
Uolanda Gil and Eric Melz
USC/Information Sciences Institute

4676 Admiralty Way
Marina de1 Rey, CA 90292

email: gil@isi.edu, melz@isi.edu

Abstract

Role-limiting approaches support knowledge ac-
quisition (KA) by centering knowledge base con-
struction on common types of tasks or domain-
independent problem-solving strategies. Within
a particular problem-solving strategy, domain-
dependent knowledge plays specific roles. A KA
tool then helps a user to fill these roles. Although
role-limiting approaches are useful for guiding
KA, they are limited because they only support
users in filling knowledge roles that have been
built in by the designers of the KA system. EX-
PECT takes a different approach to KA by rep-
resenting problem-solving knowledge explicitly,
and deriving from the current knowledge base the
knowledge gaps that must be resolved by the user
during KA. This paper contrasts role-limiting
approaches and EXPECT’s approach, using the
propose-and-revise strategy as an example. EX-
PECT not only supports users in filling knowl-
edge roles, but also provides support in mak-
ing other modifications to the knowledge base,
including adapting the problem-solving strategy.
EXPECT’s guidance changes as the knowledge
base changes, providing a more flexible approach
to knowledge acquisition. This work provides ev-
idence supporting the need for explicit represen-
tations in building knowledge-based systems.

Introduction
Role-limiting approaches have been the main fo-
cus of research in knowledge acquisition (KA) tools
for knowledge-based systems construction for over a
decade (Birmingham and Klinker 1993). Several re-
searchers have identified commonly occurring, domain-
independent problem-solving strategies or inference
structures that are useful for describing the reasoning
behind knowledge-based systems (McDermott 1988;
Clancey 1985; Chandrasekaran 1986). These problem-
solving strategies determine the roles that domain-
dependent knowledge plays. The task of a KA tool,
then, is to guide users in filling out those roles. Sev-
eral such tools have been built to support KA for a
specific problem-solving strategy: SALT for propose-
and-revise (Marcus and McDermott 1989), MOLE for

cover-and-differentiate (Eshelman 19SS), PROTEGE
for skeletal plan refinement (Musen 1989), etc. Al-
though having a role-limiting strategy provides very
strong guidance for knowledge acquisition, these tools
lack the flexibility that knowledge-based system con-
struction needs (Musen 1992). The problem-solving
structure of an application cannot always be defined
in domain-independent terms, as Musen explains was
the case with Rl (McDermott 1982). Furthermore, one
single problem-solving strategy may not address all of
the particulars of an application, simply because it was
designed with generality in mind.

More recent approaches to KA overcome these limi-
tations by offering the system builder a library of finer-
grained problem-solving strategies that can be used
to put together a knowledge-based system (Puerta et
ad. 1992; Runkel and Birmingham 1993; Klinker et al.
1991). Each problem-solving strategy is then associ-
ated with a KA tool specific to that strategy. The
components of the library can be designed to be as
small-grained as necessary to be useful in system con-
struction. These frameworks provide more flexibility
because the overall problem-solving strategy can be
customized to the needs of the application. However,
their support to the user is still limited to filling knowl-
edge roles that have been identified beforehand by the
designers of these components. The kinds of modifi-
cations to the problem-solving strategy are limited to
exchanging one component for another in the library.
Also, a KA tool needs to be built for every problem-
solving strategy.

EXPECT (Swartout and Gil 1995; Gil 1994; Gil and
Paris 1994) takes a different approach to knowledge ac-
quisition. The problem-solving strategy is represented
explicitly, and the knowledge acquisition tool reasons
about it and dynamically derives the knowledge roles
that must be filled out, as well as any other informa-
tion needed for problem solving. Because the problem-
solving strategy is explicitly represented, it can be
modified, and as a result, the KA tool changes its inter-
action with the user to acquire knowledge for the new
strategy. Only one KA tool needs to be built, because
it can identify knowledge gaps for any problem-solving

Knowledge-Based Systems 469

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

strategy that can be explicitly represented in EX-
PECT. EXPECT provides greater flexibility in adapt-
ing problem-solving strategies because their represen-
tations can be changed as much as needed. Because the
systems that have been built to date with EXPECT do
not use a domain-independent problem-solving strat-
egy, it is hard to compare role-limiting approaches
with EXPECT’s approach of having explicit represen-
tations to guide knowledge acquisition. This paper il-
lustrates how EXPECT’s knowledge acquisition tool
works when the system is using a specific problem-
solving strategy. This allows a more detailed compari-
son with role-limiting approaches and shows that EX-
PECT not only supports users in filling out knowledge
roles, but extends the support to acquire additional
knowledge needed for problem-solving- a process that
role-limiting approaches to KA do not support.

