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Abstract 

Object-oriented programming has recently emerged as 
one of the most important programming paradigms. 
While object-oriented programming clearly owes an 
intellectual debt to AI, it appears to be displacing 
some AI techniques, such as rule-based programming, 
from the marketplace. This need not be so as path- 
based rules-forward-chaining production rules that 
are restricted to follow pointers between objects-fit 
into the object-oriented paradigm in a clean and ele- 
gant way. The combination of path-based rules and 
object-oriented programming should be useful in AI 
applications, and in the more general problem of trans- 
ferring AI techniques to the larger computer science 
community. 

To this day, forward-chaining production rules re- 
main largely unused in mainstream object-oriented ap- 
plications. One reason for this lack of use is, of course, 
that many production rule systems (such as most ver- 
sions of OPS (Cooper & Wogrin 1988), etc.) are writ- 
ten in LISP, and not in a major object-oriented lan- 
guage. 

However even in the new rule systems that claim 
integration with an object-oriented language, the inte- 
gration is not adequate. Many of these rule systems 
(such as ART-IM (Inf 1987)) operate on their own 
data (working memory elements), not the objects of 
their base language. Applications thus need to move 
information between the working memory and object 
storage. Other systems (such as CERS (Miranker et 
al. 1993)) require special calls to bring objects of 
the language to the attention of the rule system. Al- 
though this means that information does not need to be 
moved, it does require facilities outside of the object- 
oriented paradigm to control rules. 

The rules of object-oriented, production-rule sys- 
tems (including the above systems, as well as ILOG 
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rules (Albert 1994) and Rete++ (Hal 1993)) exist out- 
side the object system, and thus are not organized in 
the same way as classes and objects. Further, even 
when the production rules directly operate on objects 
they still do not act like the rest of the system. In 
particular, production rules in all the above systems 
can form joins between unrelated objects, thus violat- 
ing the locality assumptions implicit in object-oriented 
programming. 

However, rules have many uses within the object- 
oriented paradigm. Rules can be used to enforce in- 
variants, check constraints, react to events and states, 
update dependent objects, and even remove dangling 
pointers. Therefore, it would be useful to add rules to 
an object-oriented programming language in a man- 
ner that merges the rules naturally into the rest of the 
language. 

For this effort to be a success, it must be easy for 
programmers who are not experts on rules to use the 
system. We argue that a number of stringent require- 
ments have to be satisfied for production rules to be 
widely accepted outside of AI: 

A seamless integration of rules, objects, and proce- 
dural code is needed, not just an add-on of rules to 
an object-oriented programming language. 

The base language has to be a commonly-used 
object-oriented programming language. This is crit- 
ical even if the programming language is less than 
ideal for the purpose, since the goal of the effort is 
to bring AI technology to mainstream programmers. 

The addition of rules has to be a “small” addition, 
in that it must require little in the way of education 
for effective use. This dictates that there be little 
new syntax required in the rules, that the rule con- 
cepts fit well with the object-oriented programming 
language, and that the rules are subservient to the 
object-oriented paradigm. 

Nevertheless, the addition of rules has to be a “big” 
addition, in that it provides useful new functionality. 

The driving philosophy behind the addition must be 
to take AI technology and change it as necessary to fit 
into the mainstream programming community. 
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We have augmented a common object-oriented pro- 
gramming language with rules in a way that answers 
the objections and satisfies the requirements above. 
We have chosen the most-common object-oriented pro- 
gramming language, C++ (Stroustrup 1991)l, as the 
base language for our additions. Our rules work di- 
rectly on C++ objects. The rules are organized into 
the class hierarchy, with a syntax and semantics very 
similar to C++ member functions. They cannot form 
arbitrary joins, being restricted to following the point- 
ers in C++ objects, giving them no more access capa- 
bilities than member functions.2 Therefore, the rules 
form a “small” addition to C++. They are data-driven 
not heuristic, i.e., they are always active and have no 
certainty factors. The rules can perform all the activ- 
ities mentioned above, and can provide “big” benefits. 

