
etectin ties Usin ate
xamples

Vibhu m Mittall Johanna oore
Learning Research & Development Center and

Department of Computer Science
University of Pittsburgh, Pittsburgh, PA 15260, USA.

e-mail: { mittaljmoore} @cs.pitt.edu

Abstract

Verifying the fidelity of domain representation in large knowl-
edge bases (KBs) is a difficult problem: domain experts are
typically not experts in knowledge representation languages,
and as knowledge bases grow more complex, visual inspection
of the various terms and their abstract definitions, their inter-
relationships and the limiting, boundary cases becomes much
harder. This paper presents an approach to help verify and re-
fine abstract term definitions in knowledge bases. It assumes
that it is easier for a domain expert to determine the correctness
of individual concrete examples than it is to verify and correct
all the ramifications of an abstract, intensional specification.
To this end, our approach presents the user with an interface in
which abstract terms in the KB are described using examples
and natural language generated from the underlying domain
representation. Problems in the KB are therefore manifested
as problems in the generated description. The user can then
highlight specific examples or parts of the explanation that
seem problematic. The system reasons about the underlying
domain model by using the discourse plan generated for the
description. This paper briefly describes the working of the
system and illustrates three possible types of problem mani-
festations using an example of a specification of fl oating-point
numbers in Lisp.

Introduction
Knowledge base construction is often an iterative process
of debugging and refinement. As knowledge bases (KBs)
increase in size, the problems of detecting incorrect, in-
consistent or incomplete specifications become increasingly
difficult, especially for domain experts who may be unfa-
miliar with the knowledge representation language and its
intricacies. To alleviate this problem, a number of previ-
ous efforts have considered approaches that would allow
domain experts to inspect formal specifications using nat-
ural language, e.g., (Gil 1994; Swartout 1983). However,
studies show that people can usually understand and ver-
ify specific examples more easily and quickly than abstract,
textual descriptions, e.g., (Reder, Charney, & Morgan 1986;
Pirolli 1991). Other approaches have considered the use
of examples alone to aid in debugging, e.g., (Shapiro 1983;
Mitchell, Utgoff, & Banerji 1983).

Our work integrates and extends these approaches in an
interface that allows users to inspect and debug KBs by iden-
tifying problems in automatically generated examples and
accompanying natural language descriptions. Using infor-
mation about the specific examples flagged by the user as

being problematic, information about the type of the prob-
lem (also specified by the user), and the discourse plan un-
derlying the automatically generated presentation, the sys-
tem attempts to localize the problem in the KB specifica-
tion. In cases where the system cannot uniquely identify
the problem with the knowledge base, it generates addi-
tional descriptions for the expert to verify. This work in-
tegrates previous research in three areas: (1) knowledge
acquisition and refinement, e.g., (Gil 1994; Musen et al.
1988), (2) natural language generation and reasoning about
discourse plans, e.g., (Moore & Paris 1993), and (3) au-
tomatic example generation, e.g., (Ashley & Aleven 1992;
Mittal & Paris 1994). In our analysis, problems in the KB
specification of a concept manifest themselves as a combina-
tion of one or more of the following three types of errors in
system generated explanations: (1) incorrect examples, (2)
incorrect explanations accompanying the examples, or (3)
sequencing problems in the examples.

Examples and the accompanying textual descriptions are
generated by a hierarchical discourse planner, which pro-
duces discourse plans recording the goals achieved by and
the rhetorical relationships among plan components. When
the user indicates that an example is incorrect (by highlight-
ing the example), the system uses the discourse plan to gen-
erate and reason about hypotheses regarding possible errors
in the KB specifications that could have led to the errors in
the description generated. Our system differs from previ-
ous work on example based debugging, e.g., (Shapiro 1983;
Mitchell, Utgoff, & Banerji 1983), because it uses knowl-
edge about the discourse plan that generated the examples
and accompanying text, as well as domain knowledge about
near-misses, in order to localize possible problems in the KB.