To show how EXPECT works with a role-limiting
strategy we chose propose-and-revise, one that has
been the focus of much recent work within the KA com-
munity (Schreiber and Birmingham 1994). Propose-
and-revise was first identified as the problem-solving
strategy used in VT, a system for elevator config-
uration (Marcus et al. 1988). The main sections
of this paper compare EXPECT with SALT (Mar-
cus and McDermott 1989), the prototypical KA tool
that uses a role-limiting approach for that problem-
solving strategy. Because the VT domain takes a sig-
nificant amount of time to implement, we used instead
a smaller domain for U-Haul@ rentals that also uses
propose-and-revise (Gennari et al. 1993). This do-
main was sufficient to allow us to implement propose-
and-revise in EXPECT and to enable a more direct
comparison of its KA tool with other approaches.

The paper begins by describing propose-and-revise
and its use in a role-limiting tool for knowledge acqui-
sition. Then we show how propose-and-revise and the
U-Haul domain were implemented in EXPECT. After
describing EXPECT’s knowledge acquisition tool, we
show several examples of how it can acquire knowl-
edge for propose-and-revise and also support users in
acquiring additional types of knowledge. Finally, we
compare our approach with recent KA tools and ap-
proaches that have been used for propose-and-revise.

Role-Limiting Approaches: The Case of
Propose-and-Revise

This section reviews the basic propose-and-revise
problem-solving strategy, and then briefly presents how
SALT guides knowledge acquisition using propose-and-
revise in a role-limiting approach.

Solving Configuration Design Tasks with
Propose-and-Revise
Propose-and-revise is a problem-solving strategy for
configuration design tasks. A configuration problem
is described as a set of input and output parameters

(or variables), a set of constraints, and a set of fires to
resolve constraint violations. A solution consists of a
value assignment to the output parameters that does
not violate any constraint.

Propose-and-revise constructs a solution by itera-
tively extending and revising partial solutions. The
extension phase consists of assigning values to param-
eters. In the revision phase, constraints are checked
to verify whether they are violated by the current so-
lution and, if so, the solution is revised to resolve the
violation. Violated constraints are resolved by apply-
ing fixes to the solution. A fix produces a revision of
the solution by changing the value of one of the pa-
rameters that are causing the constraint violation.

Knowledge Acquisition for Propose-and-
Revise in a Role-Limiting Tool
SALT (Marcus and McDermott 1989) is a knowledge
acquisition tool for propose-and-revise using a role-
limiting approach. In this problem-solving strategy,
there are three types of knowledge roles: 1) procedures
to assign a value to a parameter, which would result
in a design extension, 2) constraints that could be vio-
lated in a design extension, and 3) fixes for a constraint
violation. Consequently, the user could enter one of the
three types of knowledge: PROCEDURE, CONSTRAINT,
and FIX. For each type of knowledge, a fixed menu (or
schema) is presented to the user to be filled out.

A tool like SALT can be used to acquire knowledge
in other applications that use the propose-and-revise
strategy. But its interaction with the user can never
change unless, of course, SALT itself is reprogrammed.
For example, SALT could not be used in an applica-
tion domain that required using domain knowledge to
select a preferred fix, because such a knowledge role
does not exist in SALT’s propose-and-revise strategy.
The schemas cannot be changed either. For example,
suppose that the user wanted to add priorities to spec-
ify which constraints should be preferred over others
when resolving violations. The schema for acquisition
of constraints would have to be modified. Further-
more, this would require changing the implementation
of propose-and-revise so that it would use this prefer-
ence information in the revision phase.

Special-purpose modules are needed to acquire some
specific kinds of knowledge. For example, there is a
consistency checker for the formulas in the constraint
schemas. The values of the input parameters are also
acquired through an interface that was specifically de-
signed for the elevator application.

SALT does not provide support in updating or
maintaining the knowledge about elevator components.
This would be a very useful capability, since product
knowledge changes at a high rate: 40-50 percent per
year is reported for configuration systems such as Rl
(McDermott 1982) and PROSE (Wright et al. 1983).