We have called our rule system R++, a deliberate 
attempt to call attention to its close relationship with 
c++. 

Rules in an Object-Oriented Language 

Path-Based Rules 
The most significant conceptual difference between 
OPS-style rules and R++ rules is that R++ rules are 
path-based. Path-based rules do not permit the for- 
mation of arbitrary joins between unrelated objects. 
Instead, the conditions of path-based rules must start 
with some root object and can reach other objects only 
by following paths of pointers (access paths). Such 
path-based rules are not new, having appeared explic- 
itly as “access-limited rules” in the Algernon imple- 
mentation of access-limited logic (Crawford & Kuipers 
1991; Crawford 1990)). 

Aside from this limitation on their conditions, path- 
based rules are similar in concept to OPS-style rules, 
having a condition and an action. The conditions of 
path-based rules are evaluated in response to certain 
activities in the rest of the system. If the condition is 
satisfied, then the action of the rule is executed (for 
details on this see section ). The action of a path- 
based rule has access to the object bindings from its 
condition, just as an OPS-style rule has. 

Because of the restriction that it must follow access 
paths, a path-based rule would not be able to perform 
an action for every pair of persons such that the first 
person is older than the second. A path-based rule, 
however, could perform actions on pairs of persons 
such that the second is a child of the first, provided 
that the “child” relationship was provided in person 
objects. Thus a path-based rule could be used to en- 

‘There is no technical reason why the ideas in R++ could 
not be added to a different object-oriented language, such 
as Smalltalk, Objective-C, or even Java. We just chose the 
most-used object-oriented language. 

21t is possible to simulate joins in R++ by adding in 
explicit links, but this is only feasible in limited cases. 

force invariants such as every child must be younger 
than its parents. 

The access limitation of path-based rules is not a 
hindrance in an object-oriented programming language 
because object-oriented design makes important rela- 
tionships explicit as inter-object pointers. In fact, this 
“limitation” is seen as an advantage because path- 
based rules respect the locality implicit in the rela- 
tions in a domain model and cannot violate this lo- 
cality as OPS-style rules can. In addition, path-based 
rules admit a relatively simple and efficient implemen- 
tation compared to the general pattern-matching in- 
ference engines of OPS-style languages. 

Rules as Class Members 
The natural way to make the rules fit into the existing 
constructs of object-oriented languages is to associate 
rules with classes, just as data and functions are as- 
sociated with classes, and have the rules work directly 
on the objects that are instances of the class. In effect 
we view rules as “member rules” of classes. To further 
this resemblance, rules are given class-specific names, 
as are the data and functions associated with the class. 

The association of rules with classes provides a type 
for the root object of a rule, namely that class with 
which the rule is associated. Further, the association 
provides a specification for when objects are brought 
to the attention of rules, namely that the creation of an 
instance of a class brings the object to the attention of 
the member rules of the class. The only way to remove 
an object from consideration by the rules of its classes 
is to destroy it. Therefore a rule associated with a class 
is active on all objects that belong to the class. 

Because rules are members of a class, they can ac- 
cess the private members of the class, just as member 
functions can. Further, a rule cannot access the private 
members of another class unless it has been declared a 
friend of that class, just as for member functions. 

Rules can be overridden in sub-classes, just as mem- 
ber functions can. A sub-class can have a rule with the 
same name as a rule in a super-class. Such a rule will 
override the rule in the super-class for instances of the 
sub-class. 

Rule Control 
Because rules work directly on all instances of a class, 
there is no need for a separate working memory nor 
even a mechanism to keep track of which objects are ac- 
tive in the rule system. The object-oriented paradigm 
provides all the control required, obviating any need 
for control of rules via explicit activation or deactiva- 
tion of rules or via grouping of rules. 

