
Pat h-Based Rules in

James M. Crawford*
CIRL

University of Oregon
1600 Millrace, Suite 108

Eugene, OR 97403-1269 USA

Abstract

Object-oriented programming has recently emerged as
one of the most important programming paradigms.
While object-oriented programming clearly owes an
intellectual debt to AI, it appears to be displacing
some AI techniques, such as rule-based programming,
from the marketplace. This need not be so as path-
based rules-forward-chaining production rules that
are restricted to follow pointers between objects-fit
into the object-oriented paradigm in a clean and ele-
gant way. The combination of path-based rules and
object-oriented programming should be useful in AI
applications, and in the more general problem of trans-
ferring AI techniques to the larger computer science
community.

To this day, forward-chaining production rules re-
main largely unused in mainstream object-oriented ap-
plications. One reason for this lack of use is, of course,
that many production rule systems (such as most ver-
sions of OPS (Cooper & Wogrin 1988), etc.) are writ-
ten in LISP, and not in a major object-oriented lan-
guage.

However even in the new rule systems that claim
integration with an object-oriented language, the inte-
gration is not adequate. Many of these rule systems
(such as ART-IM (Inf 1987)) operate on their own
data (working memory elements), not the objects of
their base language. Applications thus need to move
information between the working memory and object
storage. Other systems (such as CERS (Miranker et
al. 1993)) require special calls to bring objects of
the language to the attention of the rule system. Al-
though this means that information does not need to be
moved, it does require facilities outside of the object-
oriented paradigm to control rules.

The rules of object-oriented, production-rule sys-
tems (including the above systems, as well as ILOG

*Supported in part by ARPA/Rome Labs under grant
numbers F30602-93-C-0031 and F30602-95-1-0023, by the
National Science Foundation under grant number IRI-94
12205, and by the Air Force Office of Scientific Research un-
der grant number F49620-92-J-0384. Some of this work was
also done while the author was at AT&T Bell Laboratories.

Daniel Dvorak, Diane Litman,
Anil Mishra, Peter F. Patel-Schneider

AT&T Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974-0636 USA

rules (Albert 1994) and Rete++ (Hal 1993)) exist out-
side the object system, and thus are not organized in
the same way as classes and objects. Further, even
when the production rules directly operate on objects
they still do not act like the rest of the system. In
particular, production rules in all the above systems
can form joins between unrelated objects, thus violat-
ing the locality assumptions implicit in object-oriented
programming.

However, rules have many uses within the object-
oriented paradigm. Rules can be used to enforce in-
variants, check constraints, react to events and states,
update dependent objects, and even remove dangling
pointers. Therefore, it would be useful to add rules to
an object-oriented programming language in a man-
ner that merges the rules naturally into the rest of the
language.

For this effort to be a success, it must be easy for
programmers who are not experts on rules to use the
system. We argue that a number of stringent require-
ments have to be satisfied for production rules to be
widely accepted outside of AI:

A seamless integration of rules, objects, and proce-
dural code is needed, not just an add-on of rules to
an object-oriented programming language.

The base language has to be a commonly-used
object-oriented programming language. This is crit-
ical even if the programming language is less than
ideal for the purpose, since the goal of the effort is
to bring AI technology to mainstream programmers.

The addition of rules has to be a “small” addition,
in that it must require little in the way of education
for effective use. This dictates that there be little
new syntax required in the rules, that the rule con-
cepts fit well with the object-oriented programming
language, and that the rules are subservient to the
object-oriented paradigm.

Nevertheless, the addition of rules has to be a “big”
addition, in that it provides useful new functionality.

The driving philosophy behind the addition must be
to take AI technology and change it as necessary to fit
into the mainstream programming community.

490 Knowledge Compilation

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

We have augmented a common object-oriented pro-
gramming language with rules in a way that answers
the objections and satisfies the requirements above.
We have chosen the most-common object-oriented pro-
gramming language, C++ (Stroustrup 1991)l, as the
base language for our additions. Our rules work di-
rectly on C++ objects. The rules are organized into
the class hierarchy, with a syntax and semantics very
similar to C++ member functions. They cannot form
arbitrary joins, being restricted to following the point-
ers in C++ objects, giving them no more access capa-
bilities than member functions.2 Therefore, the rules
form a “small” addition to C++. They are data-driven
not heuristic, i.e., they are always active and have no
certainty factors. The rules can perform all the activ-
ities mentioned above, and can provide “big” benefits.

We have called our rule system R++, a deliberate
attempt to call attention to its close relationship with
c++.