To illustrate the application and utility of our approach in
detecting and debugging KB problems, this paper discusses
three types of errors in descriptions that can indicate prob-
lems in the underlying KB specification-wrong examples,
wrong explanations and incorrect example sequencing-and
how they can help in finding the problem. In order to il-
lustrate the general problem, rather than focus on system-
and representation-specific mechanisms, all of the scenarios
discussed in this paper use a Backus-Naur Form (BNF) rep-
resentation of the domain. BNF is a generic, domain- and
task-neutral specification formalism that is capable of rep-
resenting a wide variety of domains and tasks ranging from
mechanical device design (Mohd-Hashim, Juster, & de Pen-
nington 1994) to protein-structure mapping (George, Mewes,

Knowledge-Based Systems 483

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

& Kihara 1987) and interface requirements (Reisner 198 1).
To further simplify the discussion, we use the same BNF
fragment to illustrate the three types of errors that can occur
in the automatically generated presentation. For this purpose,
we use the specification of floating point numbers in Lisp, but
the method discussed in this paper is specific neither to Lisp,
nor in fact to BNE We have chosen this example here because
(1) floating point numbers need no introduction, (2) the ab-
stract specification of floating point numbers is sufficiently
complex so as to illustrate the utility of examples, and (3)
translating BNF to other KR languages has been described
previously (Mittal & Paris 1994).

Generating Text and Examples
The system uses a text planner to generate coherent natural
language descriptions. Given a communicative goal (such
as (DESCRIBE (CONCEPT LIST))),l thesystem findsop-
erators capable of achieving this goal. Operators typically
post further subgoals to be satisfied, and planning continues
until all goals have been refined to primitive speech acts -
i.e., those directly realizable in English. The result of the
planning process is a discourse plan in which the nodes rep-
resent goals at various levels of abstraction with the root
being the initial goal, and the leaves representing primitive
realization statements. This discourse plan is then passed to
a grammar interface, which converts it into a form suitable
for input to a natural language generation system, such as
FUF (Elhadad & Robin 1992), to produce the surface form.
The system uses a subsumption classifier, such as the one in
KL-ONE based knowledge representation systems to generate
the examples (Mittal & Paris 1994). A complete description
of the generation system is beyond the scope of this paper -
see Moore and Paris (1993) for a more detailed description
of plan based natural language generation.

In order to generate and present examples that are effective
in localizing problems the system categorizes each feature of
the concept into one of two classes:
e critical: features are required for the example to be an

instance of the concept being illustrated. For instance,
by definition, a Lisp list must contain both a left- and a
right-parenthesis (with the exception of NIL).

* variable: features can vary without causing the modified
examples to no longer be subsumed by the definition of the
concept being illustrated. For instance, the number, type
and order of elements in a list in Lisp.
Given the variable and critical features of a concept, the

system can use this information to plan the presentation of
effective example sequences: minimally different positive-
negative pairs for critical features, and groups of varying
positive examples for the variable features. Determining the
critical and variable features of a concept can be accom-
plished by using a term classifier as described in Mittal and
Paris (1994)) such as the ones available in the KL-ONE family
of KR languages (Woods & Schmolze 1992).

To find critical and variable features of concepts defined
using BNF, a straightforward way is to map the BNF defini-
tions to KL-ONE type definitions and query the classifier. For

‘The syntactic forms have been simplified for the sake of clarity.

floating-point-number ::=
[sign] {digit} * decimal-point {digit}+ [exponent] (la)

I [sign J {digit} + [decimal-point {digit) *] exponent (I 6)

sign ::= +I- (2)

decimal-point ::= . (3)

digit ::=0111213141516171819 (4)
exponent ::= exponent-marker [sign] {digit)+ (5)

exponent-marker :: = elslfldlllEISIFIDI1, (6)

Figure 1: Grammar fragment from (Steele, 1984: p. 17)

instance, the BNF specifications2 for floating point numbers
in Lisp is given in Fig. 1. Our system maps these BNF gram-
mar specifications into concept descriptions in the language
Loom (MacGregor 1994);3 This mapping is straightforward:
non-terminal symbols in the grammar are mapped to con-
cepts, and terminal symbols are mapped to instances. The
ordering of the symbols in a production is specified by link-
ing the respective concepts and instances using a pre-defined
binary relation that the system understands as specifying the
order in the BNF.

