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Abstract 

The CommonKADS methodology is a collection of 
structured methods for building knowledge-based sys- 
tems. A key component of CommonKADS is the li- 
brary of generic inference models which can be applied 
to tasks of specified types. These generic models can 
either be used as frameworks for knowledge acquisi- 
tion, or to verify the completeness of models devel- 
oped by analysis of the domain. However. the generic 
models for some task types, such as knowledge-based 
planning, are not well-developed. Since knowledge- 
based planning is an important commercial applica- 
tion of Artificial Intelligence, there is a clear need for 
the development of generic models for planning tasks. 

Many of the generic models which currently exist have 
been derived from modelling of existing AI systems. 
These models have the strength of proven applica- 
bility. There are a number of well-known and well- 
tried AI planning systems in existence; one of the best 
known is the Open Planning Architecture (O-Plan). 
This paper describes the development of a Com- 
monKADS generic inference model for knowledge- 
based planning tasks, based on the capabilities of the 
O-Plan system. The paper also describes the verifica- 
tion of this model in the context of a real-life planning 
task: the assignment and management of Royal Air 
Force Search and Rescue operat,ions. 

Introduction 
The CommonKADS methodology (Breuker 6i van 
de Velde 1994) is a collection of structured meth- 
ods for modelling different aspects of knowledge-based 
systems. These methods have proved their useful- 
ness repeatedly over a range of different tasks (e.g. 
(Lockenhoff, Fensel, 85 Studer 1993) (Kingston 1993)). 
The key element in the success of CommonKADS is 
the library of generic inference models which can be 
applied to tasks of specified types. These models sug- 
gest the inference steps which take place in a typical 
task of that type, and the roles which are played by do- 
main knowledge in the problem solving process. These 
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generic models can be used either in a top-down man- 
ner, as frameworks for knowledge acquisition, or to ver- 
ify the completeness of models developed bottom-up by 
analysis of the domain. 

CommonKADS’ generic models for tasks such as di- 
agnosis are well-developed and well-understood. How- 
ever, the generic models for some task types are not 
as well developed. This is true for tasks involving 
knowledge-based planning; while CommonKADS does 
give some guidance in this area (Valente & Lockenhoff 
1994), this guidance focuses on domain models, rather 
than inference models. Since knowledge-based plan- 
ning is an important commercial application of Artifi- 
cial Intelligence, there is a clear need for the develop- 
ment of generic models for planning tasks. 

Many of the generic models which currently exist’ 
have been derived from existing AI systems, whose op- 
eration has been modelled and purged of their domain 
content. These models have the strength of proven 
applicability. There are a number of well-known and 
well-tried AI planning systems in existence; one of the 
best known is the Open Planning Architecture (O- 
Plan) (Tate, Drabble, & Dalton 1996). O-Plan pro- 
vides a generic domain independent computational ar- 
chitecture suitable for command, planning and exe- 
cution applications. It makes use of a variety of AI 
planning techniques, including a hierarchical planning 
system which can produce plans as partial orders on ac- 
tions; an agenda-based control architecture; incremen- 
tal development of “plan states”; and temporal and 
resource constraint handling. It therefore seemed that 
there would be considerable benefit in basing a generic 
CommonKADS model for planning tasks on O-Plan. 

CommonKA 
CommonKADS is a collection of structured methods 
for building knowledge-based systems, analagous to 
methods such as SSADM for software engineering. 
CommonKADS views the construction of a KBS as 
a modelling activity, and so these methods require a 
number of models to be constructed which represent, 
different views on problem solving behaviour, in its or- 
ganisational and application context. CommonKADS 
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recommends the construction of six models: 

A model of the organisation’s function & structure. 

A model of the tusks (activities) required to perform 
a particular operation. 

A model of the capabilities required of the agents 
who perform that, operation. 

A model of the communication required between 
agents during the operation. 

A model of the expertise required to perform the 
operation (see below). 

a model of the design of a KBS to perform all or part 
of this operation. 

For more details on the contents of all the models de- 
scribed above, see (de Hoog et al. 1993). 

The key model - the expertise model - is divided into 
three “levels” representing different viewpoints on the 
expert knowledge: 

The domain knowledge which represents the 
declarative knowledge in the knowledge base. The 
key elements in domain knowledge are concepts, 
properties of concepts, and relations. Tusks can also 
be considered to be part of the domain knowledge in 
some circumstances. 