The conditions of rules monitor data in various ob- 
jects. Changes to this data may cause the condition of 
the rule to be satisfied, or satisfied in a different man- 
ner than before. Therefore, the conditions of rules are 
re-evaluated whenever the data they inspect changes 
or when a new object of of the appropriate type is 
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<rule declaration> ::= rule <identifier> ; 

<rule definition> ..- ..- rule <class name> : : <identifier> { 
<condition> => <action> 

<action> ::= <statement>+ 

<condition> ::= <binding> I 
<boolean expression> I 
<binding> && <condition> I 
<boolean expression> && <condition> 

<binding> ::= 
<class name> * <identifier> = <expression> I 
<class name> * <identifier> Q <field> I 
<class name> * <identifier> Q <variable>-><field> 

Figure 1: Simplified R++ Rule Syntax 

constructed. We call these changes relevant changes3 
There is no need for any other mechanism for caus- 
ing the conditions of rules to be evaluated-changes to 
object data is the only mechanism required or allowed. 

The requirement that rules fit into the object- 
oriented language paradigm suggests that rules not 
have priorities, so we have not provided priorities for 
rules, other than the simply requiring that rules de- 
fined in a sub-class are considered before rules from 
super-classes are. (Of course, super-class rules that are 
overridden in the sub-class are not run on instances of 
the sub-class at all.) This priority scheme fits into the 
object-oriented paradigm. This was a deliberate choice 
that has benefits, less to worry about and faster rules, 
as well as drawbacks, less control over the rules. 

Because there is no complex priority scheme there 
is no rule agenda that collects all rule activations that 
are waiting to run. 4 Rule activations are simply run in 
a depth-first fashion, as soon after they are discovered 
as possible. That is, a change to monitored data causes 
the rule activations for that data to start running; a 
later change to other monitored data causes the rule 
activations for the new change to start running; rule 
activations for the old change that have not yet been 
run are deferred until the rule activations for the new 
change are all finished running. 

Rule Syntax and Semantics 
To make R++ rules fit easily in C++, and to make 

them as easy for C++ programmers to learn, R++ rules 
look and act as much like the rest of C++ as possi- 
ble. Externally, R++ rules are declared and defined in 

3The use of functions in the condition of rules is a prob- 
lem for R++ as it cannot, in general, analyze the data used 
inside a function. Relevant change is defined as change to 
the data mentioned directly in the condition of a rule, in- 
cluding argument to functions, but not including change to 
data used in functions called in the rule condition. 

4A rule activ ation is a rule plus a set of bindings of the 
variables in the antecedent of the rule to objects. 

a manner similar to C++ class members, as indicated 
above, and as shown in the simplified rule syntax given 
in Figure 1. 

The condition (left-hand side) of an R++ rule is a 
sequence of C++ boolean expressions interspersed with 
variable bindings. The boolean expressions, and the 
expressions in the bindings can, of course, use the vari- 
ables bound earlier, just as in C++. 

The bindings in a condition look very much like C++ 
variable definitions. The first kind of binding, for ex- 
ample “Person * mate = spouse”, looks just like a C++ 
variable definition, and simply sets a variable to the 
value of an expression, succeeding if that value is non- 
null. The example binding declares a variable of type 
Person and sets it to the value of this->spouse, suc- 
ceeding only if the value is non-null. The other kinds 
of bindings, for example “Person * child @ children”, 
are similar to C++ variable definitions but use ‘VP in- 
stead of “=“. These are branch bindings, where the 
“(0” should be read as “at” or “in”, and they bind a 
variable to elements of a set of values. The example 
branch binding says to iterate over all values in the 
children data member, which is declared to be a set of 
pointers to persons, succeeding for each element of the 
set. 

A condition is evaluated in the obvious way. It 
succeeds for those successful bindings that make the 
boolean expressions evaluate to “true”. 