In addition to presenting critical and variable features
effectively-by either pairing contrasting examples or group-
ing similar examples-the sequence in which the examples
are presented can also be important in focusing the reader’s
attention. For instance, presenting simpler features before
more complex ones is an effective strategy, e.g., (Cat-nine &
Becker 1982). The presentation sequence is important be-
cause users often try and understand an example in terms of
others that they have seen before. In this case, the system
generates examples in order of increasing complexity. In the
case of BNF grammars, the measure of complexity is based
on a combination of the number of productions required to
generate an expression, and the complexity of each term in
the expression.

The next section describes how this framework can be used
to help domain experts debug and refine KBs by examining
descriptions generated by the system.

Using pies in
To illustrate how examples can help in detecting gaps in the
KB, consider the grammar fragment shown in Fig. 1 (floating
point numbers in Lisp). Even though this set of productions is
one of the simpler ones in the grammar, it is easy to overlook
some of the implications of the bracketing and the kleene- and
transitive-closures in the productions. The rules are complex
enough that a text-only paraphrase of the rules themselves
may not be enough to spot a mistake in the representation.
However, an example generated from only the faulty aspect
can often stand out as a grossly wrong instance of the def-
inition and can thus focus attention on specific aspects of

‘Brackets indicate optional components; braces are used for
grouping things or indicating kleene (+) or transitive (*) closures.

3Loom is a knowledge representation language that provides
classification capabilities similar to other KL-ONE languages. How-
ever, our technique is not specific to Loom.

484 Knowledge-Based Systems

Examples oi

.O
0.

-11.2

+ 5.752

6El
6

El
- 7~23
+3.F2

+ 3.285D2

floating point numbers are:

; a positive floating point number in decimal format
; not a floating point number, but an integer
; a negative floating point number in decimal format
; a positive floating point number in decimal format
; a positive floating point number in exponential
; not a floating point number, but an integer
; not a floating point number, but an exponent
; a negative floating point number in short format
; a positive floating point number in single format
; a positive floating point number in double format

Figure2: Description for FLOATING-POINT-NUMBER.

abstract rules in a very effective fashion (Pirolli 1991).
To generate and present the examples, the system must

first determine the critical and variable features of the concept
FLOATING-POINT-NUMBER. Inthiscase, thecriticalfeatures
are: (i) the presence of a decimal point accompanied by one
or more digits on the right hand side of the decimal point,
or (ii) a number accompanied by an exponent. The variable
features are: (i) the presence or absence of the sign, (ii) the
value of the sign, (iii) the number of digits in the numbers,
and (iv) the values of the numbers. The system can now
utilize this critical/variable categorization to generate sets of
examples to effectively convey each of these attributes (crit-
ical attributes by pairs of almost identical positive-negative
examples; variable attributes by groups of varying positive
examples). The presentation order of the examples is deter-
mined by the relative complexity of each example. A typical
output generated by the system is shown in Fig. 2 (fragments
of the discourse plan underlying the presentation of the criti-
cal features are shown in Fig. 3).

Now suppose that the specification of the concept
floating-point-number is incorrect. The problems in
the specification can manifest themselves in the resulting ex-
planation that is generated in one of three ways: the examples
generated by the system are incorrect, the explanations ac-
companying the examples are incorrect, or the examples are
ordered in an inconsistent manner. (These can be marked by
the domain expert as such by selecting the appropriate ex-
amples/prompts and using the ‘buttons’ at the bottom of the
screen.) In each of these cases, the system reasons about the
underlying discourse plan used to generate the explanation in
order to localize the potential cause of the problem.
Case 1. A wrong example is generated: There are two pos-
sible ways in which problems in the KB manifest themselves
as incorrect examples in the resulting explanation:
Case 1.1. A simple wrong example: If the faulty example
differs from its adjacent (correct) examples in only a single
feature, the system can use this information in conjunction
with the discourse plan to debug the KB specification. Con-
sider, again, the specification of floating-point numbers in
Lisp shown in Fig. 1. The correct and one possible mistaken
specification for rule (la) are shown below:

floating-point-number ::=

.I.. .1.
EXAMPLE EXAMPLE
(crItIcal feature11 (cntcal feature?)

Figure 3: Fragments of the discourse plan for the two critical
features.