The essence of the argument made here about SALT
applies to other role-limiting KA tools such as MOLE

470 Knowledge-Based Systems

Figure 1: EXPECT’s representation of some of the factual knowledge needed for propose-and-revise problems, for
configuration problems, and for the U-Haul domain.

(Eshelman 1988) and PROTEGE (Musen 1989). To
summarize, the main limitations of role-limiting ap-
proaches to knowledge acquisition are:
e schemas cannot be changed to acquire new infor-

mation about existing knowledge roles
e the problem-solving strategy is fixed and cannot

be adapted or augmented
o new knowledge roles cannot be added
e the input parameters to be acquired are fixed
o there is no support to change the domain-specific

factual knowledge (e.g., about the equipment to
be used in the configuration)

e special-purpose modules are needed to support the
acquisition of certain kinds of knowledge (e.g., the
constraint’s formulas)
The rest of the paper shows how EXPECT supports

the acquisition of these kinds of knowledge using a sin-
gle KA tool that is independent of the problem-solving
strategy used.

procedural-style language that is tightly integrated
with the LOOM representations. Subgoals that arise
during problem solving are solved by methods. Each
method description specifies: 1) the goal that the
method can achieve, 2) the type of result that the
method returns, and 3) the method body that con-
tains the procedure that must be followed in order to
achieve the method’s goal. A method body can contain
nested expressions, including subgoal expressions that
need to be resolved by other methods; control expres-
sions such as conditional statements and some forms
of iteration; and relational expressions to retrieve the
fillers of a relation over a concept. Some method bodies
are calls to Lisp functions that are executed without
further subgoaling.

Explicit Representations in EXPECT
In EXPECT, both factual knowledge and problem-
solving knowledge are represented explicitly. This
means that the system can access and reason about the
representations of factual and problem-solving knowl-
edge and about their interactions. Factual knowledge
is represented in LOOM (MacGregor 1991), a state-of-
the-art knowledge representation system based on de-
scription logic. Factual knowledge includes concepts,
instances, and the relations among them.

We will give examples of EXPECT’s representa-
tions using propose-and-revise as a strategy for solving
the following type of problems in the U-Haul domain:
Given the total volume that the client needs to move,
the system recommends which piece of equipment (e.g.,
a truck, a trailer, etc.) the client should rent.

Figure 1 graphically shows parts of the factual do-
main model for propose-and-revise and for the U-Haul
domain.’ The upper part of the picture shows fac-
tual knowledge that is domain independent and can
be reused for any domain. The lower part of the pic-
ture shows factual knowledge that is relevant only to
the U-Haul domain.

There is a continuum between the representation
of domain-dependent and domain-independent factual

Problem-solving knowledge is represented in a ‘By convention, we denote relations with the prefix r-.

Knowledge-Based Systems 471

(defmethod REVISE-CS-STATE
"To revise a CS state, apply the fixes found for
the constraints violated in the state."
:goal (revise (obj (?s is (inst-of cs-state>>))
:result (inst-of cs-state)
:body (apply

syntax errors and undefined terms), the method ana-
lyzer (which detects errors within’ a problem-solving
methoh), and the instance analyzer (which detects
missing information about instances).

(obj (find (obj (set-of (spec-of fix)))
(for (find (obj (set-of (spec-of

violated-constraint)))
(in ?s)))))

(to ?s)))

(defmethod CHECK-CAPACITY-CONSTRAINT
"To check the Capacity Constraint of a U-Haul
configuration, check if the capacity of the rented
equipment is smaller than the volume to move."
:goal (check (obj CapacityConstraint)

(in (?c is (inst-of uhaul-configuration))))
:result (inst-of boolean)
:body (is-smaller

(obj (r-capacity (r-rented-equipment ?c)>>
(than (r-volume-to-move ?c>)>)

(defmethod APPLY-UPGRADE-EQUIPMENT-FIX
"To apply the Upgrade Equiment Fix in a U-Haul
configuration, upgrade the rented equipment."
:goal (apply (obj UpgradeEquipmentFix)

(to (?c is (inst-of uhaul-configuration))))
:result (inst-of uhaul-configuration)
:body (upgrade (obj (spec-of rented-equipment-var))

(in ?c>))

Figure 2: Problem-solving knowledge in EXPECT.