The action (right-hand side) of an R++ rule is just 
a sequence of C++ statements. In the action of a rule, 
the variables bound in its condition can be used as 
expected. 

Rule Execution 
As indicated above, there are three parts to rule exe- 
cution: 

1. triggering of rules by relevant change, 

2. subsequent evaluation of the rule condition, possi- 
bly delayed if other rules have been triggered by the 
same change, and 

3. execution of the rule action if the rule condition was 
satisfied. 

The conditions of R++ rules are evaluated only in 
response to relevant change (including relevant con- 
struction). However, the portion of the condition that 
is evaluated in response to a relevant change is unspeci- 
fied, as is the order of evaluation. Thus rule conditions 
are normally side-effect free. 

The actions of R++ rules are executed only when 
their conditions successfully evaluate to true, and only 
on the data that caused the condition to evaluate to 
true. As a change to a data member can cause more 
than one rule condition to evaluate to true, the action 
of a rule may be delayed from the time of the change 
that caused its condition to evaluate to true. If the 
data that caused the condition to evaluate to true is 
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class Person { 
int age; 

class Rectangle { 
int height, width, area; 

int salary; . . . 
Country * residency; rule update-area; 
Person * spouse; 1; 
Set-of-p<Person> children; 
Set-of-p<Person> dependents; rule Rectangle::update-area { 
. . . height > 0 && width > 0 
rule children-spouse-dependents; => set-area(height * width); 

1; 1 

rule Person::children-spouse-dependents { 
Person * mate = spouse && 
residency == mate->residency && 
Person * child @ children && 
child->age c 18 

=> mate -> insert-dependents(child); 

Figure 2: children-spouse-dependents rule 

changed in the meantime, the rule’s action will not be 
executed. 

R++ ensures that rules do not execute on “old” data 
nor execute more than once on changed data. For ex- 
ample, if a relevant change (or construction) triggers 
two rules in a way that would satisfy both rule condi- 
tions, but the first rule to be evaluated and executed 
changes the original triggering data, thereby retrigger- 
ing the same two rules, the second rule will eventually 
be evaluated on the newest data (and executed only 
if its condition is satisfied). Although the second was 
triggered twice in this scenario, it will be executed at 
most once and only on the newest data. 

The actions of R++ rules are executed whenever pos- 
sible under the above criteria. Thus, no rules are wait- 
ing to run if and only if there is no current collection of 
data that causes a rule’s condition to evaluate to true 
for which the rule’s action has not been run. 

An Example Rule 

To illustrate these points, consider a rule that en- 
sures that a person’s children under the age of 18 are 
dependents of that person’s spouse provided that the 
person and spouse reside in the same country. The 
R++ code for this rule is given in Figure 2. This rule 
would be associated with the class Person, and would 
access two other objects in its condition, both belong- 
ing to Person. The rule would be given a name such 
as “children-spouse-dependents”. In evaluations of the 
condition of the rule, the root object would be a person, 
the second object would be his or her spouse, and the 
third object would be one of his or her children. Note 
that both the second and third objects are reachable 
from the first object (the implicit this object, using C++ 
terminology) using an access path (e.g., this->spouse, 
for the second object). 

Figure 3: update-area rule 

The rule is active on all objects that belong to Per- 
son and responds to all changes that might cause its 
condition to be successfully evaluated. Thus it is one 
of the invariants associated with the class. When- 
ever an instance of Person is created, the rule chil- 
dren-spouse-dependents’s condition will be evaluated 
with the new instance as root object. Whenever a per- 
son’s spouse changes, the residency of a person with a 
spouse or that spouse changes, a person with a spouse 
residing in the same country gains a new child, or the 
age of a child of such a person is changed, the rule’s 
condition will be re-evaluated on precisely all appropri- 
ate collections of objects. In effect, the rule guarantees 
that for all people who reside in the same country as 
their spouse does, that person’s children under the age 
of 18 are dependents of the person’s spouse. 