Rules in an Object-Oriented Language

Path-Based Rules
The most significant conceptual difference between
OPS-style rules and R++ rules is that R++ rules are
path-based. Path-based rules do not permit the for-
mation of arbitrary joins between unrelated objects.
Instead, the conditions of path-based rules must start
with some root object and can reach other objects only
by following paths of pointers (access paths). Such
path-based rules are not new, having appeared explic-
itly as “access-limited rules” in the Algernon imple-
mentation of access-limited logic (Crawford & Kuipers
1991; Crawford 1990)).

Aside from this limitation on their conditions, path-
based rules are similar in concept to OPS-style rules,
having a condition and an action. The conditions of
path-based rules are evaluated in response to certain
activities in the rest of the system. If the condition is
satisfied, then the action of the rule is executed (for
details on this see section). The action of a path-
based rule has access to the object bindings from its
condition, just as an OPS-style rule has.

Because of the restriction that it must follow access
paths, a path-based rule would not be able to perform
an action for every pair of persons such that the first
person is older than the second. A path-based rule,
however, could perform actions on pairs of persons
such that the second is a child of the first, provided
that the “child” relationship was provided in person
objects. Thus a path-based rule could be used to en-

‘There is no technical reason why the ideas in R++ could
not be added to a different object-oriented language, such
as Smalltalk, Objective-C, or even Java. We just chose the
most-used object-oriented language.

21t is possible to simulate joins in R++ by adding in
explicit links, but this is only feasible in limited cases.

force invariants such as every child must be younger
than its parents.

The access limitation of path-based rules is not a
hindrance in an object-oriented programming language
because object-oriented design makes important rela-
tionships explicit as inter-object pointers. In fact, this
“limitation” is seen as an advantage because path-
based rules respect the locality implicit in the rela-
tions in a domain model and cannot violate this lo-
cality as OPS-style rules can. In addition, path-based
rules admit a relatively simple and efficient implemen-
tation compared to the general pattern-matching in-
ference engines of OPS-style languages.

Rules as Class Members
The natural way to make the rules fit into the existing
constructs of object-oriented languages is to associate
rules with classes, just as data and functions are as-
sociated with classes, and have the rules work directly
on the objects that are instances of the class. In effect
we view rules as “member rules” of classes. To further
this resemblance, rules are given class-specific names,
as are the data and functions associated with the class.

The association of rules with classes provides a type
for the root object of a rule, namely that class with
which the rule is associated. Further, the association
provides a specification for when objects are brought
to the attention of rules, namely that the creation of an
instance of a class brings the object to the attention of
the member rules of the class. The only way to remove
an object from consideration by the rules of its classes
is to destroy it. Therefore a rule associated with a class
is active on all objects that belong to the class.

Because rules are members of a class, they can ac-
cess the private members of the class, just as member
functions can. Further, a rule cannot access the private
members of another class unless it has been declared a
friend of that class, just as for member functions.

Rules can be overridden in sub-classes, just as mem-
ber functions can. A sub-class can have a rule with the
same name as a rule in a super-class. Such a rule will
override the rule in the super-class for instances of the
sub-class.

Rule Control
Because rules work directly on all instances of a class,
there is no need for a separate working memory nor
even a mechanism to keep track of which objects are ac-
tive in the rule system. The object-oriented paradigm
provides all the control required, obviating any need
for control of rules via explicit activation or deactiva-
tion of rules or via grouping of rules.

The conditions of rules monitor data in various ob-
jects. Changes to this data may cause the condition of
the rule to be satisfied, or satisfied in a different man-
ner than before. Therefore, the conditions of rules are
re-evaluated whenever the data they inspect changes
or when a new object of of the appropriate type is

Knowledge Compilation 491

<rule declaration> ::= rule <identifier> ;

<rule definition> ..- ..- rule <class name> : : <identifier> {
<condition> => <action>

<action> ::= <statement>+

<condition> ::= <binding> I
<boolean expression> I
<binding> && <condition> I
<boolean expression> && <condition>

<binding> ::=
<class name> * <identifier> = <expression> I
<class name> * <identifier> Q <field> I
<class name> * <identifier> Q <variable>-><field>

Figure 1: Simplified R++ Rule Syntax

constructed. We call these changes relevant changes3
There is no need for any other mechanism for caus-
ing the conditions of rules to be evaluated-changes to
object data is the only mechanism required or allowed.