EXPECT’s problem-solver can analyze how the dif-
ferent pieces of knowledge in the knowledge-based sys-
tem interact. For this analysis, it takes a generic top-
level goal representing the kinds of goals that the sys-
tem will be given for execution. In the U-Haul exam-
ple, the top-level generic goal would be (solve (obj
(inst-of uhaul-problem))), and a specific goal for ex-
ecution would be (solve (obj jones-uhaul-problem)).
EXPECT analyzes how to achieve this goal with the
available knowledge. EXPECT expands the given top-
level goal by matching it with a method and then ex-
panding the subgoals in the method body. This process
is iterated for each of the subgoals and is recorded as a
search tree. Throughout this process, EXPECT prop-
agates the types of the arguments of the top-level goal,
performing an elaborate form of partial evaluation sup-
ported by LOOM’S reasoning capabilities. During this
process, EXPECT derives the interdependencies be-
tween the different components of its knowledge bases.
This analysis is done every time the knowledge base
changes, so that EXPECT can rederive these interde-
pendencies.

The design of each module of EXPECT takes into
account the possibility that the knowledge base may
contain errors or knowledge gaps. For example, EX-
PECT’s problem solver is designed to detect goals that
do not match any methods, and to detect relations that
try to retrieve mformation about a type of instance
that is not defined in the knowledge base (e.g., retriev-
ing the upgrade of a fix when only components have
upgrades). In addition to detecting an error, each mod-
ule is able to recover from the error if possible, and to
report the error’s type and the context in which it oc-
curred. For example, after detecting that a posted goal
cannot match any available method, EXPECT’s prob-
lem solver would mark the goal as unachievable and
continue problem solving by expanding other goals. It
would also report this error to the knowledge acquisi-
tion module, together with some context information
(in this case, the unmatched goal with its parameters)
and a pointer to the part of the problem-solving trace
where the subgoal was left unsolved.

Once the errors are detected, EXPECT can help
users to fix them as follows. EXPECT has an ex-
plicit representation of types of errors, together with
the kinds of corrections to the knowledge base that
users can make in order to solve them. This repre-
sentation is based on typical error situations that we
identified by hand. Table 1 shows some of the errors
that can currently be detected by two of the modules:
the problem solver (el through e4) and the instance
analyzer (es and e6). The error codes shown under-
lined will be used in the examples in the next section.
When EXPECT detects an error, it presents the sug-

knowledge in EXPECT. They are represented in the
same language, yet they can be defined and maintained
separately. Once a U-Haul problem is specified as a
kind of configuration problem, it inherits the fact that
it has constraints and fixes. Trucks are not defined as
having upgrades, since having upgrades is a way to look
at components from the point of view of configuration
problems. Instead, they are defined as configuration
components, which have upgrades.

Figure 2 shows three different problem-solving meth-
ods. REVISE-CS-STATE is one of the methods that spec-
ifies how propose-and-revise works. The other two are
specific to the U-Haul domain.

Notice that both factual and problem-solving knowl-
edge can be domain dependent or domain independent.
EXPECT uses the same language to represent both.

Knowledge Acquisition in EXPECT
EXPECT guides KA by requesting users to resolve er-
rors or knowledge gaps that it detects in the knowledge
bases. EXPECT’s problem-solver is designed to detect
these errors and to report them to the KA tool to-
gether with detailed information about how they were
detected. The KA tool uses this information to sup-
port the user in fixing them. Other modules that can
detect and report errors are the parser (which detects

472 Knowledge-Based Systems

problem type suggested corrections

fi no method to achieve modify method body
goal G in the body modify another method’s goal
of method M add a new method

e2 1 role R undefined -
modify instance, concept, relation

1 modify method M
for type C used add relation R for type C
in method M

e3 expression E in modify method M
method M has modifv another method’s eoal
invalid arguments modif; instance, concept, relation

e4 1 expression E in 1 modifv method M
method M has 1 modify another method’s goal
invalid result modify instance, concept, relation

& 1 missing filler of role R 1 add information about instance
of instance I modify method body
needed in method M delete instance

e6 type of instance I not specialize instance type
specific enough modify method body
for method M delete instance

Table 1: Some of the potential problems in the knowl-
edge bases detected by EXPECT.

SALT does not provide support in acquiring this
kind of domain-specific factual knowledge. As we men-
tioned earlier, this capability would be very useful to
maintain product knowledge in configuration systems.

Acquiring New Constraints and Fixes
We showed that SALT needs to be given definitions
of schemas to enter constraints and fixes. EXPECT
does not need to be given such schemas. Instead, the
information in the schemas is naturally requested by
EXPECT as constraints and fixes are defined by the
user.

