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Abstract 

Role-limiting approaches support knowledge ac- 
quisition (KA) by centering knowledge base con- 
struction on common types of tasks or domain- 
independent problem-solving strategies. Within 
a particular problem-solving strategy, domain- 
dependent knowledge plays specific roles. A KA 
tool then helps a user to fill these roles. Although 
role-limiting approaches are useful for guiding 
KA, they are limited because they only support 
users in filling knowledge roles that have been 
built in by the designers of the KA system. EX- 
PECT takes a different approach to KA by rep- 
resenting problem-solving knowledge explicitly, 
and deriving from the current knowledge base the 
knowledge gaps that must be resolved by the user 
during KA. This paper contrasts role-limiting 
approaches and EXPECT’s approach, using the 
propose-and-revise strategy as an example. EX- 
PECT not only supports users in filling knowl- 
edge roles, but also provides support in mak- 
ing other modifications to the knowledge base, 
including adapting the problem-solving strategy. 
EXPECT’s guidance changes as the knowledge 
base changes, providing a more flexible approach 
to knowledge acquisition. This work provides ev- 
idence supporting the need for explicit represen- 
tations in building knowledge-based systems. 

Introduction 
Role-limiting approaches have been the main fo- 
cus of research in knowledge acquisition (KA) tools 
for knowledge-based systems construction for over a 
decade (Birmingham and Klinker 1993). Several re- 
searchers have identified commonly occurring, domain- 
independent problem-solving strategies or inference 
structures that are useful for describing the reasoning 
behind knowledge-based systems (McDermott 1988; 
Clancey 1985; Chandrasekaran 1986). These problem- 
solving strategies determine the roles that domain- 
dependent knowledge plays. The task of a KA tool, 
then, is to guide users in filling out those roles. Sev- 
eral such tools have been built to support KA for a 
specific problem-solving strategy: SALT for propose- 
and-revise (Marcus and McDermott 1989), MOLE for 

cover-and-differentiate (Eshelman 19SS), PROTEGE 
for skeletal plan refinement (Musen 1989), etc. Al- 
though having a role-limiting strategy provides very 
strong guidance for knowledge acquisition, these tools 
lack the flexibility that knowledge-based system con- 
struction needs (Musen 1992). The problem-solving 
structure of an application cannot always be defined 
in domain-independent terms, as Musen explains was 
the case with Rl (McDermott 1982). Furthermore, one 
single problem-solving strategy may not address all of 
the particulars of an application, simply because it was 
designed with generality in mind. 

More recent approaches to KA overcome these limi- 
tations by offering the system builder a library of finer- 
grained problem-solving strategies that can be used 
to put together a knowledge-based system (Puerta et 
ad. 1992; Runkel and Birmingham 1993; Klinker et al. 
1991). Each problem-solving strategy is then associ- 
ated with a KA tool specific to that strategy. The 
components of the library can be designed to be as 
small-grained as necessary to be useful in system con- 
struction. These frameworks provide more flexibility 
because the overall problem-solving strategy can be 
customized to the needs of the application. However, 
their support to the user is still limited to filling knowl- 
edge roles that have been identified beforehand by the 
designers of these components. The kinds of modifi- 
cations to the problem-solving strategy are limited to 
exchanging one component for another in the library. 
Also, a KA tool needs to be built for every problem- 
solving strategy. 

