
Knowledge-Based Navigation of Complex nformation Spaces

Robin D. Burke, Kristian J. Hammond & Benjamin C. Young
Artificial Intelligence Laboratory

University of Chicago
1100 E. 58th St., Chicago, IL 60637
{ burke, kris, bcyl}@cs.uchicago.edu

Abstract

While the explosion of on-line information has
brought new opportunities for finding and us-
ing electronic data, it has also brought to the
forefront the problem of isolating useful informa-
tion and making sense of large multi-dimension
information spaces. We have built several devel-
oped an approach to building data “tour guides,”
called FINDME systems. These programs know
enough about an information space to be able
to help a user navigate through it. The user
not only comes away with items of useful in-
formation but also insights into the structure of
the information space itself. In these systems,
we have combined ideas of instance-based brows-
ing, structuring retrieval around the critiquing
of previously-retrieved examples, and retrieval
strategies, knowledge-based heuristics for finding
relevant information. We illustrate these tech-
niques with several examples, concentrating espe-
cially on the RENTME system, a FINDME system
for helping users find suitable rental apartments
in the Chicago metropolitan area.

Introduction
Finding items of interest in a large multi-dimensional
information space is a problem of growing importance
given the ever-increasing amount of information acces-
sible on-line. Standard approaches such as keyword re-
trieval demand more specificity than the average user
can supply. The user must know what he or she wants
well enough to create a well-defined query in a query
language. The alternative to querying is browsing.
Browsing allows users who cannot specify exactly what
they seek to rummage around in an information space
to find it. However, it is difficult to structure a large
browsing space so that users can move about in useful
and efficient ways without getting lost.

Our approach to problems of information finding in
large multi-dimensional information spaces is to em-
ploy assisted browsing. The user is provided with stan-
dard browsing and/or retrieval interfaces, but his or

462 Knowledge-Based Systems

her progress in this space is monitored and relevant
assistance is provided. The aim of assisted browsing is
to allow access to information along a multitude of di-
mensions and from a multitude of sources without the
user needing to be aware of these complexities. Since
browsing is the central metaphor, we avoid as much as
possible forcing users to create a specific queries. At
the same time, the intelligent assistance available in
the system has the ability to draw in other sources of
knowledge. Knowledge-based retrieval strategies can
be employed to consider all of the dimensions of the in-
formation and present suggestions that lead the user’s
search in reasonable directions.

The problem

We have implemented our assisted browsing approach
in a series of systems called FINDME systems. The
class of problems addressed by these systems is best
explained through an example:

You want to rent a video. In particular, you’d like
something like Back to the Future, which you’ve
seen and liked. How do you go about finding some-
thing?

Do you want to see the sequel, Back to the Fu-
ture Il? Do you want to see another Michael J.
Fox movie? Do you want to see Crocodile Dundee,
another movie about a person dropped into an un-
familiar setting ? Time After Time, another time
travel film? Another movie by the same director,
such as Who Framed Roger Rabbit?

The goal of the FINDME project is to develop sys-
tems that deal with this sort of search problem. We
see this approach as applicable to domains in which
there is a large, fixed set of choices and in which the
domain is sufficiently complex that users would proba-
bly be unable to fully articulate their retrieval criteria.
In these kinds of areas, person-to-person interaction
also takes the form of trading examples, because peo-
ple can easily identify what they want ,when they see

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

it. Many complex selection problems have these char-
acteristics, for example, looking for an apartment. It
is difficult to specify completely all of the features you
want in an apartment, but it is easier to look at a de-
scription and come up with a response such as “I’d like
something like this, but a little bigger and in a better
neighborhood.”

An outline of the solution

Each FINDME systems has two basic parts:

An initial query or “zooming” (Osgood, 1994) stage
through which users state their starting point within
the information space, and

An assisted browsing phase in which users traverse
the information space.

User interface is obviously an important part of any
FINDME system, particularly in the zooming stage
where users enter the system. Examples in this pa-
per will show some of the different interface designs
that we have implemented. However, we concentrate
in this paper on the mechanisms of traversal through
the information space and types of assistance that are
provided to users.