The inference knowledge which represents the 
knowledge-based inferences which are performed 
during problem solving. Inference knowledge is rep- 
resented using inference functions (inferences which 
must be made in the course of problem solving) and 
knowledge roles (domain knowledge which forms the 
input and output of the inference functions). 

The task knowledge which defines a procedural or- 
dering on the inferences, often using a semi-formal 
textual representation. The key elements at this 
level are tusks and their decomposition. 

The contents of these three levels can be de- 
fined graphically, or using CommonKADS’ Concep- 
tual Modelling Language (Schreiber et al. 1994); see 
(Kingston 1993) for a worked example. 

Initial knowledge acquisition is typically used to 
populate higher level models (e.g. the organisational 
or task model. These models are then used to docu- 
ment, structure, and guide further knowledge acquisi- 
tion, which is then fed back into more detailed models. 
To use a familiar analogy, the models are “rapidly pro- 
totyped” until they are judged to be adequate for use 
as the specification of a KBS. 

The Open Planning Architecture 
O-Plan (Tate, Drabble, & Dalton 1996) is a multi- 
faceted system with an agent-oriented architecture in 
which task assignment, planning and execution are sep- 
arated. The main components of an O-Plan agent are: 

o Domain information; 

o Plan/schedule states; 

e Knowledge sources; 

e Controller; 

e Support modules. 

The remainder of this section describes how these 
components relate to CommonKADS’ models. 

Domain information 
The best model in CommonKADS for representing do- 
main information is the domain level of the expertise 
model. This model normally contains declarative in- 
formation about physical objects, states which objects 
can be in, and relationships between objects; objects 
and states are represented using concepts and proper- 
ties, while relationships are represented by relations. 
However, domain information in O-Plan includes a de- 
scription of the activities which can be undertaken to 
achieve various planning tasks, as well as information 
on physical resources available to the planning process 
(e.g. helicopters, lifeboats, hospitals). From this, it be- 
comes clear that a key factor in knowledge-based plan- 
ning is the ability to represent activities in a declarative 
form, so that these activities can be reasoned about. 
Using this paradigm, the constraints between activi- 
ties can be represented as relationships between tasks 
in the CommonKADS domain model. 

Plan states 
Plan states have three components: a plan agenda, the 
planning entities, and plan constraints. The agenda 
consists of issues to be resolved, such as getting a re- 
source into a particular state; planning entities typ- 
ically consist of planned activities which change the 
state of resources; and plan constraints provide de- 
tailed domain information which constrains further 
planning, such as the availability of resources. It is con- 
venient to consider these three components separately 
when making the comparison with CommonKADS, 
even though all of these components can be thought 
of as constraints on future planning. This tripar- 
tite breakdown of plans also corresponds to the <I-N- 
OVA> (issues, nodes and constraints) model described 
in (Tate 1995). 

All these components map to knowledge roles in 
the inference level of CommonKADS’ expertise model; 
that is, they consist of domain knowledge which plays 
a particular role in problem solving: 
e Issues consist of one or more states (which need to 

be achieved), and provide a key input to a planning 
cycle; 

e Planning entities in the plan consist of activities, 
and form the main output of a planning cycle; 

e Plan constraints consist of both the states of phys- 
ical resources, and of relationships between planned 
activities. They provide an intermediate input to a 
planning cycle. 

478 Knowledge-Based Systems 



Knowledge sources 

The knowledge sources in O-Plan address specific plan- 
ning requirements through the application of plan 
state modification operators. These include expanding 
an activity into sub-activities; choosing activities to 
achieve desired domain states; and selecting resources 
to perform activities. 

These knowledge sources map to inference steps (in 
the inference knowledge of the Expertise model) in the 
CommonKADS framework. The knowledge sources 
transform the components of the plan state into other 
components; for example, an issue from the agenda 
which is expanded is likely to produce new issues. Since 
the components of the plan state have been identified 
as knowledge roles, the knowledge sources must corre- 
spond to inference steps. 

Cant roller 

Throughout the plan generation process, O-Plan iden- 
tifies outstanding issues to address; these issues are 
then posted on an agenda list. The controller computes 
the context-dependent priority of the agenda items and 
selects an item for processing. This provides the op- 
portunism which is fundamental to any planning task. 

In CommonKADS terminology, the controller dy- 
namically determines an ordering on the inference 
knowledge. The knowledge used by the controller could 
therefore be represented in CommonKADS at the tusk 
level of the Expertise model (with a few extensions to 
represent opportunism). 

