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Abstract 

Verifying the fidelity of domain representation in large knowl- 
edge bases (KBs) is a difficult problem: domain experts are 
typically not experts in knowledge representation languages, 
and as knowledge bases grow more complex, visual inspection 
of the various terms and their abstract definitions, their inter- 
relationships and the limiting, boundary cases becomes much 
harder. This paper presents an approach to help verify and re- 
fine abstract term definitions in knowledge bases. It assumes 
that it is easier for a domain expert to determine the correctness 
of individual concrete examples than it is to verify and correct 
all the ramifications of an abstract, intensional specification. 
To this end, our approach presents the user with an interface in 
which abstract terms in the KB are described using examples 
and natural language generated from the underlying domain 
representation. Problems in the KB are therefore manifested 
as problems in the generated description. The user can then 
highlight specific examples or parts of the explanation that 
seem problematic. The system reasons about the underlying 
domain model by using the discourse plan generated for the 
description. This paper briefly describes the working of the 
system and illustrates three possible types of problem mani- 
festations using an example of a specification of fl oating-point 
numbers in Lisp. 

Introduction 
Knowledge base construction is often an iterative process 
of debugging and refinement. As knowledge bases (KBs) 
increase in size, the problems of detecting incorrect, in- 
consistent or incomplete specifications become increasingly 
difficult, especially for domain experts who may be unfa- 
miliar with the knowledge representation language and its 
intricacies. To alleviate this problem, a number of previ- 
ous efforts have considered approaches that would allow 
domain experts to inspect formal specifications using nat- 
ural language, e.g., (Gil 1994; Swartout 1983). However, 
studies show that people can usually understand and ver- 
ify specific examples more easily and quickly than abstract, 
textual descriptions, e.g., (Reder, Charney, & Morgan 1986; 
Pirolli 1991). Other approaches have considered the use 
of examples alone to aid in debugging, e.g., (Shapiro 1983; 
Mitchell, Utgoff, & Banerji 1983). 

Our work integrates and extends these approaches in an 
interface that allows users to inspect and debug KBs by iden- 
tifying problems in automatically generated examples and 
accompanying natural language descriptions. Using infor- 
mation about the specific examples flagged by the user as 

being problematic, information about the type of the prob- 
lem (also specified by the user), and the discourse plan un- 
derlying the automatically generated presentation, the sys- 
tem attempts to localize the problem in the KB specifica- 
tion. In cases where the system cannot uniquely identify 
the problem with the knowledge base, it generates addi- 
tional descriptions for the expert to verify. This work in- 
tegrates previous research in three areas: (1) knowledge 
acquisition and refinement, e.g., (Gil 1994; Musen et al. 
1988), (2) natural language generation and reasoning about 
discourse plans, e.g., (Moore & Paris 1993), and (3) au- 
tomatic example generation, e.g., (Ashley & Aleven 1992; 
Mittal & Paris 1994). In our analysis, problems in the KB 
specification of a concept manifest themselves as a combina- 
tion of one or more of the following three types of errors in 
system generated explanations: (1) incorrect examples, (2) 
incorrect explanations accompanying the examples, or (3) 
sequencing problems in the examples. 

Examples and the accompanying textual descriptions are 
generated by a hierarchical discourse planner, which pro- 
duces discourse plans recording the goals achieved by and 
the rhetorical relationships among plan components. When 
the user indicates that an example is incorrect (by highlight- 
ing the example), the system uses the discourse plan to gen- 
erate and reason about hypotheses regarding possible errors 
in the KB specifications that could have led to the errors in 
the description generated. Our system differs from previ- 
ous work on example based debugging, e.g., (Shapiro 1983; 
Mitchell, Utgoff, & Banerji 1983), because it uses knowl- 
edge about the discourse plan that generated the examples 
and accompanying text, as well as domain knowledge about 
near-misses, in order to localize possible problems in the KB. 