EXPECT (Swartout and Gil 1995; Gil 1994; Gil and 
Paris 1994) takes a different approach to knowledge ac- 
quisition. The problem-solving strategy is represented 
explicitly, and the knowledge acquisition tool reasons 
about it and dynamically derives the knowledge roles 
that must be filled out, as well as any other informa- 
tion needed for problem solving. Because the problem- 
solving strategy is explicitly represented, it can be 
modified, and as a result, the KA tool changes its inter- 
action with the user to acquire knowledge for the new 
strategy. Only one KA tool needs to be built, because 
it can identify knowledge gaps for any problem-solving 
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strategy that can be explicitly represented in EX- 
PECT. EXPECT provides greater flexibility in adapt- 
ing problem-solving strategies because their represen- 
tations can be changed as much as needed. Because the 
systems that have been built to date with EXPECT do 
not use a domain-independent problem-solving strat- 
egy, it is hard to compare role-limiting approaches 
with EXPECT’s approach of having explicit represen- 
tations to guide knowledge acquisition. This paper il- 
lustrates how EXPECT’s knowledge acquisition tool 
works when the system is using a specific problem- 
solving strategy. This allows a more detailed compari- 
son with role-limiting approaches and shows that EX- 
PECT not only supports users in filling out knowledge 
roles, but extends the support to acquire additional 
knowledge needed for problem-solving- a process that 
role-limiting approaches to KA do not support. 

To show how EXPECT works with a role-limiting 
strategy we chose propose-and-revise, one that has 
been the focus of much recent work within the KA com- 
munity (Schreiber and Birmingham 1994). Propose- 
and-revise was first identified as the problem-solving 
strategy used in VT, a system for elevator config- 
uration (Marcus et al. 1988). The main sections 
of this paper compare EXPECT with SALT (Mar- 
cus and McDermott 1989), the prototypical KA tool 
that uses a role-limiting approach for that problem- 
solving strategy. Because the VT domain takes a sig- 
nificant amount of time to implement, we used instead 
a smaller domain for U-Haul@ rentals that also uses 
propose-and-revise (Gennari et al. 1993). This do- 
main was sufficient to allow us to implement propose- 
and-revise in EXPECT and to enable a more direct 
comparison of its KA tool with other approaches. 

The paper begins by describing propose-and-revise 
and its use in a role-limiting tool for knowledge acqui- 
sition. Then we show how propose-and-revise and the 
U-Haul domain were implemented in EXPECT. After 
describing EXPECT’s knowledge acquisition tool, we 
show several examples of how it can acquire knowl- 
edge for propose-and-revise and also support users in 
acquiring additional types of knowledge. Finally, we 
compare our approach with recent KA tools and ap- 
proaches that have been used for propose-and-revise. 

Role-Limiting Approaches: The Case of 
Propose-and-Revise 

This section reviews the basic propose-and-revise 
problem-solving strategy, and then briefly presents how 
SALT guides knowledge acquisition using propose-and- 
revise in a role-limiting approach. 

Solving Configuration Design Tasks with 
Propose-and-Revise 
Propose-and-revise is a problem-solving strategy for 
configuration design tasks. A configuration problem 
is described as a set of input and output parameters 

(or variables), a set of constraints, and a set of fires to 
resolve constraint violations. A solution consists of a 
value assignment to the output parameters that does 
not violate any constraint. 

Propose-and-revise constructs a solution by itera- 
tively extending and revising partial solutions. The 
extension phase consists of assigning values to param- 
eters. In the revision phase, constraints are checked 
to verify whether they are violated by the current so- 
lution and, if so, the solution is revised to resolve the 
violation. Violated constraints are resolved by apply- 
ing fixes to the solution. A fix produces a revision of 
the solution by changing the value of one of the pa- 
rameters that are causing the constraint violation. 

Knowledge Acquisition for Propose-and- 
Revise in a Role-Limiting Tool 
SALT (Marcus and McDermott 1989) is a knowledge 
acquisition tool for propose-and-revise using a role- 
limiting approach. In this problem-solving strategy, 
there are three types of knowledge roles: 1) procedures 
to assign a value to a parameter, which would result 
in a design extension, 2) constraints that could be vio- 
lated in a design extension, and 3) fixes for a constraint 
violation. Consequently, the user could enter one of the 
three types of knowledge: PROCEDURE, CONSTRAINT, 
and FIX. For each type of knowledge, a fixed menu (or 
schema) is presented to the user to be filled out. 