Support modules 

Support modules, such as database management fa- 
cilities or context-layered access to the plan state, do 
not map into CommonKADS knowledge representa- 
tion; they are either considered as external agents or 
extra requirements which have to be considered when 
the CommonKADS Design model is produced. How- 
ever, some support modules in O-Plan, such as the 
constraint managers, have a considerable effect on the 
planning cycle. The constraints themselves can be rep- 
resented as knowledge roles in the inference knowledge 
of the Expertise model. 

CommonKADS models for Planning 
It can be seen from the section above that the knowl- 
edge representation structure used in O-Plan corre- 
sponds well with the knowledge representation frame- 
work used by CommonKADS. This made it possible to 
focus on deriving generic inference models (“inference 
structures”) from O-Plan; as noted previously, these 
models often provide most assistance to a KBS devel- 
oper. 

The top level inference structure can be seen in Fig- 
ure 1. A typical “run” through the inference structure 
would see the following operations taking place: 

Figure 1: Top level inference structure for O-Plan 

d The current plan state is notionally decomposed 
into three components: the agenda of issues which 
are to be resolved, the currently planned activi- 
ties and the constraints. This decomposition sim- 
ply makes explicit the role which each component 
of the plan state plays in the problem solving pro- 
cess. These roles are described in (Tate, Drabble, & 
Dalton 1996). 

From the agenda of issues, at least one issue is 
selected for resolution. The choice of an issue de- 
pends on a number of factors monitored by the con- 
troller, such as the available processing capabilities, 
the knock-on effect on other issues, etc. 

o Pattern matching between issues and possible activ- 
ities is used to find an activity which is capable of 
resolving the current issue, perhaps by adding enti- 
ties to the plan, or by creating new issues. Issues 
may be resolved in one of three ways; the “double 
ellipse” informs the reader that more detail is avail- 
able in other diagrams (Figures 2 to 4). 

e The resulting agenda of issues, plan entities and con- 
straints are assembled, and used to update the cur- 
rent plan. 

Figures 2 to 4 show three of O-Plan’s “knowl- 
edge sources”, represented as CommonKADS inference 
structures. These knowledge sources are each capable 
of resolving an outstanding issue, but in different wa.ys. 
The methods used are: 

Q Adding a new activity, or further constraints on cur- 
rently planned activities, in order to resolve the issue 
(Figure 2); 

e “Backward chaining” : adding new issues to the p1a.n 
which, if resolved. will allow the current issue to be 
resolved (Figure 3); 

e Expanding the issue into a number of sub-issues 
(Figure 4). 

Knowledge-Based Systems 479 



In CommonEiADS terms, these three knowledge 
sources constitute different possible decompositions of 
the match-3 inference step. The three decompositions 
are described in more detail below. 

Figure 2 represents the resolution of an issue by con- 
dition satisfaction: i.e. the conditions of an out- 
standing issue are found to be matched. Conditions 
typically consist of one or more resources being in one 
or more states. For example, if an issue in the plan 
was to arrange transport for a mountain rescue team 
from Kinloss to Ben Nevis, then one possible activity 
(discovered by match-3.1.5) might be to transport 
the team by helicopter. The conditions of this activity 
might be that the mountain rescue team is present at a 
helicopter landing site, and a helicopter is also present 
at that site; resource constraints and currently planned 
activities will determine if these conditions can be ful- 
filled (match-3.1.6). If the conditions of an issue are 
fulfilled, and that issue is selected as the best method 
of transporting the team (select-3.1.7), then that is- 
sue is removed from the agenda. The plan itself is also 
modified, in any or all of the following ways: 
o New planning entities may be introduced (e.g. “he- 

licopter no. 007 must land at Kinloss”); 

e New variable restrictions may be enforced (e.g. “the 
helicopter must have space for 8 men when it arrives 
at Kinloss” ); 

o New temporal orderings may be introduced (e.g. 
“the helicopter has to refuel; this must be done be- 
fore flying to Kinloss”). 

If there is be more than one way of matching a set of 
conditions, O-Plan performs search to investigate one 
or more options. 