The requirement that rules fit into the object-
oriented language paradigm suggests that rules not
have priorities, so we have not provided priorities for
rules, other than the simply requiring that rules de-
fined in a sub-class are considered before rules from
super-classes are. (Of course, super-class rules that are
overridden in the sub-class are not run on instances of
the sub-class at all.) This priority scheme fits into the
object-oriented paradigm. This was a deliberate choice
that has benefits, less to worry about and faster rules,
as well as drawbacks, less control over the rules.

Because there is no complex priority scheme there
is no rule agenda that collects all rule activations that
are waiting to run. 4 Rule activations are simply run in
a depth-first fashion, as soon after they are discovered
as possible. That is, a change to monitored data causes
the rule activations for that data to start running; a
later change to other monitored data causes the rule
activations for the new change to start running; rule
activations for the old change that have not yet been
run are deferred until the rule activations for the new
change are all finished running.

Rule Syntax and Semantics
To make R++ rules fit easily in C++, and to make

them as easy for C++ programmers to learn, R++ rules
look and act as much like the rest of C++ as possi-
ble. Externally, R++ rules are declared and defined in

3The use of functions in the condition of rules is a prob-
lem for R++ as it cannot, in general, analyze the data used
inside a function. Relevant change is defined as change to
the data mentioned directly in the condition of a rule, in-
cluding argument to functions, but not including change to
data used in functions called in the rule condition.

4A rule activ ation is a rule plus a set of bindings of the
variables in the antecedent of the rule to objects.

a manner similar to C++ class members, as indicated
above, and as shown in the simplified rule syntax given
in Figure 1.

The condition (left-hand side) of an R++ rule is a
sequence of C++ boolean expressions interspersed with
variable bindings. The boolean expressions, and the
expressions in the bindings can, of course, use the vari-
ables bound earlier, just as in C++.

The bindings in a condition look very much like C++
variable definitions. The first kind of binding, for ex-
ample “Person * mate = spouse”, looks just like a C++
variable definition, and simply sets a variable to the
value of an expression, succeeding if that value is non-
null. The example binding declares a variable of type
Person and sets it to the value of this->spouse, suc-
ceeding only if the value is non-null. The other kinds
of bindings, for example “Person * child @ children”,
are similar to C++ variable definitions but use ‘VP in-
stead of “=“. These are branch bindings, where the
“(0” should be read as “at” or “in”, and they bind a
variable to elements of a set of values. The example
branch binding says to iterate over all values in the
children data member, which is declared to be a set of
pointers to persons, succeeding for each element of the
set.

A condition is evaluated in the obvious way. It
succeeds for those successful bindings that make the
boolean expressions evaluate to “true”.

The action (right-hand side) of an R++ rule is just
a sequence of C++ statements. In the action of a rule,
the variables bound in its condition can be used as
expected.

Rule Execution
As indicated above, there are three parts to rule exe-
cution:

1. triggering of rules by relevant change,

2. subsequent evaluation of the rule condition, possi-
bly delayed if other rules have been triggered by the
same change, and

3. execution of the rule action if the rule condition was
satisfied.

The conditions of R++ rules are evaluated only in
response to relevant change (including relevant con-
struction). However, the portion of the condition that
is evaluated in response to a relevant change is unspeci-
fied, as is the order of evaluation. Thus rule conditions
are normally side-effect free.

The actions of R++ rules are executed only when
their conditions successfully evaluate to true, and only
on the data that caused the condition to evaluate to
true. As a change to a data member can cause more
than one rule condition to evaluate to true, the action
of a rule may be delayed from the time of the change
that caused its condition to evaluate to true. If the
data that caused the condition to evaluate to true is

492 Knowledge Compilation

class Person {
int age;

class Rectangle {
int height, width, area;

int salary; . . .
Country * residency; rule update-area;
Person * spouse; 1;
Set-of-p<Person> children;
Set-of-p<Person> dependents; rule Rectangle::update-area {
. . . height > 0 && width > 0
rule children-spouse-dependents; => set-area(height * width);

1; 1

rule Person::children-spouse-dependents {
Person * mate = spouse &&
residency == mate->residency &&
Person * child @ children &&
child->age c 18

=> mate -> insert-dependents(child);

Figure 2: children-spouse-dependents rule

changed in the meantime, the rule’s action will not be
executed.

R++ ensures that rules do not execute on “old” data
nor execute more than once on changed data. For ex-
ample, if a relevant change (or construction) triggers
two rules in a way that would satisfy both rule condi-
tions, but the first rule to be evaluated and executed
changes the original triggering data, thereby retrigger-
ing the same two rules, the second rule will eventually
be evaluated on the newest data (and executed only
if its condition is satisfied). Although the second was
triggered twice in this scenario, it will be executed at
most once and only on the newest data.