A tool like SALT can be used to acquire knowledge 
in other applications that use the propose-and-revise 
strategy. But its interaction with the user can never 
change unless, of course, SALT itself is reprogrammed. 
For example, SALT could not be used in an applica- 
tion domain that required using domain knowledge to 
select a preferred fix, because such a knowledge role 
does not exist in SALT’s propose-and-revise strategy. 
The schemas cannot be changed either. For example, 
suppose that the user wanted to add priorities to spec- 
ify which constraints should be preferred over others 
when resolving violations. The schema for acquisition 
of constraints would have to be modified. Further- 
more, this would require changing the implementation 
of propose-and-revise so that it would use this prefer- 
ence information in the revision phase. 

Special-purpose modules are needed to acquire some 
specific kinds of knowledge. For example, there is a 
consistency checker for the formulas in the constraint 
schemas. The values of the input parameters are also 
acquired through an interface that was specifically de- 
signed for the elevator application. 

SALT does not provide support in updating or 
maintaining the knowledge about elevator components. 
This would be a very useful capability, since product 
knowledge changes at a high rate: 40-50 percent per 
year is reported for configuration systems such as Rl 
(McDermott 1982) and PROSE (Wright et al. 1983). 

The essence of the argument made here about SALT 
applies to other role-limiting KA tools such as MOLE 
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Figure 1: EXPECT’s representation of some of the factual knowledge needed for propose-and-revise problems, for 
configuration problems, and for the U-Haul domain. 

(Eshelman 1988) and PROTEGE (Musen 1989). To 
summarize, the main limitations of role-limiting ap- 
proaches to knowledge acquisition are: 
e schemas cannot be changed to acquire new infor- 

mation about existing knowledge roles 
e the problem-solving strategy is fixed and cannot 

be adapted or augmented 
o new knowledge roles cannot be added 
e the input parameters to be acquired are fixed 
o there is no support to change the domain-specific 

factual knowledge (e.g., about the equipment to 
be used in the configuration) 

e special-purpose modules are needed to support the 
acquisition of certain kinds of knowledge (e.g., the 
constraint’s formulas) 
The rest of the paper shows how EXPECT supports 

the acquisition of these kinds of knowledge using a sin- 
gle KA tool that is independent of the problem-solving 
strategy used. 

procedural-style language that is tightly integrated 
with the LOOM representations. Subgoals that arise 
during problem solving are solved by methods. Each 
method description specifies: 1) the goal that the 
method can achieve, 2) the type of result that the 
method returns, and 3) the method body that con- 
tains the procedure that must be followed in order to 
achieve the method’s goal. A method body can contain 
nested expressions, including subgoal expressions that 
need to be resolved by other methods; control expres- 
sions such as conditional statements and some forms 
of iteration; and relational expressions to retrieve the 
fillers of a relation over a concept. Some method bodies 
are calls to Lisp functions that are executed without 
further subgoaling. 

Explicit Representations in EXPECT 
In EXPECT, both factual knowledge and problem- 
solving knowledge are represented explicitly. This 
means that the system can access and reason about the 
representations of factual and problem-solving knowl- 
edge and about their interactions. Factual knowledge 
is represented in LOOM (MacGregor 1991), a state-of- 
the-art knowledge representation system based on de- 
scription logic. Factual knowledge includes concepts, 
instances, and the relations among them. 

We will give examples of EXPECT’s representa- 
tions using propose-and-revise as a strategy for solving 
the following type of problems in the U-Haul domain: 
Given the total volume that the client needs to move, 
the system recommends which piece of equipment (e.g., 
a truck, a trailer, etc.) the client should rent. 

Figure 1 graphically shows parts of the factual do- 
main model for propose-and-revise and for the U-Haul 
domain.’ The upper part of the picture shows fac- 
tual knowledge that is domain independent and can 
be reused for any domain. The lower part of the pic- 
ture shows factual knowledge that is relevant only to 
the U-Haul domain. 