Note that because the rule’s condition uses the age 
of the child, it will be reevaluated whenever the child’s 
age changes, and the rule’s action will be executed 
when the age value is less than 18, This may result 
in the child being made a dependent of the spouse sev- 
eral times, once for each time the child’s age changes. 
However, since the dependents is a set, such repetitions 
are benign. 

Uses of Rules 
Path-based rules can be used to enforce an 

invariant-something that should always be true. The 
simplest sort of invariant is an invariant on the data 
of a single object. The rule given in Figure 3 enforces 
such an invariant, here that a rectangle’s area is equal 
to its height times its width. Rules on single objects are 
executed efficiently by the R++ rule-execution mecha- 
nism, meaning that maintaining such simple invariants 
can be effectively done by means of R++ rules. 

A more-complex rule, such as the rules in Figures 
4 and 2, can check conditions on more than one object 
and maintain an invariant based on these conditions. 
The action of the rule can also cause external activity, 
such as printing an informative message. 

A rule declaratively represents an invariant and thus 
makes it easier to understand and modify. Further the 
rule is less prone to bugs than the equivalent collection 
of functions, as it does not have to be explicitly called 
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class Phone; class Alarm { . . . }; 

class Line { 
Phone * phone; 
Boolean call-waiting, call-forwarding; 
. * . 
rule public-phone-test; 

class Phone ( 
P honeType type; 
. . . 
friend rule Line::pubkphone-test; 

1; 

rule Line::public-phone-test ( 
call-waiting && 
Phone * ph = phone && 
ph-xype == PUBLIC 

=> tout << “Error: public phones cannot ” 
<< ” have call waiting.. .” ; 

set-call-waiting(false); 
set-call-forwarding(faIse); 

Figure 4: public-phone-test rule 

in all the appropriate places. Invariant maintenance 
exploits rules’ ability to react automatically to changes 
in objects. 

R++ rules can also be used to detect situations that 
should never be true (constraint violations). For exam- 
ple, if it was not possible to turn off the call waiting and 
call forwarding features, the rule in Figure 4, modified 
to remove the portion that turns off call waiting and 
call forwarding, would serve as a constraint violation 
detection rule. Constraint violation also exploits rules’ 
ability to react automatically to changes in objects. 

It is also possible to use rules as “demons” to mon- 
itor for and react to important states. Rules are good 
“watch dogs” because they are triggered by every rel- 
evant change. 

Of course it is possible to use R++ rules to express 
domain knowledge such as business policies, engineer- 
ing rules, and situation-action heuristics-the sort of 
information that is often expressed in OPS-style rules. 
Such knowledge is often more clearly expressed in rules 
than in procedures, as has been demonstrated by the 
OPS community. 

Another use of R++ rules is in the place of mem- 
ber functions that would otherwise have to be called 
from many different places. Using rules as “automatic 
member functions” eliminates some of the burden of 
procedural control. 

Yet another use of R++ rules is to exploit the “data- 
driven” or “event-driven” nature of rules to propa- 

class Device { 
Set-of-p<Device> dependents; 
Set-of-p<Alarm> alarms; 
Set-of-p<Alarm> dependent-alarms; 
. . o 

rule 
rule 

alarm-dependent-alarm; 
dependent-alarm-transitive; 

class Controller : public Device { . . . }; 

rule Device::alarm-dependent-alarm { 
Device * dependent @ dependents && 
Alarm * alarm @ alarms 

=> dependent->insert-dependent-alarms(alarm); 

rule Device::dependent-alarm-transitive { 
Device * dependent @ dependents && 
Alarm * alarm @ dependent-alarms 

=> dependent->insert-dependent-alarms(alarm); 
‘1 

Figure 5: Rules on Device 

gate change through or update the status of an ob- 
ject model. We are using R++ rules in this manner, 
among others, in a monitoring system for 4ESS tele- 
phone switches (Crawford et al. 1995). Two rules from 
this system that propagate alarms to dependent de- 
vices are shown in Figure 5. Note that these rules 
work for all objects that belong to the class Device, 
even those that also belong to subclasses such as Con- 
troller. 