Although we have found that different assistance
strategies are appropriate in different domains, some
categories of intelligent assistance appear relevant in
all of our systems:

Trade-off explanation: Users, especially in unfamil-
iar domains, may fail to understand certain inherent
trade-offs in the domain they are exploring. A car
buyer might not understand the trade-off between
horsepower and fuel efficiency, and attempt to search
for a high-powered car that also gets 50 miles to the
gallon.

Similarity-based retrieval: As has frequently been
found in other information retrieval contexts, it is
useful to allow a user to retrieve new items that are
similar to an example currently being viewed (Ull-
man, 1988; Williams, et al. 1982). We found that in
most cases overall similarity was a poor metric for
providing examples, because users attached different
significance to features depending on their goals. If
your goal is to buy a car that will pull a big trailer,
you will weight engine size more heavily when com-
paring cars than other features such as passenger leg
room.

Tweaking: Browsing is typically driven by differ-
ences: if a user were totally satisfied with the par-
ticular item being examined he or she would stop

there. Often, the item itself can play a useful role in
articulating the user’s goals. For example, if you are
looking for a science fiction movie to rent, you might
look at Terminator II, but think “That would be
good, but it’s too violent for my kids.” In this case,
the task of browsing brings to mind a new feature,
level of violence, that now can become an explicit
part of further search.

These mechanisms are part of a dialogue between
system and user in which the user comes to a bet-
ter understanding of the domain of examples (through
learning about trade-offs and seeing many examples)
and the system helps the user find specific items of in-
terest by gradually refining the goal. We also consider
it important that none of the choices truly narrow the
search: in many retrieval systems, a user who gets off
to a bad start can get trapped in a corner of the infor-
mation space and have to start over. In our systems,
we allow the user to redirect the search at any time.

Some FindMe Systems

We have built three FINDME systems for different do-
mains. In general, we have worked from domains with
smaller spaces of examples in which features are well-
defined and user goals are straightforward, to larger
domains with fuzzier features and more complex user
goals.

Car Navigator

The first complete FINDME system was the CAR NAV-
IGATOR, a FINDME system for new cars. Using the in-
terface, which resembles a car magazine, the user flips
to the section of the magazine containing the type of
car he or she is interested in. Cars are rated against
a long list of criteria such as horsepower, price or gas
mileage, which are initially set by default for the car
class, but can be directly manipulated. Retrieval is
performed by turning the page of the magazine, at
which point the criteria are turned into a search query
and a new set of cars is retrieved. Depending on how
the preferences have changed, the system may suggest
that the user move to a different class of cars. For
example, if the user started with economy cars and
started to increase the performance requirement, the
system might suggest sports cars instead.

It is possible for the user to put the preferences in
an inconsistent state, triggering an explanation of the
trade-off that the user has encountered. For example,
if a user requests good gas mileage and then requests
high horsepower the yellow light will come on next to
the gas mileage and horsepower features. The system
explains that there is a trade-off between horsepower

Knowledge-Based Systems 463

and gas mileage, and the user will have to alter his or
her preferences in order to find any cars.

In addition to the fine-grained manipulation of pref-
erences, CAR NAVIGATOR permits larger jumps in the
feature space through buttons that alter many vari-
ables at once. If the user wants a car that is “sportier”
than the one he is currently examining, this implies a
number of changes to the feature set: larger engine,
quicker acceleration, and a willingness to pay more,
for example. For the most common such search strate-
gies, CAR NAVIGATOR supplies four buttons: sportier,
roomier, cheaper, and classier. Each button modifies
the entire set of search criteria in one step. Although
direct manipulation of the features was appealing to
users, we found that few users had the patience to
twiddle the controls for all of the features. The re-
trieval strategies were much more effective mechanism
for redirecting the search.