[sign] {digit}* decimal-point {digit}+ [exponent] J
floating-point-number ::=

[sign] {digit}* d ecimal-point (digit}” [exponent] x
The resulting output generated by the system for the incor-
rect case is shown in Fig. 4. The first and the third examples
presented in the explanation are incorrect. It is clearly easier
to spot the mistake in the individual examples than in the
abstract specification.

Using our interface, the user can highlight these two items
and indicate them as being incorrect examples of a floating
point number. Based on this information, the system reasons
as follows. First, it uses the discourse plan to determine which
other examples in the presentation are most closely related
to the items that were marked incorrect. The discourse plan
indicates not only which examples are related, but how they
are related, e.g., whether they are contrastive examples for a
critical feature, similar examples for a variable feature, etc.
In this case, the system determines that the first example was
generated to illustrate the following variable features: the
sign of the number, the number of digits on the left of the
decimal point, the number of digits on the right of the decimal
point, and the exponent. The second example was intended
to highlight the variable nature of the digits on the left of
the decimal point, and since that example was not marked
wrong, the variable nature of the digits on the left of the
decimal point is correct. The third example was supposed to
illustrate the variable nature of the digits on the right of the
decimal point, and that example was marked wrong. Since
the other examples were not marked wrong, the system can,
on the basis of the two wrong examples and the other correct
examples, suggest a revision to the incorrect version of rule
(la). This revision regarding the optionality of digits on
the right of the decimal point results in the transitive closure
being modified to a kleene closure as follows:

floating-point-number ::=
[sign] {digit}” d ecimal-point (digit) + [exponent]

Case 1.2. A complex wrong example: in some cases, a
component term used in the example (with its own critical
and variable features) can be incorrect, making the larger ex-
ample wrong. When an example containing such complex

Knowledge-Based Systems 485

Examples of floating point numbers are:

I . : a posarve Aoatrng pornt number tn decimal format I
.O ; a positive floating point zero in decimal format

1 0. ; a positive floatrng point number in decimal format I
- . 2 ; a negative floating point number in decimal format

+ 5.752

6El
6

El
- 7s23
+3.F2

+ 3.285D2

; a positive floating-point number in decimal format
: a positive floating point number in exponential format
; not a floating point number, but an integer
; not a floating point number, but an exponent
: a negative floating point number in short format
; a positive floating point number in single format
; a positive floating point number in double format

Figure 4: A simple case of incorrect examples.

component terms is marked incorrect, the system can gener-
ate additional, simpler examples about the suspect component
in order to localize the KB problem. Consider, for instance,
the case in Fig. 5. The fifth example in the sequence, which is
also the first example where the exponent notation is used, is
marked as incorrect by the user. The discourse plan indicates
that the example in question was generated to illustrate the
use of the exponent notation in rule (1 b). The system ex-
amines the portion of the discourse plan regarding examples
generated from rule (lb). Since one of the differences be-
tween the wrong example and its immediate neighbor is the
exponent (the [decimal-point {digit} *] portion of the rule
was not used in either of the two), the system can infer that
the problem is in the specification of the exponent.

There are two other examples in the same explanation that
also have exponents in them (the last two examples). These,
however, use a different exponent markers (“F" and “D").
Thus, it is only possible to infer that either the wrong marker
was used, i.e., "E" is not allowed, or some other piece of in-
formation is missing. To verify the first possibility, that “E" is
an invalid exponent marker, the system generates another set
of examples for floating point numbers that use the exponent
marker “E” (shown in the lower half of Fig. 5). In this case,
the first example of an exponent is wrong. The system can
now use the discourse structure used in generating the exam-
ples for the exponent to identify the problem. In this case, the
difference between the first two examples of the exponent is
that the second example has a positive number following the
exponent marker whereas the first example does not. Thus,
one possibility is that a positive number is necessary in these
cases. The third example, which has a negative number af-
ter the exponent marker, allows the system to generalize the
previous hypothesis (of needing a positive number following
the exponent) to the hypothesis that any number, positive or
negative, is needed. Since the production specified that the
sign is optional, the only part of the production that could
be wrong is about the optionality of the number. Thus, the
system can suggest that the specification of the exponent be
modified to make both the number and the exponent marker
be required in all cases:

exponent ::= exponent-marker [sign] {digit}* X

Examples of floating point numbers are:

Figure 5: A complex incorrect example can result in the
generation of further examples.

exponent ::= exponent-marker [sign] {digit}+ l/
Case 2. A wrong prompt: Mistakes in the domain model
can also result in the generation of incorrect textual prompts.
Prompts can indicate errors in at least two cases: (i) the
system presents a valid, positive example as being a neg-
ative, invalid example (or vice-versa), and (ii) the system
presents a valid example (either positive or negative), but the
accompanying prompt (or explanation) is either irrelevant or
inconsistent with the point being illustrated.