Suppose for example that the user wants to add
a new constraint that restricts the rental of trail-
ers to clients with cars made after 1990 only.
The user would add a new instance of constraint:
TrailersForNewCarsOnly. EXPECT would analyze the
implications of this change in its knowledge base and
signal the following problem:

gested corrections as possible choices to the user. Con-
sider the case of error ei, where a goal G in the body
of method M cannot be achieved by any method. EX-
PECT suggests that the user either 1) modify the body
of method M to change or to delete the expression of
the goal G, 2) modify the goal of some other method N
so that it matches G, 3) create a new method L whose
goal will match G, or 4) modify an instance, a concept,
or a relation that is used in G. We will see in the next
section that the user’s choice of one suggestion over the
others depends on the context.

E2-I do not know how to achieve the goal (check
(obj TrailersForNewCarsOnly) (in (inst-of
uhaul-configuration))).

This is because during problem solving EXPECT
calls a method that tries to find the violated con-
straints of a configuration by checking each of
the instances of constraint of U-Haul problems.
This is a case of an error of type el. Before
defining this new instance of constraint, the only
subgoal posted was (check (obj capacityconstraint)
(in (inst-of uhaul-configuration))) and now it
also posts the subgoal (check (obj TrailersFor
NewCarsOnly) (in (inst-of uhaul-configuration))).
There is a method to achieve the former subgoal
(shown in Figure 2), but there is no method to achieve
the latter.

nowiedge Acquisition for
repose-and-Revise in EXPECT’

Previously, we pointed out some of SALT’s limitations
in terms of its lack of flexibility as a knowledge ac-
quisition tool. In this section, we illustrate how EX-
PECT’s explicit representations support a more flexi-
ble approach to knowledge acquisition.

Acquiring Domain-Specific Factual
Knowledge
Suppose that U-Haul decided to begin renting a new
kind of truck called MightyMover. The user would add
a new subclass of truck, and EXPECT would immedi-
ately request the following:

El-I need to know the capacity of a MightyMover.

The reason for this request is that EXPECT has
detected that the capacity of rental equipment is a
role that is used during the course of problem solv-
ing, specifically while achieving the goal of checking
the Capacityconstraint with the method shown in Fig-
ure 2. This corresponds to errors of type e5 in Table 1.
While many roles may have been defined for the class
truck (such as make and year), EXPECT will only re-
quest the information that is needed by the problem-
solving methods.

Notice that with this error EXPECT detects that
the addition of a new constraint to the factual knowl-
edge base requires adding a new method to the
problem-solving knowledge base. This illustrates how
EXPECT understands the interdependencies between
factual and problem-solving knowledge and uses this
to guide knowledge acquisition.

To resolve E2, the user chooses the third suggestion
for errors of type el and defines the following method
to check the constraint:

(defmethod CHECK-TRAILERSFORNEWCARSONLY-CONSTRAINT
:goal (check

(obj TrailersForNewCarsOnly)
(in (?c is (inst-of uhaul-configuration))))

:result (inst-of boolean)
:body (is-greater

(obj (r-year (r-car ?c)>)
(than 1990)))

Once this method is defined, E2 is no longer a prob-
lem and disappears from the agenda.

Notice that with this method EXPECT is acquiring
information about a knowledge role. The new method

Knowledge-Based Systems 473

corresponds to acquiring in SALT the formula in the Changing the Propose-and-Revise
schema for the constraint knowledge role. Strategy

EXPECT’s error detection mechanism also notices
possible problems in the formula to check the con-
straint. In SALT, they are detected by special-purpose
code that checks the validity of formulas. For example,
if r-year had not been defined EXPECT would signal
the following problem (of type es):

SALT does not allow users to change the problem-
solving strategy or to define new knowledge roles. This
section shows how this can be done with EXPECT.

Suppose that the user wants to change the revision
process of propose-and-revise to introduce priorities on
what constraint violations should be resolved first. The
priorities will be based on which variable is associated
with each constraint. E3-I do not know what is the year of a car.

When the user defines the role r-year for the con-
cept car this error will go away. EXPECT can also
detect other types of errors in the formulas to check
constraints. For example, if r-year was defined to have
a string as a range, then EXPECT would detect a prob-
lem. It would notice that there is no method to check if
a string is greater than a number, because the param-
eters of the method for calculating is-greater must be
numbers. EXPECT would then tell the user:

E4-I do not know how to achieve the
goal (is-greater (obj (inst-of string)) (than
1990)).