Figure 2: Resolving an issue by condition satisfaction 

Figure 3 represents the resolution of an issue whose 
conditions cannot currently be satisfied (as determined 
by match-3.2.8). The approach taken by O-Plan in 
this case is a form of “backward chaining” ; a search is 
made for other activities which, if added to the plan, 
will create the right conditions for the current issue 
to be fulfilled (match-3.2.9). If a suitable activity is 
found, then the performing of this activity is added to 
the agenda of issues (specify-3.2.10). This is known 
as achieving in O-Plan. 

Figure 4 represents the resolution of an issue by ex- 
pansion. If the current issue matches with an ac- 
tivity (match-3.3.11) which can be decomposed into 
sub-activities, then the current issue is removed from 

Figure 3: Resolving an issue by “backward chaining” 

Figure 4: Resolving an issue by expansion 

the agenda and appropriate sub-issues are created and 
added to the agenda (specify-3.3.12). For example, 
if “move mountain rescue team to pickup point” was 
an issue, then this might be expanded into “contact 
team”, “instruct team”, and “confirm team have ar- 
rived at pickup point”. 

In summary, these inference structures represent the 
core activities of the O-Plan planning process, with- 
out representing the many controls on efficiency and 
processing capability which are implemented within 
the O-Plan Controller. The system-independence of 
these inference structures allows them to be used as 
generic models of the inference processes required for 
knowledge-based planning. 

Verifying the generic planning models 
In order to verify the claim that the inference struc- 
tures presented in the previous section can act as a 
generic inference model for planning tasks, it was im- 
portant that these models should be seen to be appro- 
priate for real-life planning tasks. One such task is that 
of planning the use of resources in a Search and Res- 
cue incident. A project entitled “Acquiring and Using 
Planning Knowledge for Search and Rescue” (Cottam 
et al. 1995) was carried out jointly by the University 
of Nottingham and AIAI, and produced a prototype 
KBS for supporting Royal Air Force (RAF) person- 
nel in their allocation and management of resources 
such as helicopters, RAF mountain rescue teams, and 
RAF Nimrod aircraft. The responsibilities of the Res- 
cue Co-ordination Centres of the RAF include sup- 
port and co-ordination of civilian emergencies; this in- 
cludes direct responsibility for the allocation, applica- 
tion and co-ordination of military resources, as well 
as co-ordination with a number of civilian emergency 
authorities. A rescue incident can vary in scale from 
retrieving a walker with a sprained ankle to handling a 
large aircrash; the Rescue Co-ordination Centres may 
have to manage several incidents simultaneously. 
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Knowledge acquisition and high-level task modelling 
for this system are described in (Cottam et al. 1995); 
the result of these activities was to design and develop 
a system which supported RAF personnel in making 
planning decisions, in remembering all the tasks which 
needed to be undertaken, in deciding what to do next, 
and in logging actions taken. The approach which was 
taken to the design of the KBS for search and res- 
cue support was to develop a domain-specific inference 
structure in a bottom-up fashion based on structured 
interviews, video tape analysis, protocol analysis, inci- 
dent documentation and structured analysis of specific 
incident cases (Cottam et al. 1995). This inference 
structure can bk seen in Figure 5. Figure 5 shows that 
planning for Search and Rescue operations takes place 
by choosing an appropriate “template plan”, which 
contains a list of goals (issues) to be satisfied; selecting 
one of these goals; either matching the goal to an ac- 
tion (activity), or expanding it into a set of sub-goals, 
which are then individually matched against actions; 
and then adding all the actions into the current plan. 

Figure 5: Domain-derived inference structure 

based on an inference structure which incorporated the 
best of both worlds; it had all the matching capabil- 
ities and inputs of the generic inference structure, as 
well as the selection of a “template plan” specified by 
the domain-derived inference structure. The program 
structure of the implemented KBS was based on the in- 
ference structure (with additional transformations and 
design decisions made using the CommonKADS De- 
sign Model); the system used objects to represent pos- 
sible activities, another set of objects to represent is- 
sues on the agenda, and a set of rules which matched 
issues against possible activities. The system also used 
objects to represent resources (helicopters, mountain 
rescue teams, etc), and relations between objects to 
specify the order of planned activities. For further de- 
tails, see (Cottam et aE. 1995). 