To illustrate the application and utility of our approach in 
detecting and debugging KB problems, this paper discusses 
three types of errors in descriptions that can indicate prob- 
lems in the underlying KB specification-wrong examples, 
wrong explanations and incorrect example sequencing-and 
how they can help in finding the problem. In order to il- 
lustrate the general problem, rather than focus on system- 
and representation-specific mechanisms, all of the scenarios 
discussed in this paper use a Backus-Naur Form (BNF) rep- 
resentation of the domain. BNF is a generic, domain- and 
task-neutral specification formalism that is capable of rep- 
resenting a wide variety of domains and tasks ranging from 
mechanical device design (Mohd-Hashim, Juster, & de Pen- 
nington 1994) to protein-structure mapping (George, Mewes, 
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& Kihara 1987) and interface requirements (Reisner 198 1). 
To further simplify the discussion, we use the same BNF 
fragment to illustrate the three types of errors that can occur 
in the automatically generated presentation. For this purpose, 
we use the specification of floating point numbers in Lisp, but 
the method discussed in this paper is specific neither to Lisp, 
nor in fact to BNE We have chosen this example here because 
(1) floating point numbers need no introduction, (2) the ab- 
stract specification of floating point numbers is sufficiently 
complex so as to illustrate the utility of examples, and (3) 
translating BNF to other KR languages has been described 
previously (Mittal & Paris 1994). 

Generating Text and Examples 
The system uses a text planner to generate coherent natural 
language descriptions. Given a communicative goal (such 
as (DESCRIBE (CONCEPT LIST))),l thesystem findsop- 
erators capable of achieving this goal. Operators typically 
post further subgoals to be satisfied, and planning continues 
until all goals have been refined to primitive speech acts - 
i.e., those directly realizable in English. The result of the 
planning process is a discourse plan in which the nodes rep- 
resent goals at various levels of abstraction with the root 
being the initial goal, and the leaves representing primitive 
realization statements. This discourse plan is then passed to 
a grammar interface, which converts it into a form suitable 
for input to a natural language generation system, such as 
FUF (Elhadad & Robin 1992), to produce the surface form. 
The system uses a subsumption classifier, such as the one in 
KL-ONE based knowledge representation systems to generate 
the examples (Mittal & Paris 1994). A complete description 
of the generation system is beyond the scope of this paper - 
see Moore and Paris (1993) for a more detailed description 
of plan based natural language generation. 

In order to generate and present examples that are effective 
in localizing problems the system categorizes each feature of 
the concept into one of two classes: 
e critical: features are required for the example to be an 

instance of the concept being illustrated. For instance, 
by definition, a Lisp list must contain both a left- and a 
right-parenthesis (with the exception of NIL). 

* variable: features can vary without causing the modified 
examples to no longer be subsumed by the definition of the 
concept being illustrated. For instance, the number, type 
and order of elements in a list in Lisp. 
Given the variable and critical features of a concept, the 

system can use this information to plan the presentation of 
effective example sequences: minimally different positive- 
negative pairs for critical features, and groups of varying 
positive examples for the variable features. Determining the 
critical and variable features of a concept can be accom- 
plished by using a term classifier as described in Mittal and 
Paris (1994)) such as the ones available in the KL-ONE family 
of KR languages (Woods & Schmolze 1992). 

To find critical and variable features of concepts defined 
using BNF, a straightforward way is to map the BNF defini- 
tions to KL-ONE type definitions and query the classifier. For 

‘The syntactic forms have been simplified for the sake of clarity. 

floating-point-number ::= 
[sign] {digit} * decimal-point {digit}+ [exponent] (la) 

I [sign J {digit} + [decimal-point {digit) *] exponent (I 6) 

sign ::= +I- (2) 

decimal-point ::= . (3) 

digit ::=0111213141516171819 (4) 
exponent ::= exponent-marker [sign] {digit)+ (5) 

exponent-marker :: = elslfldlllEISIFIDI1, (6) 

Figure 1: Grammar fragment from (Steele, 1984: p. 17) 

instance, the BNF specifications2 for floating point numbers 
in Lisp is given in Fig. 1. Our system maps these BNF gram- 
mar specifications into concept descriptions in the language 
Loom (MacGregor 1994);3 This mapping is straightforward: 
non-terminal symbols in the grammar are mapped to con- 
cepts, and terminal symbols are mapped to instances. The 
ordering of the symbols in a production is specified by link- 
ing the respective concepts and instances using a pre-defined 
binary relation that the system understands as specifying the 
order in the BNF. 

In addition to presenting critical and variable features 
effectively-by either pairing contrasting examples or group- 
ing similar examples-the sequence in which the examples 
are presented can also be important in focusing the reader’s 
attention. For instance, presenting simpler features before 
more complex ones is an effective strategy, e.g., (Cat-nine & 
Becker 1982). The presentation sequence is important be- 
cause users often try and understand an example in terms of 
others that they have seen before. In this case, the system 
generates examples in order of increasing complexity. In the 
case of BNF grammars, the measure of complexity is based 
on a combination of the number of productions required to 
generate an expression, and the complexity of each term in 
the expression. 