There is a continuum between the representation 
of domain-dependent and domain-independent factual 

Problem-solving knowledge is represented in a ‘By convention, we denote relations with the prefix r-. 
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(defmethod REVISE-CS-STATE 
"To revise a CS state, apply the fixes found for 
the constraints violated in the state." 
:goal (revise (obj (?s is (inst-of cs-state>>)) 
:result (inst-of cs-state) 
:body (apply 

syntax errors and undefined terms), the method ana- 
lyzer (which detects errors within’ a problem-solving 
methoh), and the instance analyzer (which detects 
missing information about instances). 

(obj (find (obj (set-of (spec-of fix))) 
(for (find (obj (set-of (spec-of 

violated-constraint))) 
(in ?s))))) 

(to ?s))) 

(defmethod CHECK-CAPACITY-CONSTRAINT 
"To check the Capacity Constraint of a U-Haul 
configuration, check if the capacity of the rented 
equipment is smaller than the volume to move." 
:goal (check (obj CapacityConstraint) 

(in (?c is (inst-of uhaul-configuration)))) 
:result (inst-of boolean) 
:body (is-smaller 

(obj (r-capacity (r-rented-equipment ?c)>> 
(than (r-volume-to-move ?c>)>) 

(defmethod APPLY-UPGRADE-EQUIPMENT-FIX 
"To apply the Upgrade Equiment Fix in a U-Haul 
configuration, upgrade the rented equipment." 
:goal (apply (obj UpgradeEquipmentFix) 

(to (?c is (inst-of uhaul-configuration)))) 
:result (inst-of uhaul-configuration) 
:body (upgrade (obj (spec-of rented-equipment-var)) 

(in ?c>)) 

Figure 2: Problem-solving knowledge in EXPECT. 

EXPECT’s problem-solver can analyze how the dif- 
ferent pieces of knowledge in the knowledge-based sys- 
tem interact. For this analysis, it takes a generic top- 
level goal representing the kinds of goals that the sys- 
tem will be given for execution. In the U-Haul exam- 
ple, the top-level generic goal would be (solve (obj 
(inst-of uhaul-problem))), and a specific goal for ex- 
ecution would be (solve (obj jones-uhaul-problem)). 
EXPECT analyzes how to achieve this goal with the 
available knowledge. EXPECT expands the given top- 
level goal by matching it with a method and then ex- 
panding the subgoals in the method body. This process 
is iterated for each of the subgoals and is recorded as a 
search tree. Throughout this process, EXPECT prop- 
agates the types of the arguments of the top-level goal, 
performing an elaborate form of partial evaluation sup- 
ported by LOOM’S reasoning capabilities. During this 
process, EXPECT derives the interdependencies be- 
tween the different components of its knowledge bases. 
This analysis is done every time the knowledge base 
changes, so that EXPECT can rederive these interde- 
pendencies. 

The design of each module of EXPECT takes into 
account the possibility that the knowledge base may 
contain errors or knowledge gaps. For example, EX- 
PECT’s problem solver is designed to detect goals that 
do not match any methods, and to detect relations that 
try to retrieve mformation about a type of instance 
that is not defined in the knowledge base (e.g., retriev- 
ing the upgrade of a fix when only components have 
upgrades). In addition to detecting an error, each mod- 
ule is able to recover from the error if possible, and to 
report the error’s type and the context in which it oc- 
curred. For example, after detecting that a posted goal 
cannot match any available method, EXPECT’s prob- 
lem solver would mark the goal as unachievable and 
continue problem solving by expanding other goals. It 
would also report this error to the knowledge acquisi- 
tion module, together with some context information 
(in this case, the unmatched goal with its parameters) 
and a pointer to the part of the problem-solving trace 
where the subgoal was left unsolved. 

Once the errors are detected, EXPECT can help 
users to fix them as follows. EXPECT has an ex- 
plicit representation of types of errors, together with 
the kinds of corrections to the knowledge base that 
users can make in order to solve them. This repre- 
sentation is based on typical error situations that we 
identified by hand. Table 1 shows some of the errors 
that can currently be detected by two of the modules: 
the problem solver (el through e4) and the instance 
analyzer (es and e6). The error codes shown under- 
lined will be used in the examples in the next section. 
When EXPECT detects an error, it presents the sug- 

knowledge in EXPECT. They are represented in the 
same language, yet they can be defined and maintained 
separately. Once a U-Haul problem is specified as a 
kind of configuration problem, it inherits the fact that 
it has constraints and fixes. Trucks are not defined as 
having upgrades, since having upgrades is a way to look 
at components from the point of view of configuration 
problems. Instead, they are defined as configuration 
components, which have upgrades. 