The first possibility can be handled in the same way as
in Case 1 above. However, the second possibility, where an
invalid prompt is generated for a correct example, is often
due to missing information, and must also be dealt with. For
instance, consider the case where the system generates an
example of a floating point number such as the one shown
in Fig. 6. If the specification of the production rule for the
exponent, (rule 5) is faulty as given below:

exponent :: = [exponent-marker] [sign] {digit}+ X

the system would generate the example using the second pro-
duction rule for floating point numbers - the part “5.7” from
rule (1 b), and the digits “5” and “2” from the faulty rule given
above for the exponent. Also based on the faulty rule, the
system would assume that the exponent-marker and the
sign were optional and therefore not to be included initially.
The resulting example generated is a valid floating point num-
ber “5 .752”, but the accompanying textual prompt indicates
that a mistake was made in the specification. Selecting the
prompt causes the system to generate additional examples
for the same discourse goal that caused the generation of the
example with the faulty prompt in the first place. Exercising
the different options of the production rule for the exponent,
the system can infer that exponent-marker is not a variable
feature, but a critical one (i.e., its presence is mandatory in
the case of an exponent), and thus can propose the corrected
rule:

exponent ::= exponent-marker [sign] {digit}+ J
Case 3. A wrong presentation sequence: Finally, a third
possible manifestation of KB problems can be seen in strange
or surprising placement of examples (for instance, a simple
example appearing after a number of complex examples of

486 Knowledge-Based Systems

Examples of floating point numbers are:

0
0.

a floatrng pornt zero In decrmal format
not a floatrng pornt number, but an integer

-11.2

+ 5.752

6El

; a negative floatrng point number
; a positive floating point number in exponentral format
; a positwe floatrng pornt number In exponential format

6) not a floattng pornt number, but an Integer
El ; not a floating point number, but an exponent

- 72S23 , a negative floating point number tn short format
+3OF2 , a positive floatrng point number In single format

+ 3.285F2 , a oositrve floattng pornt number rn srngle format

Figure 6: Errors in prompts can indicate KB problems. Figure 7: Bad sequencing can also indicate KB problems.

Examples of floating pornt numbers are

.o I a floating point zero in decimal format
0. ; not a floating point number, but an Integer

-11.2 ; a negative floating point number
+ 5.752 ; a posrtwe floatrng point number

6El ; a posrtrve floating potnt number In exponentral format
; not a floating point number, but an integer
; not a floating point number, but an exponent

- 72.S23
+3OF2

+ 3.265F2

; a negative floating point number in short format
; a positive floating point number in srngle format
; a positive floating point number in single format

the same concept have been presented). In such cases, even
though all the examples presented may be valid, the complex-
ity assignment to each example is computed incorrectly be-
cause of the problems in the KB specifications. For instance,
consider what happens if the bracketing of the transitive-
closure term is done differently, as in the two rules:

floating-point-number ::=
[sign] (digit}+ [d ecimal-point (digit}”] exponent (1)

jloating-point-number ::=
[sign] {digit}+ [d ecimal-point] (digit}* exponerlt (2)

The complexity assignment for each example is based on the
number of productions involved in generating it. Thus, if rule
(1) is used instead of rule (2), the examples would be pre-
sented in the order shown in Fig. 7. Because +30F2 seems to
be less complex than -72.S23, the user may highlight +30F2
and indicate that it is not in the expected sequence. Since the
examples are valid and are otherwise sequenced correctly,
the system can infer from the discourse plan that the differ-
ence between the specification and the expected sequence of
examples must be caused by the bracketing of the [decimal-
point] {digit} *component. The system can generate further
examples to verify this hypothesis with the domain expert.