The next section describes how this framework can be used 
to help domain experts debug and refine KBs by examining 
descriptions generated by the system. 

Using pies in 
To illustrate how examples can help in detecting gaps in the 
KB, consider the grammar fragment shown in Fig. 1 (floating 
point numbers in Lisp). Even though this set of productions is 
one of the simpler ones in the grammar, it is easy to overlook 
some of the implications of the bracketing and the kleene- and 
transitive-closures in the productions. The rules are complex 
enough that a text-only paraphrase of the rules themselves 
may not be enough to spot a mistake in the representation. 
However, an example generated from only the faulty aspect 
can often stand out as a grossly wrong instance of the def- 
inition and can thus focus attention on specific aspects of 

‘Brackets indicate optional components; braces are used for 
grouping things or indicating kleene (+) or transitive (*) closures. 

3Loom is a knowledge representation language that provides 
classification capabilities similar to other KL-ONE languages. How- 
ever, our technique is not specific to Loom. 
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Examples oi 

.O 
0. 

-11.2 

+ 5.752 

6El 
6 

El 
- 7~23 
+3.F2 

+ 3.285D2 

floating point numbers are: 

; a positive floating point number in decimal format 
; not a floating point number, but an integer 
; a negative floating point number in decimal format 
; a positive floating point number in decimal format 
; a positive floating point number in exponential 
; not a floating point number, but an integer 
; not a floating point number, but an exponent 
; a negative floating point number in short format 
; a positive floating point number in single format 
; a positive floating point number in double format 

Figure2: Description for FLOATING-POINT-NUMBER. 

abstract rules in a very effective fashion (Pirolli 1991). 
To generate and present the examples, the system must 

first determine the critical and variable features of the concept 
FLOATING-POINT-NUMBER. Inthiscase, thecriticalfeatures 
are: (i) the presence of a decimal point accompanied by one 
or more digits on the right hand side of the decimal point, 
or (ii) a number accompanied by an exponent. The variable 
features are: (i) the presence or absence of the sign, (ii) the 
value of the sign, (iii) the number of digits in the numbers, 
and (iv) the values of the numbers. The system can now 
utilize this critical/variable categorization to generate sets of 
examples to effectively convey each of these attributes (crit- 
ical attributes by pairs of almost identical positive-negative 
examples; variable attributes by groups of varying positive 
examples). The presentation order of the examples is deter- 
mined by the relative complexity of each example. A typical 
output generated by the system is shown in Fig. 2 (fragments 
of the discourse plan underlying the presentation of the criti- 
cal features are shown in Fig. 3). 

Now suppose that the specification of the concept 
floating-point-number is incorrect. The problems in 
the specification can manifest themselves in the resulting ex- 
planation that is generated in one of three ways: the examples 
generated by the system are incorrect, the explanations ac- 
companying the examples are incorrect, or the examples are 
ordered in an inconsistent manner. (These can be marked by 
the domain expert as such by selecting the appropriate ex- 
amples/prompts and using the ‘buttons’ at the bottom of the 
screen.) In each of these cases, the system reasons about the 
underlying discourse plan used to generate the explanation in 
order to localize the potential cause of the problem. 
Case 1. A wrong example is generated: There are two pos- 
sible ways in which problems in the KB manifest themselves 
as incorrect examples in the resulting explanation: 
Case 1.1. A simple wrong example: If the faulty example 
differs from its adjacent (correct) examples in only a single 
feature, the system can use this information in conjunction 
with the discourse plan to debug the KB specification. Con- 
sider, again, the specification of floating-point numbers in 
Lisp shown in Fig. 1. The correct and one possible mistaken 
specification for rule (la) are shown below: 

floating-point-number ::= 

.I.. .1. 
EXAMPLE EXAMPLE 
(crItIcal feature11 (cntcal feature?) 

Figure 3: Fragments of the discourse plan for the two critical 
features. 

[sign] {digit}* decimal-point {digit}+ [exponent] J 
floating-point-number ::= 

[sign] {digit}* d ecimal-point (digit}” [exponent] x 
The resulting output generated by the system for the incor- 
rect case is shown in Fig. 4. The first and the third examples 
presented in the explanation are incorrect. It is clearly easier 
to spot the mistake in the individual examples than in the 
abstract specification. 