Figure 2 shows three different problem-solving meth- 
ods. REVISE-CS-STATE is one of the methods that spec- 
ifies how propose-and-revise works. The other two are 
specific to the U-Haul domain. 

Notice that both factual and problem-solving knowl- 
edge can be domain dependent or domain independent. 
EXPECT uses the same language to represent both. 

Knowledge Acquisition in EXPECT 
EXPECT guides KA by requesting users to resolve er- 
rors or knowledge gaps that it detects in the knowledge 
bases. EXPECT’s problem-solver is designed to detect 
these errors and to report them to the KA tool to- 
gether with detailed information about how they were 
detected. The KA tool uses this information to sup- 
port the user in fixing them. Other modules that can 
detect and report errors are the parser (which detects 
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problem type suggested corrections 

fi no method to achieve modify method body 
goal G in the body modify another method’s goal 
of method M add a new method 

e2 1 role R undefined - 
modify instance, concept, relation 

1 modify method M 
for type C used add relation R for type C 
in method M 

e3 expression E in modify method M 
method M has modifv another method’s eoal 
invalid arguments modif; instance, concept, relation 

e4 1 expression E in 1 modifv method M 
method M has 1 modify another method’s goal 
invalid result modify instance, concept, relation 

& 1 missing filler of role R 1 add information about instance 
of instance I modify method body 
needed in method M delete instance 

e6 type of instance I not specialize instance type 
specific enough modify method body 
for method M delete instance 

Table 1: Some of the potential problems in the knowl- 
edge bases detected by EXPECT. 

SALT does not provide support in acquiring this 
kind of domain-specific factual knowledge. As we men- 
tioned earlier, this capability would be very useful to 
maintain product knowledge in configuration systems. 

Acquiring New Constraints and Fixes 
We showed that SALT needs to be given definitions 
of schemas to enter constraints and fixes. EXPECT 
does not need to be given such schemas. Instead, the 
information in the schemas is naturally requested by 
EXPECT as constraints and fixes are defined by the 
user. 

Suppose for example that the user wants to add 
a new constraint that restricts the rental of trail- 
ers to clients with cars made after 1990 only. 
The user would add a new instance of constraint: 
TrailersForNewCarsOnly. EXPECT would analyze the 
implications of this change in its knowledge base and 
signal the following problem: 

gested corrections as possible choices to the user. Con- 
sider the case of error ei, where a goal G in the body 
of method M cannot be achieved by any method. EX- 
PECT suggests that the user either 1) modify the body 
of method M to change or to delete the expression of 
the goal G, 2) modify the goal of some other method N 
so that it matches G, 3) create a new method L whose 
goal will match G, or 4) modify an instance, a concept, 
or a relation that is used in G. We will see in the next 
section that the user’s choice of one suggestion over the 
others depends on the context. 

E2-I do not know how to achieve the goal (check 
(obj TrailersForNewCarsOnly) (in (inst-of 
uhaul-configuration))). 

This is because during problem solving EXPECT 
calls a method that tries to find the violated con- 
straints of a configuration by checking each of 
the instances of constraint of U-Haul problems. 
This is a case of an error of type el. Before 
defining this new instance of constraint, the only 
subgoal posted was (check (obj capacityconstraint) 
(in (inst-of uhaul-configuration))) and now it 
also posts the subgoal (check (obj TrailersFor 
NewCarsOnly) (in (inst-of uhaul-configuration))). 
There is a method to achieve the former subgoal 
(shown in Figure 2), but there is no method to achieve 
the latter. 

nowiedge Acquisition for 
repose-and-Revise in EXPECT’ 

Previously, we pointed out some of SALT’s limitations 
in terms of its lack of flexibility as a knowledge ac- 
quisition tool. In this section, we illustrate how EX- 
PECT’s explicit representations support a more flexi- 
ble approach to knowledge acquisition. 