Like E2, E4 is an error of type el. But in this case
the user chooses a different way of resolving the error,
namely to modify the definition of the relation r-year.

If the user defined a fix for the new constraint, then
EXPECT would follow a similar reasoning and signal
the need to define a method to apply the new fix.

EXPECT changes its requests for factual informa-
tion according to changes in the problem-solving meth-
ods. This can be illustrated in this example of adding
a new constraint. An effect of the fact that the user
defined the new method to check the constraint is that
new factual knowledge about the domain is needed. In
particular, EXPECT detects that it is now important
to know the year of the car that the client is using (and
that is part of the configuration), because it is used in
this new method. The following request will be gen-
erated for any client that, like in this case Mr. Jones,
needs to rent U-Haul equipment:

E5-I need to know the year of the car of Jones.

This is really requiring that the information that is
input to the system is complete in the sense that config-
uration problems can be solved. In SALT, as in many
other systems, the input information (such as client
preferences or the building features) is predetermined
at the time the system is defined. In EXPECT, the
requirements for inputs change as the knowledge base
is modified. Notice that E5 is an error of type es,
and is detected by the same mechanism that was used
to detect El, even though they request conceptually
different types of information: El requests informa-
tion that is relevant to the U-Haul application and E5
requests information relevant to specific client cases.

The user would need to identify which of the
problem-solving methods that express propose-and-
revise in EXPECT needs to be modified. The change
involves adding a new step in the method to revise CS
states shown in Figure 2. The new step is a subgoal to
select a constraint from the set of violated constraints.
The modified method is as follows:
(defmethod REVISE-CS-STATE
:goal (revise

(obj (?s is (inst-of cs-state>>>>
:result (inst-of cs-state)
:body (apply

(obj (find (obj (set-of (spec-of fix)))
(for

(select
(obj (spec-of constraint))
(from

(find
(obj (set-of (spec-of

(to ?s>>>

violated-constraint)))
(in ?s)))))))

EXPECT would signal the following request:

E6-I do not know how to achieve the
goal (select (obj (spec-of constraint)) (from
(set-of (inst-of violated-constraint)))).

This is an error of type es, and it indicates that
the user has not completed the modification. The user
needs to create a new method to achieve this goal as
follows:
(defmethod SELECT-CONSTRAINT
:goal (select (obj (spec-of constraint))

(from (?vc is (set-of (inst-of
violated-constraint)))))

:result (inst-of constraint)
:body (take (obj ?vc)

(with (spec-of maximum))
(of (r-preference

(r-constrained-variable ?vc)>>>>

where r-preference is defined as a role of variables and
has a numeric range, and r-constrained-variable is
defined as a role of constraint and has variable as its
range. The user may also need to define a new method
for the take subgoal.

With these modifications to the knowledge base, the
propose-and-revise strategy that EXPECT will follow
has changed. Because the representation of the new
strategy is explicit, EXPECT can reason about it and

474 Knowledge-Based Systems

detect new knowledge gaps in its knowledge base. As a
result of the modification just made, there is additional
factual information needed including new information
about an existing knowledge role and a new kind of
knowledge role. EXPECT would then signal the fol-
lowing requests (both of type es):

E7-I need to know the constrained variable of
TrailersForNewCarsOnly.

to know ES-I need
variable.

the preference of equipment-

In SALT, making the change just described to the
revise strategy would require reprogramming the tool
to change the problem-solving method and to add a
new schema for the new knowledge role VARIABLE that
would acquire preferences for each variable.

E7 and E8 illustrate that EXPECT has noticed that
the change in the problem-solving strategy requires the
user to provide new kinds of information about the
factual knowledge used by the strategy. This shows
that in EXPECT the acquisition of problem-solving
knowledge affects the acquisition of factual knowledge.
Recall that E2 illustrated the converse.

Discussion

To summarize, we revisit SALT’s limitations and point
out which of the errors just discussed illustrate how
EXPECT handles those cases:
e acquire information about knowledge roles of the

current problem-solving strategy: E2, E7
e change the problem-solving strategy: E6
e add new knowledge roles: E8
e acquire input parameter values: E5
e change the domain-specific factual knowledge: El
e acquire specific kinds of knowledge: E3, E4

Notice that these errors are detecting conceptually
different knowledge gaps, yet they may correspond to
the same error type. Such is the case with E2 and E6
that correspond to error type el, and El and ES that
correspond to error type es.