This illustrates how the sequencing of the examples may
help detect a problem even when all of the examples and their
associated prompts are valid. This is an area for future work.
We must examine other domains to determine whether the KB
inconsistencies that are identified via incorrect presentation
sequences would typically also be manifest by either incorrect
examples or incorrect prompts.

In cases where the expert selects more than one example as
being faulty, the system examines the productions that were
used in generating the faulty examples. If the productions
have no terms in common, reasoning about each example is
done independently, since the problems were probably due
to entirely different reasons. Otherwise, the system engages
in a clarification sub-dialogue for each common term.

The System: Implementation and Evaluation
The current system has been implemented using an NL gener-
ation system that reasons about and generates examples (Mit-
tal & Paris 1993); Loom was used as the underlying knowl-

edge representation system to implement the classification
capabilities needed to determine the critical and variable fea-
tures. The code for reasoning about possible inconsistencies
was based on an assumption based truth maintenance sys-
tem by Forbus and deKleer (1993). Finally, the user interface
was implemented using the Common Lisp Interface Manager
(CLIM). The system has thus far been used on BNF repre-
sentations of various domains. However, as noted previously,
the BNF notation is flexible enough to represent a large va-
riety of domains ranging from mechanical design to protein
structure.

We have not yet had an opportunity to empirically evaluate
the system. In an informal study with 16 subjects, we focused
on being able to find and pinpoint errors in KB specifications.
We found that in almost all cases, all the users were able to
detect incorrect examples such as the ones shown here (e.g.,
the floating point zero), while only 2 of the users were able
to find the corresponding errors by scrutinizing the (abstract)
BNF definitions for 5 minutes. Similar results were found
for cases where the examples were accompanied by incorrect
prompts.

Our test users had a much more difficult time detecting KB
problems that manifested themselves as sequencing problems
in the presentation of examples. This may be due to: (1)
finding problems in a small region (just the example, or the
example and the accompanying prompt) is much easier than
finding problems across a larger region (finding problems in
a sequence requires understanding the implications of all the
examples in the sequence); (2) naturally occurring explana-
tions are not always written in order of increasing difficulty
because of other pragmatic factors (for instance, descriptions
are often constrained by convention, they may be task based,
etc.). Users are therefore apt to overlook this source of errors
unless specifically trained to do so. In the example shown
in the paper, 10 of the 16 users did not find the problematic
example in Fig. 7.

These observations, while preliminary, suggest that such
an interface can be very helpful in finding certain types of
KB errors. It is clear that a more extensive and controlled
evaluation is necessary before the actual value of such an
interface can be determined. We hope to be able to conduct
such an evaluation in the future, when we extend and evaluate

Knowledge-Based Systems 487

the system with a set of much larger KBs in various domains
that have been developed as part of other projects. Note that
this approach to specification debugging is most effective in
complex domains, where the specifications are abstract and
concept specifications are highly interrelated. Domains that
are characterized by a collection of simpler rules, such as
“Ships cannot berth in ports less than X feet deep” may not
benefit as much from this approach. For these domains, a
purely textual description of the underlying KB structures, as
in the EXPECT project (Gil 1994) may be equally effective.

The methods used in this paper can be easily extended to
other domains. By using the BNF notation for representing
the specifications, it is clear that, at the very least, domains
that can be represented using BNF-like notation can be used
with this framework. This approach scales well if the domain
is represented using hierarchical relationships since the sys-
tem can generate text and examples focused at higher, more
abstract levels; thus any sub-concepts below this level are
assumed correct unless indicated otherwise.

Conclusions

The verification of the accuracy of domain representation in
large KBs is a difficult problem. A visual inspection of com-
plex terms, abstract definitions and their inter-relationships
may miss some of the more intricate boundary problems in
the representation. This paper has presented one approach
to alleviating this problem. The scenarios presented in the
paper illustrate how small mistakes in the abstract specifi-
cation can be difficult to see, but can be detected by using
suitable examples. Based on the discourse plan underlying
the presentation, the system attempts to localize the problem
in the specification.