Video Navigator

We used our experience in building CAR NAVIGATOR
in the construction of a system for browsing the set
of movie videos available for rental in a typical video
store. This system, VIDEO NAVIGATOR, draws on a
database of 7500 movies from a popular video reference
work (Wiener, 1993).

The system is organized as a sequence of shelves di-
vided into a variety of categories. The user has several
zooming tools that can be used to make an initial query
into the shelves. One of these tools is a map of the store
organized by standard categories such as the names of
actors or directors. Once at a particular shelf, the user
can select movies and look at additional information
about them, such as plot summary, cast lists, etc.

The retrieval mechanism in VIDEO NAVIGATOR, un-
like CAR NAVIGATOR, is separate from the browsing
interface. It is implemented in a set of interface agents,
called clerics. When a user selects a movie to examine,
the clerks spring into action. In VIDEO NAVIGATOR,
there are four clerks: one recalls movies based on their
genre, one recalls movies based on their actors, another
on directors, and still another arrives at suggestions by
comparing the user against the profiles of other users.
Whenever the user picks a movie to inspect, each clerk
retrieves and suggests another related movie. It is as if
the user has a few knowledgeable movie buffs following
her around the store, suggesting movies based on their
particular area of expertise.

Since users evaluate similarities between movies dif-
ferently, we needed to implement a variety of retrieval
strategies. However, we opted not to use buttons to im-
plement these strategies. This design choice was due to
the nature of the movie domain. Users have seen more

movies than they have cars. They know more points
in the information space, so need less help from the
system in getting around. Instead, we opted to have
the strategies operate as independent agents reporting
their results to the user. The user can choose to follow
up or ignore the suggestions.

RentMe

Our newest FINDME system, RENTME, is a World-
Wide Web interface to a database of classified ads
for rental apartments. In a typical week, thousands
of apartments might be advertised for rent in a large
metropolitan area. It is straightforward’to put this list
of rentals in a database and allow searching, but like
other domains where FINDME systems have been de-
veloped, simple searching is not feasible when users’
goals are not expressed in the same vocabulary as the
database.

A typical apartment seeker might have a goal like
“I’d like a place like what I have now but a little
bigger and in a neighborhood with more stuff to do
nearby.” Notions such as “like the apartment I live in
now” are idiosyncratic and can only be evaluated by
the person examining a particular apartment listing. It
might be difficult or impossible for a user to articulate
all of the important features desired in an apartment.
Another important aspect of the goal stated above is
its reference to knowledge outside of the domain of
the apartment listings themselves. To know whether a
neighborhood has “more things to do,” one must know
something about the city itself.

Because of the restrictive nature of the web as a in-
terface, RENTME has a simple interface. We chose to
avoid direct manipulation of low-level features (such
as those in CAR NAVIGATOR) or interface agents (ala
VIDEO NAVIGATOR). The fundamental interaction
with RENTME is in the form of critiquing examples
using a small set of search redirection strategies like
those used in CAR NAVIGATOR. Consider the follow-
ing example:

The user begins by selecting some general parame-
ters for the search: a particular Chicago neighborhood,
‘Bucktown” a price category, $600 a month; and a size,
2 bedroom. The system performs a standard database
retrieval and finds a list of apartments that meet the
query. This list is typically long and may not contain
any apartments that are exactly what the user wants.
As shown in Figure 1, the user can improve the search
by selecting any apartment and using it as the basis
for further retrieval by tweaking it.

The user might, for example, decide that an apart-
ment has the right features, but is simply too expen-
sive. The “Cheaper” button is used to tell the sys-

464 Knowledge-Based Systems

Figure 1: Tweaking an apartment in RENTME

tern to find similar apartments that are cheaper. The
system performs another round of retrieval, keeping
in mind the features of the apartment the user orig-
inally selected. As shown in Figure 2, it only finds
one acceptable apartment in the same neighborhood,
so it relaxes the neighborhood constraint and begins
to look at, other, similar, neighborhoods for cheaper
apartments.