Throughout the examples, we have referred to a
generic user wanting to make changes to the knowl-
edge base. This is not necessarily one user, and not
necessarily the end user or domain expert. For ex-
ample, the end user may only enter knowledge about
clients and new trucks to rent. A more technical user
would be able to modify propose-and-revise. A do-
main expert who does not want to change the problem-
solving methods can still use EXPECT to fill up knowl-
edge roles and populate the domain-dependent factual
knowledge base. Supporting a range of users would
require adding a mechanism that associates with each
type of user the kinds of changes that they can make
to the knowledge base and limiting the users to make
only those changes. The important point is that all
the changes, no matter who ends up making them, are
supported by the same core knowledge acquisition tool.

Related Work

Some recent approaches to KA support knowledge-
based system construction by offering libraries of
smaller-grained role-limiting strategies that can be
composed to create the overall problem-solving strat-
egy. Such is the approach taken in PROTEGE-II
(Puerta et al. 1992), DIDS (Runkel and Birmingham
1993), and SBF (Klinker et al. 1991). Modifying a
problem-solving strategy involves changing one compo-
nent for another one in the library. These frameworks
allow a wider range of modifications to a system than
tools that use a monolithic problem-solving structure.
However, the kinds of modifications are still limited
to what the compositions of different components al-
low. EXPECT allows even finer-grained modifications
to the problem-solving methods, by adding new sub-
steps and defining new methods to achieve them. The
composable role-limiting approaches provide very lim-
ited support if at all to a knowledge engineer who is
trying to write a new problem solving component for
the library. EXPECT represents the methods in a lan-
guage that the KA tool understands, so it can support
the user in making these changes, In addition, EX-
PECT’s approach requires building only one KA tool.
In fact, in working out the examples shown in this pa-
per we did not need to change the KA tool or to add
new errors to those that were already defined in EX-
PECT. EXPECT could benefit from representing the
methods that are currently part of these system’s li-
braries so that they could be used to bootstrap the
creation of new knowledge-based systems.

TAQL (Yost 1993) is a knowledge acquisition tool
for weak search methods, i.e., problem-solving strate-
gies that are more generic than something like propose-
and-revise. TAQL is not targeted for domain experts,
but for users that have programming skills. TAQL
provides a language that allows users to define differ-
ent kinds of problem-solving strategies. The knowledge
roles that need to be filled out for these strategies are
generic roles that are not dependent on the specific
strategy defined but on the search framework under-
lying TAQL. Like EXPECT, in TAQL the KA tool is
strategy-independent and can provide guidance that is
based on principles that have broader application than
role-limiting approaches do. Some of the errors that
TAQL detects correspond to errors detected by EX-
PECT. For example “forgetting to design a problem
space” in TAQL corresponds to an error in EXPECT
that a method cannot be found to achieve a goal. Un-
like TAQL, we believe that the guidance provided by
EXPECT is accessible to an end-user that is trying to
fill out knowledge roles.

Other work in KA that has studied problem-solving
strategies (including propose-and-revise) concentrates
on knowledge modeling issues (Wielinga et al. 1992;
Domingue et al. 1993). EXPECT’s KA tool is an im-
plemented system to support users in knowledge base
refinement and maintenance.

Knowledge-Based Systems 475

Conclusion

Explicit representations of problem-solving strategies
can be used to support flexible approaches to knowl-
edge acquisition. This paper shows how this is done
in the EXPECT framework, using the propose-and-
revise strategy as an example. We have also com-
pared how EXPECT supports knowledge acquisition
for this strategy with a well-known tool (SALT) that
was built specifically for that method. EXPECT’s KA
tool is ablk to acquire the same kinds of knowledge
that a tool like SALT can acquire, as well as additional
kinds of knowledge that are useful in constructing a
knowledge-based system. EXPECT uses the same KA
mechanisms to acquire both domain-dependent and

for any domain-independent knowledge, and can do so
problem-solving strategy that the user defines.

Acknowledgments

We would like to thank Sheila Coyazo, Kevin Knight,
Bill Swartout, Marcel0 Tallis, Milind Tambe, and An-
dre Valente for their comments on this paper. We
would also like to thank the PROTEGE group at Stan-
ford University, and in particular John Gennari, for
creating the U-Haul domain and for making it avail-
able to us. We gratefully acknowledge the support of
ARPA with the contract DABT63-95-C-0059 as part
of the ARPA/Rome Laboratory Planning Initiative.