Using our interface, the user can highlight these two items 
and indicate them as being incorrect examples of a floating 
point number. Based on this information, the system reasons 
as follows. First, it uses the discourse plan to determine which 
other examples in the presentation are most closely related 
to the items that were marked incorrect. The discourse plan 
indicates not only which examples are related, but how they 
are related, e.g., whether they are contrastive examples for a 
critical feature, similar examples for a variable feature, etc. 
In this case, the system determines that the first example was 
generated to illustrate the following variable features: the 
sign of the number, the number of digits on the left of the 
decimal point, the number of digits on the right of the decimal 
point, and the exponent. The second example was intended 
to highlight the variable nature of the digits on the left of 
the decimal point, and since that example was not marked 
wrong, the variable nature of the digits on the left of the 
decimal point is correct. The third example was supposed to 
illustrate the variable nature of the digits on the right of the 
decimal point, and that example was marked wrong. Since 
the other examples were not marked wrong, the system can, 
on the basis of the two wrong examples and the other correct 
examples, suggest a revision to the incorrect version of rule 
(la). This revision regarding the optionality of digits on 
the right of the decimal point results in the transitive closure 
being modified to a kleene closure as follows: 

floating-point-number ::= 
[sign] {digit}” d ecimal-point (digit) + [exponent] 

Case 1.2. A complex wrong example: in some cases, a 
component term used in the example (with its own critical 
and variable features) can be incorrect, making the larger ex- 
ample wrong. When an example containing such complex 
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Examples of floating point numbers are: 

I . : a posarve Aoatrng pornt number tn decimal format I 
.O ; a positive floating point zero in decimal format 

1 0. ; a positive floatrng point number in decimal format I 
- . 2 ; a negative floating point number in decimal format 

+ 5.752 

6El 
6 

El 
- 7s23 
+3.F2 

+ 3.285D2 

; a positive floating-point number in decimal format 
: a positive floating point number in exponential format 
; not a floating point number, but an integer 
; not a floating point number, but an exponent 
: a negative floating point number in short format 
; a positive floating point number in single format 
; a positive floating point number in double format 

Figure 4: A simple case of incorrect examples. 

component terms is marked incorrect, the system can gener- 
ate additional, simpler examples about the suspect component 
in order to localize the KB problem. Consider, for instance, 
the case in Fig. 5. The fifth example in the sequence, which is 
also the first example where the exponent notation is used, is 
marked as incorrect by the user. The discourse plan indicates 
that the example in question was generated to illustrate the 
use of the exponent notation in rule (1 b). The system ex- 
amines the portion of the discourse plan regarding examples 
generated from rule (lb). Since one of the differences be- 
tween the wrong example and its immediate neighbor is the 
exponent (the [decimal-point {digit} *] portion of the rule 
was not used in either of the two), the system can infer that 
the problem is in the specification of the exponent. 

There are two other examples in the same explanation that 
also have exponents in them (the last two examples). These, 
however, use a different exponent markers (“F" and “D"). 
Thus, it is only possible to infer that either the wrong marker 
was used, i.e., "E" is not allowed, or some other piece of in- 
formation is missing. To verify the first possibility, that “E" is 
an invalid exponent marker, the system generates another set 
of examples for floating point numbers that use the exponent 
marker “E” (shown in the lower half of Fig. 5). In this case, 
the first example of an exponent is wrong. The system can 
now use the discourse structure used in generating the exam- 
ples for the exponent to identify the problem. In this case, the 
difference between the first two examples of the exponent is 
that the second example has a positive number following the 
exponent marker whereas the first example does not. Thus, 
one possibility is that a positive number is necessary in these 
cases. The third example, which has a negative number af- 
ter the exponent marker, allows the system to generalize the 
previous hypothesis (of needing a positive number following 
the exponent) to the hypothesis that any number, positive or 
negative, is needed. Since the production specified that the 
sign is optional, the only part of the production that could 
be wrong is about the optionality of the number. Thus, the 
system can suggest that the specification of the exponent be 
modified to make both the number and the exponent marker 
be required in all cases: 

exponent ::= exponent-marker [sign] {digit}* X 

Examples of floating point numbers are: 

Figure 5: A complex incorrect example can result in the 
generation of further examples. 

exponent ::= exponent-marker [sign] {digit}+ l/ 
Case 2. A wrong prompt: Mistakes in the domain model 
can also result in the generation of incorrect textual prompts. 
Prompts can indicate errors in at least two cases: (i) the 
system presents a valid, positive example as being a neg- 
ative, invalid example (or vice-versa), and (ii) the system 
presents a valid example (either positive or negative), but the 
accompanying prompt (or explanation) is either irrelevant or 
inconsistent with the point being illustrated. 