Acquiring Domain-Specific Factual 
Knowledge 
Suppose that U-Haul decided to begin renting a new 
kind of truck called MightyMover. The user would add 
a new subclass of truck, and EXPECT would immedi- 
ately request the following: 

El-I need to know the capacity of a MightyMover. 

The reason for this request is that EXPECT has 
detected that the capacity of rental equipment is a 
role that is used during the course of problem solv- 
ing, specifically while achieving the goal of checking 
the Capacityconstraint with the method shown in Fig- 
ure 2. This corresponds to errors of type e5 in Table 1. 
While many roles may have been defined for the class 
truck (such as make and year), EXPECT will only re- 
quest the information that is needed by the problem- 
solving methods. 

Notice that with this error EXPECT detects that 
the addition of a new constraint to the factual knowl- 
edge base requires adding a new method to the 
problem-solving knowledge base. This illustrates how 
EXPECT understands the interdependencies between 
factual and problem-solving knowledge and uses this 
to guide knowledge acquisition. 

To resolve E2, the user chooses the third suggestion 
for errors of type el and defines the following method 
to check the constraint: 

(defmethod CHECK-TRAILERSFORNEWCARSONLY-CONSTRAINT 
:goal (check 

(obj TrailersForNewCarsOnly) 
(in (?c is (inst-of uhaul-configuration)))) 

:result (inst-of boolean) 
:body (is-greater 

(obj (r-year (r-car ?c)>) 
(than 1990))) 

Once this method is defined, E2 is no longer a prob- 
lem and disappears from the agenda. 

Notice that with this method EXPECT is acquiring 
information about a knowledge role. The new method 
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corresponds to acquiring in SALT the formula in the Changing the Propose-and-Revise 
schema for the constraint knowledge role. Strategy 

EXPECT’s error detection mechanism also notices 
possible problems in the formula to check the con- 
straint. In SALT, they are detected by special-purpose 
code that checks the validity of formulas. For example, 
if r-year had not been defined EXPECT would signal 
the following problem (of type es): 

SALT does not allow users to change the problem- 
solving strategy or to define new knowledge roles. This 
section shows how this can be done with EXPECT. 

Suppose that the user wants to change the revision 
process of propose-and-revise to introduce priorities on 
what constraint violations should be resolved first. The 
priorities will be based on which variable is associated 
with each constraint. E3-I do not know what is the year of a car. 

When the user defines the role r-year for the con- 
cept car this error will go away. EXPECT can also 
detect other types of errors in the formulas to check 
constraints. For example, if r-year was defined to have 
a string as a range, then EXPECT would detect a prob- 
lem. It would notice that there is no method to check if 
a string is greater than a number, because the param- 
eters of the method for calculating is-greater must be 
numbers. EXPECT would then tell the user: 

E4-I do not know how to achieve the 
goal (is-greater (obj (inst-of string)) (than 
1990)). 

Like E2, E4 is an error of type el. But in this case 
the user chooses a different way of resolving the error, 
namely to modify the definition of the relation r-year. 

If the user defined a fix for the new constraint, then 
EXPECT would follow a similar reasoning and signal 
the need to define a method to apply the new fix. 

EXPECT changes its requests for factual informa- 
tion according to changes in the problem-solving meth- 
ods. This can be illustrated in this example of adding 
a new constraint. An effect of the fact that the user 
defined the new method to check the constraint is that 
new factual knowledge about the domain is needed. In 
particular, EXPECT detects that it is now important 
to know the year of the car that the client is using (and 
that is part of the configuration), because it is used in 
this new method. The following request will be gen- 
erated for any client that, like in this case Mr. Jones, 
needs to rent U-Haul equipment: 

E5-I need to know the year of the car of Jones. 