How RentMe Works
RENTME starts with a database containing the text
of apartment ads. There is an initial natural language
processing step in which the properties of the apart-
ments are extracted and entered as features in a large
database. Then, when users connect to the system,
these features are used in the retrieval that follows.

Natural Language

RENTME uses an expectation-based parser (Schank &
Riesbeck, 1981) to extract features from the very terse
and often-agrammatical language of the classified ads.
The system has a large lexicon of terms that are com-
monly used in ads: in fact, the vocabulary is controlled
to a certain degree by the newspaper’s style conven-
tions. The recognition of these terms is controlled
through expectations that create knowledge structures.
Expectation-based parsing makes it possible to distin-

guish between “No dogs” and “Dogs welcome,” a dis-
tinction lost to many term-based approaches.

For example, consider the following ad copy:

BUCKTOWN COACHHOUSE. CORTLAND &
Hermitage, 1841 N Hermitage, 1 bedroom + den,
hardwood floors, eat-in kitchen, yard, laundry. No
dogs. $595. 549-5443.

The system represents this as follows:

(apartment (address "1841 N HERMITAGE")
(rent 595) (bdr 1) (kitchen eat-in)
(floor hardwood) (building laundry)
(pets (dogs (none>>>>

Note that some aspects of the ad are missed, such as
the fact that the “apartment” is actually a coach house.
We are working to extended the parser to handle more
of these cases, but at the moment it extracts about
80% of the important features from ads.

Retrieval Strategies

Central to the system’s operation is the search state
in which the user’s current preferences are represented
as a set of constraints. For example, the system rep-
resents the user’s constraints for the initial retrieval in
the example above as

[600 < price < 650,

Knowledge-Based Systems 465

Figure 2: The result of applying the “cheaper” tweak

neighborhood = "Bucktown",
size = 21

Each retrieval strategy is represented as a ordered
list of operations to be performed on the constraint
set. The system only performs as many of these oper-
ations as required to retrieve a predetermined number
of apartments. The “cheaper” tweak has the following
operations:

1. Add a “cheapness” constraint greater than the cur-
rent apartment, and perform retrieval. This will
cause the retriever to look for apartments that have
freebies that make them inherently cheaper than
the current apartment even though their rent is the
same: for example, “heat included.”

2. If this method does not retrieve enough candidates,
shift the rent constraint to a lower price bracket, and
perform retrieval.

3. If there are still not enough candidates, keep the
lower rent bracket and decrease the “niceness” con-
straint if there is one.

466 Knowledge-Based Systems

4. If more apartments are needed, keep the lower rent
bracket and the original “niceness,” and alter the
neighborhood constraint to a neighborhood that is
considered similar to neighborhood where the cur-
rent apartment is located.

In the example above, no apartments are found with
more freebies than the selected apartment. (It already
has parking included.) The second method in the strat-
egy finds one apartment that is cheaper in the current
neighborhood, but the system is enjoined to return
at least 10 candidates, so the other methods in the
“Cheaper” strategy are invoked. The user has not yet
set a lower bound on how nice the apartment must be,
so the third method cannot be used. Finally, the last
method is chosen, which identifies a small set of neigh-
borhoods considered similar to Bucktown and looks for
similar apartments in those locations.

Knowledge Base

RENTME must have three different kinds of knowledge
in order to do its job:

e It must know about the qualities of neighborhoods
so it can respond to users’ requests for apartments
that are nicer, more convenient, etc. since part of
the evaluation of an apartment necessarily includes
its location.

o It must know about the relative locations of neigh-
borhoods because users who are interested in a
particular neighborhood might also be interested
in nearby neighborhoods if some particularly good
trade-off can be made by redirecting the search
there.

e It must know about the features of apartments and
how they can be evaluated to arrive at relative levels
of niceness, convenience, etc.