The first possibility can be handled in the same way as 
in Case 1 above. However, the second possibility, where an 
invalid prompt is generated for a correct example, is often 
due to missing information, and must also be dealt with. For 
instance, consider the case where the system generates an 
example of a floating point number such as the one shown 
in Fig. 6. If the specification of the production rule for the 
exponent, (rule 5) is faulty as given below: 

exponent :: = [exponent-marker] [sign] {digit}+ X 

the system would generate the example using the second pro- 
duction rule for floating point numbers - the part “5.7” from 
rule ( 1 b), and the digits “5” and “2” from the faulty rule given 
above for the exponent. Also based on the faulty rule, the 
system would assume that the exponent-marker and the 
sign were optional and therefore not to be included initially. 
The resulting example generated is a valid floating point num- 
ber “5 .752”, but the accompanying textual prompt indicates 
that a mistake was made in the specification. Selecting the 
prompt causes the system to generate additional examples 
for the same discourse goal that caused the generation of the 
example with the faulty prompt in the first place. Exercising 
the different options of the production rule for the exponent, 
the system can infer that exponent-marker is not a variable 
feature, but a critical one (i.e., its presence is mandatory in 
the case of an exponent), and thus can propose the corrected 
rule: 

exponent ::= exponent-marker [sign] {digit}+ J 
Case 3. A wrong presentation sequence: Finally, a third 
possible manifestation of KB problems can be seen in strange 
or surprising placement of examples (for instance, a simple 
example appearing after a number of complex examples of 
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Examples of floating point numbers are: 

0 
0. 

a floatrng pornt zero In decrmal format 
not a floatrng pornt number, but an integer 

-11.2 

+ 5.752 

6El 

; a negative floatrng point number 
; a positive floating point number in exponentral format 
; a positwe floatrng pornt number In exponential format 

6 ) not a floattng pornt number, but an Integer 
El ; not a floating point number, but an exponent 

- 72S23 , a negative floating point number tn short format 
+3OF2 , a positive floatrng point number In single format 

+ 3.285F2 , a oositrve floattng pornt number rn srngle format 

Figure 6: Errors in prompts can indicate KB problems. Figure 7: Bad sequencing can also indicate KB problems. 

Examples of floating pornt numbers are 

.o I a floating point zero in decimal format 
0. ; not a floating point number, but an Integer 

-11.2 ; a negative floating point number 
+ 5.752 ; a posrtwe floatrng point number 

6El ; a posrtrve floating potnt number In exponentral format 
; not a floating point number, but an integer 
; not a floating point number, but an exponent 

- 72.S23 
+3OF2 

+ 3.265F2 

; a negative floating point number in short format 
; a positive floating point number in srngle format 
; a positive floating point number in single format 

the same concept have been presented). In such cases, even 
though all the examples presented may be valid, the complex- 
ity assignment to each example is computed incorrectly be- 
cause of the problems in the KB specifications. For instance, 
consider what happens if the bracketing of the transitive- 
closure term is done differently, as in the two rules: 

floating-point-number ::= 
[sign] (digit}+ [d ecimal-point (digit}” ] exponent (1) 

jloating-point-number ::= 
[sign] {digit}+ [d ecimal-point] (digit}* exponerlt (2) 

The complexity assignment for each example is based on the 
number of productions involved in generating it. Thus, if rule 
(1) is used instead of rule (2), the examples would be pre- 
sented in the order shown in Fig. 7. Because +30F2 seems to 
be less complex than -72.S23, the user may highlight +30F2 
and indicate that it is not in the expected sequence. Since the 
examples are valid and are otherwise sequenced correctly, 
the system can infer from the discourse plan that the differ- 
ence between the specification and the expected sequence of 
examples must be caused by the bracketing of the [decimal- 
point] {digit} *component. The system can generate further 
examples to verify this hypothesis with the domain expert. 

This illustrates how the sequencing of the examples may 
help detect a problem even when all of the examples and their 
associated prompts are valid. This is an area for future work. 
We must examine other domains to determine whether the KB 
inconsistencies that are identified via incorrect presentation 
sequences would typically also be manifest by either incorrect 
examples or incorrect prompts. 

In cases where the expert selects more than one example as 
being faulty, the system examines the productions that were 
used in generating the faulty examples. If the productions 
have no terms in common, reasoning about each example is 
done independently, since the problems were probably due 
to entirely different reasons. Otherwise, the system engages 
in a clarification sub-dialogue for each common term. 