This is really requiring that the information that is 
input to the system is complete in the sense that config- 
uration problems can be solved. In SALT, as in many 
other systems, the input information (such as client 
preferences or the building features) is predetermined 
at the time the system is defined. In EXPECT, the 
requirements for inputs change as the knowledge base 
is modified. Notice that E5 is an error of type es, 
and is detected by the same mechanism that was used 
to detect El, even though they request conceptually 
different types of information: El requests informa- 
tion that is relevant to the U-Haul application and E5 
requests information relevant to specific client cases. 

The user would need to identify which of the 
problem-solving methods that express propose-and- 
revise in EXPECT needs to be modified. The change 
involves adding a new step in the method to revise CS 
states shown in Figure 2. The new step is a subgoal to 
select a constraint from the set of violated constraints. 
The modified method is as follows: 
(defmethod REVISE-CS-STATE 
:goal (revise 

(obj (?s is (inst-of cs-state>>>> 
:result (inst-of cs-state) 
:body (apply 

(obj (find (obj (set-of (spec-of fix))) 
(for 

(select 
(obj (spec-of constraint)) 
(from 

(find 
(obj (set-of (spec-of 

(to ?s>>> 

violated-constraint))) 
(in ?s))))))) 

EXPECT would signal the following request: 

E6-I do not know how to achieve the 
goal (select (obj (spec-of constraint)) (from 
(set-of (inst-of violated-constraint)))). 

This is an error of type es, and it indicates that 
the user has not completed the modification. The user 
needs to create a new method to achieve this goal as 
follows: 
(defmethod SELECT-CONSTRAINT 
:goal (select (obj (spec-of constraint)) 

(from (?vc is (set-of (inst-of 
violated-constraint))))) 

:result (inst-of constraint) 
:body (take (obj ?vc) 

(with (spec-of maximum)) 
(of (r-preference 

(r-constrained-variable ?vc)>>>> 

where r-preference is defined as a role of variables and 
has a numeric range, and r-constrained-variable is 
defined as a role of constraint and has variable as its 
range. The user may also need to define a new method 
for the take subgoal. 

With these modifications to the knowledge base, the 
propose-and-revise strategy that EXPECT will follow 
has changed. Because the representation of the new 
strategy is explicit, EXPECT can reason about it and 
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detect new knowledge gaps in its knowledge base. As a 
result of the modification just made, there is additional 
factual information needed including new information 
about an existing knowledge role and a new kind of 
knowledge role. EXPECT would then signal the fol- 
lowing requests (both of type es): 

E7-I need to know the constrained variable of 
TrailersForNewCarsOnly. 

to know ES-I need 
variable. 

the preference of equipment- 

In SALT, making the change just described to the 
revise strategy would require reprogramming the tool 
to change the problem-solving method and to add a 
new schema for the new knowledge role VARIABLE that 
would acquire preferences for each variable. 

E7 and E8 illustrate that EXPECT has noticed that 
the change in the problem-solving strategy requires the 
user to provide new kinds of information about the 
factual knowledge used by the strategy. This shows 
that in EXPECT the acquisition of problem-solving 
knowledge affects the acquisition of factual knowledge. 
Recall that E2 illustrated the converse. 

Discussion 

To summarize, we revisit SALT’s limitations and point 
out which of the errors just discussed illustrate how 
EXPECT handles those cases: 
e acquire information about knowledge roles of the 

current problem-solving strategy: E2, E7 
e change the problem-solving strategy: E6 
e add new knowledge roles: E8 
e acquire input parameter values: E5 
e change the domain-specific factual knowledge: El 
e acquire specific kinds of knowledge: E3, E4 

Notice that these errors are detecting conceptually 
different knowledge gaps, yet they may correspond to 
the same error type. Such is the case with E2 and E6 
that correspond to error type el, and El and ES that 
correspond to error type es. 