In our current version of RENTME, these knowledge
types are not as well elaborated as we would like. The
qualities of neighborhoods and apartments are given
as simple numerical weights, which are readily com-
pared but are highly simplified. For example, apart-
ments with long ads typically score better simply be-
cause more features are likely to be listed. To better
approximate a human evaluation function, the system
needs to take more into account. An apartment that
says “Gorgeous apartment in best part of town. $2300
a month.” should probably be rated as nicer than an
apartment that rents for $550 a month, but whose ad
gives a long list of amenities. RENTME needs to repre-
sent the different baseline expectations associated with
different orders of magnitude in monthly rent.

Related Work
The problem of navigating through complex informa-
tion spaces is a topic of active interest in the AI com-
munity. (See, for example, [Knoblock & Levy, 1995;
Burke, 19951.) Much of this research is directed at
browsing in unconstrained domains, such as the World-
Wide Web, where pages can be on any topic and users’
interests are extremely varied. As a result, these sys-
tems must use knowledge-poor methods, typically sta-
tistical ones.

Our task in FINDME systems is somewhat different.
We expect users to have highly-focused goals: such as
learning about neighborhoods and finding a suitable
apartment to rent. The data being browsed all repre-
sents the same type of entity, in the case of RENTME,
apartment ads. As a result, we can build substantial,
detailed knowledge into our systems that enables them
to identify trade-offs, compare entities in the informa-
tion space, and respond to user goals. All of these
properties make FINDME systems more powerful than
general-purpose browsing assistants.

In the area of information retrieval, browsing is usu-
ally a poor cousin to retrieval, which is seen as the main
task in interacting with an information source. The
metrics by which information systems are measured
do not typically take into account their convenience for
browsing. The ability to tailor retrieval by obtaining
user response to retrieved items has been implemented
in some information retrieval systems through rele-
vance feedback (Salton & McGill, 1983), and through
retrieval clustering (Cutting, et al. 1992).

Our approach differs from relevance feedback ap-
proaches in both explicitness and flexibility. In VIDEO
NAVIGATOR, users see an explicit explanation of why
each example was retrieved and can critique particu-
lar components of that explanation. In most relevance
feedback approaches, the user selects some retrieved
documents as being more relevant than others, but
does not have any detailed feedback about the features
used in the retrieval process. In RENTME, feedback is
given through the use of tweaks. The user does not
say “Give me more items like this one,” the aim of
relevance feedback systems, but instead asks for items
that are different in some particular way.

Examples have been used as the basis for query-
ing in databases since the development of Query-By-
Example (Ullman, 1988). Most full-feature database
systems now offer the ability to construct queries in
the form of a fictitious database record with certain
features fixed and others variable. The RABBIT sys-
tem (Williams, et al. 1982) took this capacity one
step further and allowed retrieval by incremental re-
formulation, letting the user incorporate parts of re-
trieved items into the query, successively refining it.
Like these systems, FINDME uses examples to help
the user elaborate their queries, but it is unique in
the use of knowledge-based reformulation to redirect
search based on specific user goals.

Another line of research aimed at improving human
interaction with databases is the “direct query” ap-
proach (Schneiderman, 1994). These system use two-
dimensional graphical maps of a data space in which
examples are typically represented by points. Queries
are created by moving sliders that correspond to fea-
tures, and the items retrieved by the query are shown
as appropriately colored points in the space. This tech-
nique has been very effective for two-dimensional data
such as maps, but only when the relevant retrieval vari-
ables are scalar values representable by sliders.

Like FINDME, direct query approach has the bene-
fit of letting users discover trade-offs in the data be-
cause users can watch the pattern of the retrieved data
change as values are manipulated. However, direct
query systems have no declarative knowledge about

Knowledge-Based Systems 467

trade-offs, and cannot explain to users how they might
modify their search or their expectations in light of the
trade-off. Also, as we found in CAR NAVIGATOR, di-
rect manipulation is less effective when there are many
features to be manipulated, especially when users may
not be aware of the relationships between features.

