and the three agents assigned to medications,
airways and circulation eventually pointed to the first step
in this subprotocol, Cl.

Step Cl was a synchronization step, with sequence
number 4. As each protocol pointer was moved to this step
another check was performed to determine if the
synchronization condition was satisfied on all protocol
pointers for all agents. In the state depicted in Figure 5, the
protocol pointer for the team leader was located at step Sl
which had sequence number 2 which was less than the
sequence number for the synchronization step Cl (i.e., 2 <
4) so the synchronization condition was not satisfied.
Since the synchronization was not complete the agents
assigned to airways, circulation and medications had to
wait for the team leader to charge the defibrillator. Those
three agents were not recommended to perform any action
in the state shown.

This example continues until all the action items are
complete.

Actions and Synchronization

Actions are not as simple as suggested above. In the
following discussion we replace specific actions with the
generic ‘Act-nn’ to explain actions and synchronization in
detail.

The role assigned to each action was part of the static
knowledge about actions. The assignment of roles to agents
was automatically defined at the beginning of each
simulation depending upon how many helper agents were
available. The number of helpers and their role assignments
did not change during a simulation. The simulated team
leader was controlled by the student and assigned the single
role of leader. The other roles were distributed among the
available helper agents as equally as possible.

The team leader was responsible for directing all the
agents; hence user commands were interpreted as orders
carried out by agents. Each agent was assigned one or more
roles and each action was assigned a specific role. The key
to plan recognition using protocols is the computation of
the set of actions that are currently recommended, Figure 6.
In this example actions Act-31 and Act-35 are recom-
mended; other actions are incorrect. Each agent had a
separate protocol pointer and interpreted the protocol semi-
independently, selecting actions belonging to its assigned

roles while skipping other actions. Synchronization steps
served to coordinate agents. Any agent reaching a
synchronization step paused, waiting for the other agents to
catch up, then all agents continued.

Initially the protocol pointer for each agent was set to the
start of the selected -protocol. Then -the pointer was
advanced past any actions that were irrelevant to the roles
assigned to the- associated agent. The set of actions
recommended for any agent included the current steps for
each role assignment. If a recommended action was
optional then the following step was also recommended. A
sequence of several actions could all be in the current set of
recommended actions in this way.

Action
For Role- 1

Action
For Role-2

Action
For Role-3

Agek Gl
Assigned

Roles 1 & 2

Agent G2
Assigned

Role 3 Recommendations

Figure 6. Multiple Agent Protocols.

The set of recommended actions included the action fol-
lowing the last action completed and any subsequent ac-
tions if that action was optional. Synchronization steps
could be optional, but determining this required reasoning
about all the agents. A copy of all of the protocol pointers
was created as the first step in determining the recom-
mended actions. These duplicate pointers were then ad-
vanced as far as possible past all optional steps to deter-
mine an upper bound. A second scan of the protocol for
each agent was then done to collect the actual recom-
mended actions using the previously determined upper
bound to limit the search. This computation accounted for
all possible combinations of assumptions about which op-
tional steps the student might elect to perform.

Figure 7 shows how a synchronization action was
interpreted. Action steps Al and A4 had to be performed
by the agent assigned role Rl, which in this case was agent
Gl and, similarly, action steps A2 and A3 had to be
performed by agent 62 who was assigned role R2. When
action Al was performed agent 61 was updated, but had to
wait at the synchronization step. When action A2 was
complete then both agents Gl and G2 completed the
synchronization step.

Education 413

a) Before Action Al is Started

RI R2 R2 Rl

4 4
Agents: Gl G2

b) After Action Al is Complete

Rl R2 R2 RI

4 4 (Blocked)
G2 Gl

c) After Action A2 is Complete

Rl R2 R2 Rl

Figure 7. Synchronization of Agents.

Optional actions could interact with synchronization
steps, Figure 8. The recommended actions, as specified by
the protocols are indicated by the lines forming inverted
trees. Several steps before the synchronization step were
optional. The analysis to determine the recommended
actions requires several steps:

0 Agent Gl could skip actions Al and A3, and was not
responsible for action A2, so agent Gl can reach the
synchronization step.

e Agent G2 could skip action A2 and was not responsible
for actions Al and A3, so agent G2 can also reach the
synchronization step.

l Since both agents can reach the synchronization step it
was also optional and both agents may perform later
actions.

0 Since A4 was optional, agent G2 could next perform any
of the actions { A2, A4, A7 } .
* Since A5 was required, agent Gl could next perform any
of the actions {Al, A3, A5) but not A6.

In this state the recommended action set was
{Al, A2, A3, A4, A5, A7). Action A6 was not
recommended because it must be performed by agent Gl
who must complete action A5 first in every allowed
sequence of actions.

Suppose that the student selected action A4 next.
Because action A4 was recommended on the assumption
that the synchronization step was satisfied, the student must
have elected not to perform any of the steps Al, A2 and
A3. Consequently, selecting action A4, which was
performed by agent G2, affects the set of actions which
agent Gl may next perform; actions Al and A3 are no
longer allowed because the sequences <A4, Al> and

<A4, A3> did not satisfy the synchronization step before
action A4 was taken. Hence, following action A4 the
recommended action set consisted of { A5, A7).

Rl R2 Rl R2 Rl Rl R2

Recommended Action Set

Figure 8. Optional Actions and Synchronization.

Transition Networks

Medical experts presented domain knowledge in a format
very similar to the linear protocol representation of
Figures 4 to 8. We chose to directly implement knowledge
in this form so that changes suggested by the domain
experts could be easily incorporated into the system.
However, the underlying semantics of the protocols may be
more clearly understood by observing how they may be
transformed into transition networks, Figure 9.