The System: Implementation and Evaluation 
The current system has been implemented using an NL gener- 
ation system that reasons about and generates examples (Mit- 
tal & Paris 1993); Loom was used as the underlying knowl- 

edge representation system to implement the classification 
capabilities needed to determine the critical and variable fea- 
tures. The code for reasoning about possible inconsistencies 
was based on an assumption based truth maintenance sys- 
tem by Forbus and deKleer (1993). Finally, the user interface 
was implemented using the Common Lisp Interface Manager 
(CLIM). The system has thus far been used on BNF repre- 
sentations of various domains. However, as noted previously, 
the BNF notation is flexible enough to represent a large va- 
riety of domains ranging from mechanical design to protein 
structure. 

We have not yet had an opportunity to empirically evaluate 
the system. In an informal study with 16 subjects, we focused 
on being able to find and pinpoint errors in KB specifications. 
We found that in almost all cases, all the users were able to 
detect incorrect examples such as the ones shown here (e.g., 
the floating point zero), while only 2 of the users were able 
to find the corresponding errors by scrutinizing the (abstract) 
BNF definitions for 5 minutes. Similar results were found 
for cases where the examples were accompanied by incorrect 
prompts. 

Our test users had a much more difficult time detecting KB 
problems that manifested themselves as sequencing problems 
in the presentation of examples. This may be due to: (1) 
finding problems in a small region (just the example, or the 
example and the accompanying prompt) is much easier than 
finding problems across a larger region (finding problems in 
a sequence requires understanding the implications of all the 
examples in the sequence); (2) naturally occurring explana- 
tions are not always written in order of increasing difficulty 
because of other pragmatic factors (for instance, descriptions 
are often constrained by convention, they may be task based, 
etc.). Users are therefore apt to overlook this source of errors 
unless specifically trained to do so. In the example shown 
in the paper, 10 of the 16 users did not find the problematic 
example in Fig. 7. 

These observations, while preliminary, suggest that such 
an interface can be very helpful in finding certain types of 
KB errors. It is clear that a more extensive and controlled 
evaluation is necessary before the actual value of such an 
interface can be determined. We hope to be able to conduct 
such an evaluation in the future, when we extend and evaluate 

Knowledge-Based Systems 487 



the system with a set of much larger KBs in various domains 
that have been developed as part of other projects. Note that 
this approach to specification debugging is most effective in 
complex domains, where the specifications are abstract and 
concept specifications are highly interrelated. Domains that 
are characterized by a collection of simpler rules, such as 
“Ships cannot berth in ports less than X feet deep” may not 
benefit as much from this approach. For these domains, a 
purely textual description of the underlying KB structures, as 
in the EXPECT project (Gil 1994) may be equally effective. 

The methods used in this paper can be easily extended to 
other domains. By using the BNF notation for representing 
the specifications, it is clear that, at the very least, domains 
that can be represented using BNF-like notation can be used 
with this framework. This approach scales well if the domain 
is represented using hierarchical relationships since the sys- 
tem can generate text and examples focused at higher, more 
abstract levels; thus any sub-concepts below this level are 
assumed correct unless indicated otherwise. 

Conclusions 

The verification of the accuracy of domain representation in 
large KBs is a difficult problem. A visual inspection of com- 
plex terms, abstract definitions and their inter-relationships 
may miss some of the more intricate boundary problems in 
the representation. This paper has presented one approach 
to alleviating this problem. The scenarios presented in the 
paper illustrate how small mistakes in the abstract specifi- 
cation can be difficult to see, but can be detected by using 
suitable examples. Based on the discourse plan underlying 
the presentation, the system attempts to localize the problem 
in the specification. 

An important advantage of this approach, as compared to 
previous work on example based debugging (Shapiro 1983; 
Mitchell, Utgoff, & Banerji 1983) is the use of the goal struc- 
ture in the discourse plan to localize the possible problems 
in the KB. Just indicating whether an example is correct or 
incorrect does not give as much leverage as being able to state 
that a specific example in a series of othec coordinated, cor- 
rect examples is wrong. Another advantage of this approach 
is that it allows the system to address the issue of examples 
that only look correct (syntactically correct examples gen- 
erated from a faulty specification for the wrong reasons-the 
reasons being indicated by prompts). Finally, the point-and- 
click interface does not require the domain expert to be an 
expert in the knowledge representation language. 

The work described in this paper has focused on the use of 
examples in describing concepts, rather than relations or pro- 
cesses. The acquisition and representation of knowledge for 
these two categories using examples is much more complex 
and an area for future work. 
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