Throughout the examples, we have referred to a 
generic user wanting to make changes to the knowl- 
edge base. This is not necessarily one user, and not 
necessarily the end user or domain expert. For ex- 
ample, the end user may only enter knowledge about 
clients and new trucks to rent. A more technical user 
would be able to modify propose-and-revise. A do- 
main expert who does not want to change the problem- 
solving methods can still use EXPECT to fill up knowl- 
edge roles and populate the domain-dependent factual 
knowledge base. Supporting a range of users would 
require adding a mechanism that associates with each 
type of user the kinds of changes that they can make 
to the knowledge base and limiting the users to make 
only those changes. The important point is that all 
the changes, no matter who ends up making them, are 
supported by the same core knowledge acquisition tool. 

Related Work 

Some recent approaches to KA support knowledge- 
based system construction by offering libraries of 
smaller-grained role-limiting strategies that can be 
composed to create the overall problem-solving strat- 
egy. Such is the approach taken in PROTEGE-II 
(Puerta et al. 1992), DIDS (Runkel and Birmingham 
1993), and SBF (Klinker et al. 1991). Modifying a 
problem-solving strategy involves changing one compo- 
nent for another one in the library. These frameworks 
allow a wider range of modifications to a system than 
tools that use a monolithic problem-solving structure. 
However, the kinds of modifications are still limited 
to what the compositions of different components al- 
low. EXPECT allows even finer-grained modifications 
to the problem-solving methods, by adding new sub- 
steps and defining new methods to achieve them. The 
composable role-limiting approaches provide very lim- 
ited support if at all to a knowledge engineer who is 
trying to write a new problem solving component for 
the library. EXPECT represents the methods in a lan- 
guage that the KA tool understands, so it can support 
the user in making these changes, In addition, EX- 
PECT’s approach requires building only one KA tool. 
In fact, in working out the examples shown in this pa- 
per we did not need to change the KA tool or to add 
new errors to those that were already defined in EX- 
PECT. EXPECT could benefit from representing the 
methods that are currently part of these system’s li- 
braries so that they could be used to bootstrap the 
creation of new knowledge-based systems. 

TAQL (Yost 1993) is a knowledge acquisition tool 
for weak search methods, i.e., problem-solving strate- 
gies that are more generic than something like propose- 
and-revise. TAQL is not targeted for domain experts, 
but for users that have programming skills. TAQL 
provides a language that allows users to define differ- 
ent kinds of problem-solving strategies. The knowledge 
roles that need to be filled out for these strategies are 
generic roles that are not dependent on the specific 
strategy defined but on the search framework under- 
lying TAQL. Like EXPECT, in TAQL the KA tool is 
strategy-independent and can provide guidance that is 
based on principles that have broader application than 
role-limiting approaches do. Some of the errors that 
TAQL detects correspond to errors detected by EX- 
PECT. For example “forgetting to design a problem 
space” in TAQL corresponds to an error in EXPECT 
that a method cannot be found to achieve a goal. Un- 
like TAQL, we believe that the guidance provided by 
EXPECT is accessible to an end-user that is trying to 
fill out knowledge roles. 

Other work in KA that has studied problem-solving 
strategies (including propose-and-revise) concentrates 
on knowledge modeling issues (Wielinga et al. 1992; 
Domingue et al. 1993). EXPECT’s KA tool is an im- 
plemented system to support users in knowledge base 
refinement and maintenance. 
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Conclusion 

Explicit representations of problem-solving strategies 
can be used to support flexible approaches to knowl- 
edge acquisition. This paper shows how this is done 
in the EXPECT framework, using the propose-and- 
revise strategy as an example. We have also com- 
pared how EXPECT supports knowledge acquisition 
for this strategy with a well-known tool (SALT) that 
was built specifically for that method. EXPECT’s KA 
tool is ablk to acquire the same kinds of knowledge 
that a tool like SALT can acquire, as well as additional 
kinds of knowledge that are useful in constructing a 
knowledge-based system. EXPECT uses the same KA 
mechanisms to acquire both domain-dependent and 

for any domain-independent knowledge, and can do so 
problem-solving strategy that the user defines. 
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