Our use of knowledge-based methods to the retrieval
of examples has its closest precedent in retrieval sys-
tems used in case-based reasoning (CBR) (Hammond,
1989; Riesbeck & Schank, 1989; Kolodner, 1993). A
case-based reasoning system solves new problems by
retrieving old problems likely to have similar solutions.
Because the retrieval step is critical to the CBR model,
researchers in this area have concentrated on develop-
ing knowledge-based methods for precise, efficient re-
trieval of well-represented examples. For some tasks,
such as case-based educational systems, where cases
serve a variety of purposes, CBR systems use a variety
of retrieval strategies that measure similarity in differ-
ent ways (Burke & Kass, 1995).

Conclusion

FINDME systems perform a needed function in a world
of ever-expanding information resources. Each system
is an expert on a particular kind of information, ex-
tracting information on demand as part of the user’s
exploration of a complex domain. In FINDME systems,
users are an integral part of the knowledge discov-
ery process, elaborating their information needs in the
course of interacting with the system. The user need
only have general knowledge about the set of items and
only an informal knowledge of his needs; he can rely
on the system to know about the tradeoffs, category
boundaries, and useful search strategies.

Robustness in the face of user uncertainty and ig-
norance is another important aspect of RENTME and
other FINDME systems. Most people’s understanding
of real world domains such as cars and movies is vague
and ill-defined. This makes constructing good queries
difficult or impossible. We believe therefore that an in-
formation system should always provide the option of
examining a “reasonable next piece,” of information,
given where the user is now. These next pieces are
derived through the application of retrieval strategies.

Acknowledgments

References

Burke, R., & Kass, A. 1995. Supporting Learning
through Active Retrieval of Video Stories. Journal of
Expert Systems with Applications, 9(5).

Burke, R. (ed.) 1995. Working Notes from the
AAAI Full Symposium on AI Applications in Knowl-
edge Navigation and Retrieval, AAAI Technical Report
FS-95-03.

Cutting, D. R.; Pederson, J. 0.; Karger, D.; and
Tukey, J. W. 1992. Scatter/Gather: A cluster-
based approach to browsing large document collec-
tions. In Proceedings of the 15th Annual International
ACM,,SICIR Conference, 318-329.

Hammond, K. 1989. Case-bused Planning: Viewing
Planning us a Memory Tusk. Academic Press. Per-
spectives in AI Series, Boston, MA.

Knoblock, C. & Levy, A. (eds.) 1995. Working
Notes from the AAAI Spring Symposium on Informu-
tion Gathering from Heterogeneous, Distributed Envi-
ronments, AAAI Technical Report SS-95-08.

Kolodner, J. 1993. Case-bused reasoning. San Ma-
teo, CA: Morgan Kaufmann.

Osgood, R. E. 1994. The Conceptual Indexing of
Conversational Hypertext. PhD Thesis, Northwestern
University. Issued as Technical Report #52, Institute
for the Learning Sciences.

Riesbeck, C., & Schank, R. C. 1989. Inside Cuse-
Based Reasoning. Hillsdale, NJ: Lawrence Erlbaum.

Salton, G., & McGill, M. 1983. Introduction to mod-
ern information retrieval. New York: McGraw-Hill.

Schank, R.C., & Riesbeck, C. 1981. Inside Com-
puter Understanding: Five Programs with Miniatures.
Hillsdale New Jersey: Lawrence Erlbaum Associates.

Schneiderman, B. 1994. Dynamic Queries: for visual
information seeking. IEEE Software 11(6): 70-77.

Ullman, J. D. 1988. Principles of Database and
Knowledge-Base Systems VoZ .Z. Computer Science
Press, 1988.

Wiener, T. 1993.The Book of Video Lists. Kansas
City: Andrews & McMeel.

Williams, M. D., Tou, F. N., Fikes, R. E., Hender-
son, T., & Malone, T. 1982. RABBIT: Cognitive, Sci-
ence in Interface Design. In Fourth Annual Conference
of the Cognitive Science Society. Ann Arbor, MI:

The authors would like to thank Dan Kaplan and the
Chicago Reader for their contributions to the RENTME
project and Tom Weiner for his assistance with VIDEO
NAVIGATOR.

468 Knowledge-Based Systems