Implementation Issues 
R++ is implemented by means of an R++ to C++ trans- 
lator, itself written in C++.5 C++ is not an ideal lan- 
guage for our purpose. We would have preferred to 
make R++ largely a library of classes, thus requiring 
fewer extensions to the base language. However, C++ 
does not support the kind of control over object cre- 
ation or destruction that such an architecture would 
require. It also does not provide monitoring of all ac- 
cesses to object members. Therefore we have had to 
create an extension of the C++ language, as detailed 
above. 

Even this extension process is less-than-ideal in C-t-+. 
C++ is not type-safe-casts can change the typing of 

5The approach we have taken is similar to the approach 
used in the Ode (Agrawal & Gehani 1989) system, an 
object-oriented database management system that incor- 
porates 0++ (Dar, Agrawal, & Gehani 1993), an extension 
to c++. 
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objects, violating encapsulation. Further, C++ allows 
pointers to object data members to be created, which 
can then be used to change the object. For C++ to 
be easy to extend, it should allow a comprehensive no- 
tification mechanism whereby a rule-system would be 
notified whenever a relevant change occurred to any 
object. In C++ such a mechanism would require com- 
plete parsing of all code in a program. 

In order to render the notification problem tractable 
and avoid parsing all the C++ code in R++ programs, 
we have placed two restrictions on proper code. 

1. No casts can be performed on classes used by rules. 
(This restriction is just a stronger restatement of the 
normal C++ caveat that casts violate encapsulation 
and can result in incorrect execution.) 

2. Changes to data members of classes that are used 
in rules must be made via stereotypic modifica- 
tion functions, as shown in the example rules. 
These modification functions are called set-cmem ber 
name> for scalar data member and insert-<member 
name> and remove-<member name> for set-valued 
data members and are automatically generated by 
the R++ translator. It is generally considered good 
C++ programming style to use such modification 
functions.6 

Violation of these restrictions may cause improper be- 
havior of R++ rules. This is not an ideal solution, but 
is required because of the limitations of C++. 

The algorithm for processing path-based rules is sim- 
pler and more efficient than the “inference engines” 
of pattern-matching rule languages in the OPS family 
since pointer-following is much less complex than join 
operations. For each data member monitored by a rule, 
the R++ translator adds a rule-specific data member 
that, during execution, contains backpointers to root 
objects from which the rule’s path to the current ob- 
ject have been traced. (Root objects themselves to 
not need these pointers, of course.) When a relevant 
change is made to a data member of some object, each 
triggered rule will follow each of its backpointers to 
a root object and then evaluate its condition on all 
paths that can be formed from that root and that also 
pass through the changed data member of the changed 
object. Given n objects, T rules, and w variables in 
the largest rule rule condition, the worst-case heap- 
storage requirements for R++ are thus O(rn2) whereas 
the RETE algorithm (Forgy 1982) and its variants use 
space O(rn”)). The algorithms used to process path- 
based rule are also much simpler than the algorithms 
that have been developed to support pattern-matching 
rules; so much so that there is no run-time interpreter 
for R++-rules simply compile into C++ procedures 
that are executed whenever a relevant change occurs. 