0 Protocol-32, before agents are assigned

aYN@+
Rl R2 R3

a) Protocol-32 with 1 Agent Assigned

Al- A2 - A3- SYNCH

b) Protocol-32 with 2 Agents Assigned

SYNCH

c) Protocol-32 with 3 Agents Assigned

A2-
A1 LA3

A3
-A2

Al-
A2 -A3

A3
-Al
-Al
-A2

SYNCH

Figure 9 Transition Networks Induced by a Protocol.

The shape of the transition net varies depending upon
how many agents are available for parallel activity. Our
system did not explicitly perform this transformation; the

414 Education

plan recognition process implicitly implemented equivalent
semantics. In Figure 9 the nodes are labeled with the action
leading from the previous state into the node.

Several additional mechanisms were implemented which
improved the expressive power of the formalism and made
it easier to use. Conditional actions extended the concept of
optional actions and were used to restrict protocol actions
to certain simulation states. Many actions require this
context sensitivity, such as: Start-IV, unless the IV is
already in place or Charge-Defibrillator, when defibrillator
is not charged.

Conclusions

The tutor implemented mechanisms for goal selection,
plan formation, and plan instantiation within situated
contexts. It included an accurate descriptive model of the
emergency room environment and general patient status,
combined with a causal model of cardiac function and
related physiologic systems. The tutor consisted of:
0 a simulation,
environment;

representing the problem-solving

0 a student model, to guide the learning process;

0 a bias mechanism, making the simulation adaptive; and

0 a plan
model.

recognition system, for constructing the student

Multiple agent and planning technology enabled the
Cardiac Tutor, unlike typical teaching systems, to go
beyond simple classification of student actions as correct or
incorrect by specifying how an incorrect user action related
to the expert action.

Dynamic construction of the student model involved
monitoring student actions during the simulations and
evaluating these actions in comparison with an expert
model encoded as a multi-agent plan. The plan recognition
techniques are novel and allowed the expert knowledge to
be expressed in a form that is natural for domain experts.
The multi-agent reasoning used in this system differs from
most distributed AI reasoning because the system reasoned
about a human agent reasoning about multiple agents.
Consequently, the difficult issues involving combinations
of separately developed partial plans does not arise in this
research. Issues of reasoning about multiple agents, using a
real-time simulation for training, and reasoning about
protocol mechanisms were addressed.

References

Amador, F., Finkelstein, A., and Weld, D. 1993. Real-Time
Self-Explanatory Simulation. In Proceedings of AAAI-
93, 562-567. Washington D. C.

American Heart Association, 1987. Textbook of Advanced
Cardiac Life Support (second edition). Dallas, Texas.

American Medical Association, 1992. Journal of the
American Medical Association 268 (16).

Broverman, C. 199 1. Constructive Interpretation of
Human-Generated Exceptions During Plan Executions.
Ph.D. diss., Technical Report 91-9, Computer Science
Dept., University of Massachusetts, Amherst.

Cummins, R. 0. ed. 1994. Textbook of Advanced Cardiac
Life Support. Dallas, Texas: American Heart
Association.

de Kleer, J. 1979. Causal and Teleological Reasoning in
Circuit Recognition. MIT-AI-TR 529, Cambridge, Mass.

Durfee, E. H., Lesser, V. R., and Corkill, D. D. 1985.
Increasing Coherence in a Distributed Problem-Solving
Network, In Proceedings of IJCAI-85, 1025- 1030.

Eliot, C and Woolf, B. 1994. Reasoning about the User
within a Simulation-based Real-time Training System. In
Proceedings of the Fourth International Conference on
User Modeling, 121-126.

Eliot, C. and Woolf, B. P. 1995. An Adaptive Student
Centered Curriculum for an Intelligent Training System.
User Modeling and User-Adapted Interaction 5: 67-86.

Eliot, C. and Woolf, B. P. 1996. Iterative Development and
Validation of a Simulation-based Medical Tutor. Third
International Conference on Intelligent Tutoring
Systems, University of Montreal. June 1996.

Katz, S., Lesgold, A., Eggan, G., and Gordin, M. 1992.
Modeling the Student in Sherlock II. AI and Education 3
(4).

Kay, J. 1994. Lies, Damned Lies and Stereotypes:
Pragmatic Approximations of Users. In Proceedings of
the Fourth International Conference on User Modeling
175-184.

Kuipers, B. J. 1986. Qualitative Simulation. Artificial
Intelligence 29 (3): 289-338.

Kuokka, D., and Livezey, B. 1994. A Collaborative
Parametric Design Agent. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 387-393.

Neiman, D. E., Hildum, D. W., Lesser, V. R. and
Sandholm, T. W. 1994. Exploiting Meta-Level
Information in a Distributed Scheduling System. In
Proceedings of the Twelfth National Conference on
Artificial Intelligent, 394-400.

Orwant, J. 1994. Apprising the User of User Models:
Interface Guidelines. In Proceedings of the Fourth
International Conference on User Modeling, 151- 156.

Patil, R. S. 1981. Causal Representation of Patient Illness
for Electrolyte and Acid-Base Diagnosis. Ph.D. diss.,
MIT/LCS/TR-267, Cambridge, Mass.

Rissland, E. (Michener). 1978. Understanding
Understanding Mathematics, Cognitive Science 2 (4).

Suthers, D. D., Woolf, B. P. and Cornell, M. 1982. Steps
from Explanation Planning to Model Construction
Dialogues. In Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92) San
Jose, 24-30.

Szolovits, P. 1979. Artificial Intelligence and Clinical
Problem Solving. MIT/LCS/TM- 140.

Van Lehn, K. 1988. Student Modeling. In Foundations of
Intelligent Tutoring Systems. Hillsdale, NJ: Erlbaum.

Education 415