References

Birmingham, W. and Klinker, G. Knowledge-
acquisition tools with explicit problem-solving mod-
els. The Knowledge Engineering Review 8(1):5-25,
1993.
Chandrasekaran, B. Generic tasks in knowledge-
based reasoning: High-level building blocks for expert
system design. IEEE Expert, 1(3):23-30, 1986.
Clancey, W. J. Heuristic classification. Artificial In-
telligence 271289-350, 1985.
Domingue, J. B., Motta, E., and Watt, S. The emerg-
ing VITAL Workbench. In N. Aussenac, et al. (eds.),
Knowledge Acquisition for Knowledge-Bused Systems:
Proceedings of the 1993 European Knowledge Acqui-
sition Workshop, Springer-Verlag, 1993.
Eshelman, L. MOLE: A knowledge-acquisition tool
for cover-and-differentiate systems. In S. Marcus, ed.,
Automating Knowledge Acquisition for Expert Sys-
tems. Kluwer Academic, Boston, MA, 1988.
Gennari, J. H., Tu, S. W., Rothenfluh, T. E., and
Musen, M. A. Mapping methods in support of reuse.
In Proceedings of the Eighth Knowledge Acquisition
for Knowledge-Bused Systems Workshop, Banff, Al-
berta, 1994.
Gil, Y. Knowledge refinement in a reflective architec-
ture. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence, Seattle, WA, 1994.

Gil, Y., and Paris, C. Towards method-independent
knowledge acquisition. Knowledge acquisition,
6(2):163-178, 1994.
G. Klinker, C. Bhola, G. Dallemagne, D. Marques,
and J McDermott. Usable and reusable program-
ming constructs. Knowledge Acquisition, 3(2): 117-
135, 1991.
MacGregor, R. The evolving technology of
classification-based knowledge representation sys-
tems. In J. Sowa, editor, Principles of Semantic Net-
works: Explorations in the Representation of Knowl-
edge. Morgan Kaufmann, San Mateo, CA, 1991.
Marcus, S., and McDermott, J. SALT: A knowledge
acquisition language for propose-and-revise systems.
Artificial Intelligence, 39(1):1-37, May 1989.
Marcus, S., Stout, J., and McDermott, J. VT: An
expert elevator designer that uses knowledge-based
backtracking. AI Magazine 9(1):95-112, 1988.
McDermott, J. Rl: A rule-based configurer of com-
puter systems. Artificial Intelligence 19:39-88, 1982.
McDermott, J. Preliminary steps towards a taxon-
omy of problem-solving methods. In S. Marcus, ed.,
Automating Knowledge Acquisition for Knowledge-
Based Systems. Kluwer Academic, Boston, MA, 1988.
Musen, M. A. Automated support for building
and extending expert models. Machine Learning,
4(3/4):347-375, 1989.
Musen, M. A. Editorial. Overcoming the limita-
tions of role-limiting methods. Knowledge Acquisi-
tion, 4(2):165-170, 1992.
Puerta, A. R., Egar, J. W., Tu, S. W., and Musen,
M. A. A multiple-method knowledge-acquisition shell
for the automatic generation of knowledge-acquisition
tools. Knowledge Acquisition, 4(2):171-196, 1992.
Runkel, J. T., and Birmingham, W. P. Knowledge ac-
quisition in the small: Building knowledge-acquisition
tools from pieces. Knowledge Acquisition, 5(2):221-
243, 1993.
Schreiber, G., and Birmingham, W., eds. Proceedings
of the Eighth Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Alberta, 1994.
Swartout, W. R., and Gil, Y. EXPECT: Explicit Rep-
resentations for Flexible Acquisition, In Proceedings
of the Ninth Knowledge Acquisition for Knowledge-
Bused Systems Workshop, Banff, Alberta, 1995.
Wielinga, B. J., Schreiber, A. Th., and Breuker, A.
KADS: a modelling approach to knowledge acquisi-
tion. Knowledge Acquisition 4(1):5-54, 1992.
Wright, J. R., Thompson, E. S., Vesonder, G. T.,
Brown, K. E., Palmer, S. R., Berman, J., and Moore,
H. A knowledge-based configurator that supports
sales, engineering, and manufacturing at AT&T Net-
work Systems. AI Magazine 14(3):69-80, 1993.
Yost, G. R. Knowledge acquisition in Soar. IEEE
Expert, 8(3):26-34, 1993.

476 Knowledge-Based Systems