The generic inference models were used to critique 
this domain-specific inference structure. The result of 
the comparison showed that the generic inference mod- 
els had a richer representation of techniques for match- 
ing issues to activities; match-l in Figure 5 is replaced 
by the whole of Figure 2, decompose and match-2 
in Figure 5 are replaced by Figure 4, and there is no 
representat.ion in Figure 5 of the “achieving” repre- 
sented in Figure 3. It also identified some important 
knowledge roles (resource constraints, and the library 
of possible activities) which were not explicitly rep- 
resented in the domain-driven inference structure. On 
the other hand, the domain-derived inference structure 
highlighted use of an outline plan template as a frame- 
work for planning, which is important in the Search 
and Rescue domain, but does not appear in the generic 
inference models. 

The next stage of modelling is to determine whether 
the model components which are present in the generic 
model but do not appear in the domain-derived model 
are in fact applicable to this planning task. It was easy 
to determine that the task of Search and Rescue plan- 
ning is sometimes constrained by available resources 
(there are only a few helicopters and aircraft available), 
and that the planners select from a library of possible 
activities when deciding how to fulfil an issue (this is 
most noticeable when different ways of transporting a 
casualty to safety are considered). Further investiga- 
tion also determined that there was (occasionally) a 
requirement to “achieve” a state of affairs by intro- 
ducing other activities earlier in the plan. This often 
occurs when the planners want to use facilities con- 
trolled by other authorities, such as lifeboats, which 
are usually controlled by the Coastguard; in these sit- 
uations, the facilities cannot be used until permission 
has been granted by the controlling authority. 

The conclusion which can be drawn is that the 
generic inference models specified in Figures l-4 are 
adequate for representing the task of Search and Res- 
cue planning, once a few domain-specific adaptations 
have been made; such adaptions are a common fea- 
ture of KBS projects which use CommonKADS (see 
(Valente & Lockenhoff 1994), for example). More im- 
portantly, the use of a generic inference model acts as a 
completeness check on acquired procedural knowledge, 
by prompting a knowledge engineer to consider possi- 
ble aspects of the planning process which may not have 
been identified during initial knowledge acquisition. 

Future work 
We have showed that a set of CommonKADS infer- 
ence models can be derived to represent the workings 
of the O-Plan system. We have also seen that these 
models can be beneficially applied to the modelling of 
a real-life planning task, identifying important aspects 
of the task which were not immediately obvious from 
acquired knowledge. We can therefore argue that the 
consideration of these generic models will be beneficial 
to anyone constructing a planning system, for the ap- 
plication of these models may highlight aspects of the 
problem which should have been considered. 

The KBS which was implemented was therefore However, this paper does not claim that the generic 
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inference models highlight errcry aspect that needs to 
be considered in any planning task. Knowledge-based 
planning is a wide-ranging field, using a number of 
different approaches. While O-Plan can perform a 
wide range of planning tasks (and some other tasks as 
well), it is based on a particular approach to planning; 
the inference models derived from O-Plan inevitably 
reflect the approach. The problem is analagous to 
the abstraction of models from Mycin program; the 
level of abstraction of the models shown in Figure l- 
4 is higher than that of E-Mycin (because of the de- 
liberate exclusion of control information from Com- 
monKADS inference models), and may prove to be 
comparable with Clancey’s model of heuristic classi- 
fication (Clancey 1985), but cannot be considered to 
provide a generic model for all classification tasks. 

What is needed is a top-down approach to classi- 
fying planning tasks, which identifies the important 
characteristics of different approaches to planning, and 
suggests the types of knowledge which are considered 
by each type of planning. Since this work was per- 
formed, a paper has been published (Barros, Valente, 
& Benjamins 1996) which takes such an approach, us- 
ing the CommonKADS framework to produce a high- 
level description of different planning systems and the 
approaches which they use. From this perspective, the 
models produced by Barros et al. are the “generic” 
models, specifying the types of operation which a plan- 
ner is expected to perform (e.g. select goal or critiqtie 
pian), whereas the models described in Figures l-4 are 
the “domain-derived” models, representing the actual 
operation of a particular planning system. By applying 
the techniques described above of comparing and com- 
bining “generic” models with “domain-derived” mod- 
els, the models described in Figures 1-4 can be verified 
for completeness, and correctly classified according to 
the types of planning task for which they are most ap- 
propriate, while the models described by Barros el al. 
can be enriched. Furthermore, this technique could be 
used to incorporate a number of other “generic plan- 
ning models” which have been proposed (such as that 
of (Brown 6L: Chandrasekaran 1992), and possibly even 
case-based models such as that used by (Goel et al. 
1994)) into a common framework’ thus permitting ra- 
tional selection of the “best” generic planning model 
for a particular planning task. 
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