6We could have translated assignments to data members 
into calls to the modification functions, but instead chose 
a method that emphasizes data encapsulation. 

path branching # of R++ rate C5 rate 
length factor leaves (for sets) 

0 NA 1 120000 2083 
1 1 1 25575 1428 
1 2 2 23831 1428 
1 4 4 23301 1333 
1 8 8 22310 1391 
1 16 16 21399 1391 
1 32 32 20164 1411 
1 64 64 19418 1383 
1 128 128 18078 1383 
2 1 1 13797 1363 
2 2 4 8065 1333 
2 4 16 4854 1317 
2 8 64 2849 1280 
2 16 256 1524 1024 
2 32 1024 682 640 
2 64 4096 309 244 
2 128 16384 138 42 
3 1 1 9362 1200 
3 2 8 3196 1142 
3 4 64 1024 1200 
3 8 512 264 682 
3 16 4096 57 107 
3 32 32768 13 13 

Table 1: Rule-firing rates for R++ and 65 

The performance of the implementation of R++ rel- 
ative to the pattern-matching rules of C5, a C-based 
superset of OPS5 using a RETE algorithm, is shown 
in Table 1. Rates are given in rule firings per second 
on a Sun SPARCstation 10. 

In each performance measurement a tree7 of objects 
of a specified depth (path length) and breadth (branch- 
ing factor) was created; a path-length of n means that 
n+ 1 objects are in the path. The tree is monitored by 
a single rule that follows a path from the root object 
to a leaf object. 

To test the worst-case for R++, all triggering changes 
were made in leaf objects. R++ outperforms C5, espe- 
cially with small path lengths and low branching fac- 
tors, where it is much faster. This is largely due to the 
elimination of the bookkeeping that is required for the 
RETE algorithm. 

7Trees can be implemented in C++ with either lists or 
sets, depending on whether order is important or not. Ta- 
ble 1 shows only the R++ rate for sets because trees in 
C5 are inherently unordered since they arise from joins 
among working memory elements. If order is important, 
it is easy to obtain in R++ simply by using lists instead of 
sets, though there is a performance penalty to be paid. In 
C5 and other OPS derivatives it is much more difficult and 
time-consuming to process a tree in an ordered way. 
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Related Work 
Sophisticated programming constructs have a long his- 
tory in AI. Just about any frame system has had a sim- 
ple version of rules, such as the attached procedures of 
FRL (Roberts & Goldstein 1977) or the active values 
of LOOPS (Bobrow & Stefik 1981). These attached 
procedures are generally directly triggered by the mod- 
ification or access of a single data member, and do not 
have a condition that can refer to multiple objects as 
the rules of R++ have. 

Full forward-chaining rules exist in many AI-related 
languages and systems, including, of course, OPS 
(Cooper & Wogrin 1988). The rules of OPS are more 
general than the rules of R++, and do not fit into the 
object-oriented paradigm as well as the rules of R++ 
do. OPS-style rules have different semantics than R++ 
rules, involving a conflict resolution scheme with rule 
priorities. The above comments also apply to the rules 
in more-recent AI-related languages and systems such 
as ART-IM (Inf 1987), CERS (Miranker et al. 1993), 
ILOG rules (Albert 1994), RAL/C++ (Forgy 1994), 
and Rete++ (Hal 1993). Further, none of these sys- 
tems has as close an integration with C++ as R++ has. 

Of course, the most-closely related system to R++ is 
Algernon (Crawford & Kuipers 1991; Crawford 1990). 
R++ moves the path-based rules of Algernon into the 
object-oriented language C++ and integrates the rules 
into the C++ object system. 

The work in active object-oriented databases has 
some similarities to R++. In particular, integrity con- 
straints and triggers in object-oriented databases are 
somewhat similar to the rules of R++. For exam- 
ple the triggers of ODE (Gehani & Jagadish 1991; 
1996) allow for the execution of C++ code when a con- 
dition is satisfied on an object. The difference between 
ODE triggers and R++ rules is that an ODE trigger 
on an object is executed only when a method is run 
on that object-there is no mechanism for deferring 
the execution of the trigger action until a condition 
involving other objects is satisfied. 