An important advantage of this approach, as compared to
previous work on example based debugging (Shapiro 1983;
Mitchell, Utgoff, & Banerji 1983) is the use of the goal struc-
ture in the discourse plan to localize the possible problems
in the KB. Just indicating whether an example is correct or
incorrect does not give as much leverage as being able to state
that a specific example in a series of othec coordinated, cor-
rect examples is wrong. Another advantage of this approach
is that it allows the system to address the issue of examples
that only look correct (syntactically correct examples gen-
erated from a faulty specification for the wrong reasons-the
reasons being indicated by prompts). Finally, the point-and-
click interface does not require the domain expert to be an
expert in the knowledge representation language.

The work described in this paper has focused on the use of
examples in describing concepts, rather than relations or pro-
cesses. The acquisition and representation of knowledge for
these two categories using examples is much more complex
and an area for future work.

References

Ashley, K., and Aleven, V. 1992. Generating dialectical
examples automatically. In Proceedings of AAAI-92, 654-
660. San Jose, CA.: AAAI.

Carnine, D. W., and Becker, W. C. 1982. Theory of In-
struction: Generalisation Issues. Educational Psychology
2(3-4):249-262.
Elhadad, M., and Robin, J. 1992. Controlling content
realization with functional unification grammars. In Proc.
6th Int. Wkshp on NLG. Springer Verlag.
Forbus, K. D., and de Kleer, J. 1993. Building problem
solvers. Cambridge, MA: MIT Press.
George, D. G.; Mewes, H. W.; and Kihara, H. 1987. A
standardized format for sequence data exchange. Protein
Sequence and Data Analysis 1(1):27-39.
Gil, Y. 1994. Knowledge refinement in a reflective archi-
tecture. In Proceedings of AAAI-94,520-526, Seattle, WA:
AAAI Press.
MacGregor, R. M. 1994. A description classifier for the
predicate calculus. In Proceedings of AAAI-94, 2 13-220,
Seattle, WA: AAAI Press.
Mitchell, T. M.; Utgoff, P. E.; and Banerji, R. 1983. Learn-
ing by Experimentation: Acquiring and Refining Problem-
Solving Heuristics. In Machine Learning: An AI Approach.
CA: Tioga Publishing Co.
Mittal, V. O., and Paris, C. L. 1993. Automatic Doc-
umentation Generation: The Interaction between Text and
Examples. In Proceedings of IJCAI-93,1158-1163. France.
Mittal, V. O., and Paris, C. L. 1994. Generating Examples
For Use in Tutorial Explanations. In Proceedings of ECAI-
94,530-534. Amsterdam: John Wiley and Sons.
Mohd-Hashim, F.; Juster, N. P.; and de Pennington, A.
1994. A functional approach to redesign. Engineering with
Computers lO(3): 125-139.
Moore, J. D., and Paris, C. L. 1993. Planning Text for
Advisory Dialogues: Capturing Intentional and Rhetorical
Information. Computational Linguistics 19(4):65 l-694.
Musen, M. A.; Fagan, L. M.; Combs, D. M.; and Shortliffe,
E. H. 1988. Use of a Domain Model to Drive an Interac-
tive Knowledge Editing Tool. Int. Journal of Man-Machine
Studies 26: 105-l 2 1.
Pirolli, P. 199 1. Effects of Examples and Their Explanations
in a Lesson on Recursion: A Production System Analysis.
Cognition and Instruction 8(3):207-259.
Reder, L. M.; Charney, D. H.; and Morgan, K. I. 1986. The
Role of Elaborations in learning a skill from an Instructional
Text. Memory and Cognition 14(1):64-78.
Reisner, P. 198 1. Formal grammar and human factors design
of an interactive graphics system. IEEE Transactions on
Software Engineering SE-7(2):229-240.
Shapiro, E. Y. 1983. Algorithmic Program Debugging.
Cambridge, MA: The MIT Press.
Steele Jr., G. L. 1984. Common Lisp: The Language. Digital
Press.
Swartout, W. R. 1983. The GIST Behavior Explainer. In
Proceedings of AAAI-83. Washington, D.C.: AAAI.
Woods, W. A., and Schmolze, J. G. 1992. The KL-ONE fam-
ily. Computers and Math with Applications 23(2-5): 133-
177. (Special issue on Semantic Networks in AI.)

488 Knowledge-Based Systems