Other active database work is less similar to 
R++. The event-condition-action rules in many ac- 
tive databases, including POSTGRES (Potamianos & 
Stonebraker 1996) and Starburst (Widom 1996), trig- 
ger on specific events in the database, such as adding 
a tuple to a relation, and not on a boolean condition 
involving the data members of various objects (but 
then allow a condition to filter the rule action). The 
condition-action rules in Ariel (Hanson 1996) and a 
few other active database systems are global rules with 
conditions similar to the conditions in OPS-style pro- 
duction rules, and thus are more general (in that they 
do not need to follow access paths) but less object- 
oriented than the rules in R++. 

The rules in R++ are not at all like the rules in de- 
ductive databases, even object-oriented deductive data 
bases such as Coral++ (Srivastava et al. 1993). The 

rules in deductive data bases are run 
and so have a very different purpose. 

to satisfy queries 

ture Work 
There are a number of issues that have not been ad- 
dressed in the current R++ implementation, but that 
are candidates for future versions of R++. 

First, the current version of R++ runs rules after 
every change to monitored data. It would be useful 
to be able to defer the running of rules occasionally, 
treating a group of changes as an atomic batch. There 
are semantic problems with this, such as how to treat 
changes to monitored data that are undone inside the 
batch. 

Second, the current version of R++ works entirely on 
in-core data. As there is considerable interest in active 
databases, it would be interesting to combine the R++ 
approach to rules with an object-oriented database. 
Since R++ rules are simpler to implement than the rules 
in most active databases, such a system should be able 
to support more rules without having to add triggers 
to control the activation of rules. 

Third, R++ interacts badly with file-dependency re- 
compilation of large C++ programs. The header files re- 
sulting from R++ are larger than standard C++ header 
files and are more interconnected, so recompilation 
takes even more time than with standard C++ pro- 
grams. A better mechanism for recompiling C++ pro- 
grams is required to really solve this problem, but some 
changes to how R++ generates header files would help 
somewhat. 

Fourth, R++ requires that rules branch only on data 
in objects. This was done so that changes to the branch 
structure would be easy to detect. Branching on an 
expression is possible, under the same caveat as given 
above for data used by functions, but keeping track of 
the branching is more difficult. 

Summary 
As a “reactive” member function, an R++ rule is a new 
kind of class member that adds data-driven behavior 
to a class. Data-driven rules are valuable in object- 
oriented programs as an aid to maintaining model in- 
tegrity and, more generally, as a way to express and 
apply situation-action directives to a domain model. 
Rules can make programs clearer because a single rule 
expressing a multi-object constraint or invariant or pol- 
icy can replace several variants of the same logic scat- 
tered throughout procedural code. Also, rules relieve 
the programmer of the burden of explicit procedural 
control as the rules are triggered automatically by rel- 
evant change (and construction). 

In order to naturally embed into an object-oriented 
framework, R++ rules are path-based; object-oriented 
domain models make important relationships explicit 
as links or “paths” between objects, enabling path- 
based rules to build directly on such designs with- 
out the need for arbitrary joins. Because of their 
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path-based conditions, such rules have a more local- 
ized effect than OPS-style rules and can therefore be 
expected to be more predictable to the programmer. 
Since each path-based rule is associated with a class 
(like a data-driven method), it can be inherited (and 
overridden) in the same way as methods are in the 
host object-oriented language. With a syntax similar 
to C++ member functions and a semantics like “auto- 
matic member functions”, R++ rules are relatively easy 
to learn and apply. 

In essence, path-based rules define a kind of “mem- 
ber rule” that naturally extends the object-oriented 
framework. This allows production rules to be easily 
merged into the object-oriented paradigm. This syn- 
thesis is important in making AI techniques accessible 
to the the wider computer-science community. 

To encourage further experimentation and research 
in multi-paradigm programming languages, R++ is 
available free to research institutions. For fur- 
ther information, including the R++ User Manual, 
see the R++ home page on the world-wide web 
at http://www.research.att.com/sw/tools/r++ or 
send e-mail to r++@hrmaple. hr. att . corn. 
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