The actions of R++ rules are executed whenever pos-
sible under the above criteria. Thus, no rules are wait-
ing to run if and only if there is no current collection of
data that causes a rule’s condition to evaluate to true
for which the rule’s action has not been run.

An Example Rule

To illustrate these points, consider a rule that en-
sures that a person’s children under the age of 18 are
dependents of that person’s spouse provided that the
person and spouse reside in the same country. The
R++ code for this rule is given in Figure 2. This rule
would be associated with the class Person, and would
access two other objects in its condition, both belong-
ing to Person. The rule would be given a name such
as “children-spouse-dependents”. In evaluations of the
condition of the rule, the root object would be a person,
the second object would be his or her spouse, and the
third object would be one of his or her children. Note
that both the second and third objects are reachable
from the first object (the implicit this object, using C++
terminology) using an access path (e.g., this->spouse,
for the second object).

Figure 3: update-area rule

The rule is active on all objects that belong to Per-
son and responds to all changes that might cause its
condition to be successfully evaluated. Thus it is one
of the invariants associated with the class. When-
ever an instance of Person is created, the rule chil-
dren-spouse-dependents’s condition will be evaluated
with the new instance as root object. Whenever a per-
son’s spouse changes, the residency of a person with a
spouse or that spouse changes, a person with a spouse
residing in the same country gains a new child, or the
age of a child of such a person is changed, the rule’s
condition will be re-evaluated on precisely all appropri-
ate collections of objects. In effect, the rule guarantees
that for all people who reside in the same country as
their spouse does, that person’s children under the age
of 18 are dependents of the person’s spouse.

Note that because the rule’s condition uses the age
of the child, it will be reevaluated whenever the child’s
age changes, and the rule’s action will be executed
when the age value is less than 18, This may result
in the child being made a dependent of the spouse sev-
eral times, once for each time the child’s age changes.
However, since the dependents is a set, such repetitions
are benign.

Uses of Rules
Path-based rules can be used to enforce an

invariant-something that should always be true. The
simplest sort of invariant is an invariant on the data
of a single object. The rule given in Figure 3 enforces
such an invariant, here that a rectangle’s area is equal
to its height times its width. Rules on single objects are
executed efficiently by the R++ rule-execution mecha-
nism, meaning that maintaining such simple invariants
can be effectively done by means of R++ rules.

A more-complex rule, such as the rules in Figures
4 and 2, can check conditions on more than one object
and maintain an invariant based on these conditions.
The action of the rule can also cause external activity,
such as printing an informative message.

A rule declaratively represents an invariant and thus
makes it easier to understand and modify. Further the
rule is less prone to bugs than the equivalent collection
of functions, as it does not have to be explicitly called

Knowledge Compilation 493

class Phone; class Alarm { . . . };

class Line {
Phone * phone;
Boolean call-waiting, call-forwarding;
. * .
rule public-phone-test;

class Phone (
P honeType type;
. . .
friend rule Line::pubkphone-test;

1;

rule Line::public-phone-test (
call-waiting &&
Phone * ph = phone &&
ph-xype == PUBLIC

=> tout << “Error: public phones cannot ”
<< ” have call waiting.. .” ;

set-call-waiting(false);
set-call-forwarding(faIse);

Figure 4: public-phone-test rule

in all the appropriate places. Invariant maintenance
exploits rules’ ability to react automatically to changes
in objects.

R++ rules can also be used to detect situations that
should never be true (constraint violations). For exam-
ple, if it was not possible to turn off the call waiting and
call forwarding features, the rule in Figure 4, modified
to remove the portion that turns off call waiting and
call forwarding, would serve as a constraint violation
detection rule. Constraint violation also exploits rules’
ability to react automatically to changes in objects.

It is also possible to use rules as “demons” to mon-
itor for and react to important states. Rules are good
“watch dogs” because they are triggered by every rel-
evant change.

Of course it is possible to use R++ rules to express
domain knowledge such as business policies, engineer-
ing rules, and situation-action heuristics-the sort of
information that is often expressed in OPS-style rules.
Such knowledge is often more clearly expressed in rules
than in procedures, as has been demonstrated by the
OPS community.

Another use of R++ rules is in the place of mem-
ber functions that would otherwise have to be called
from many different places. Using rules as “automatic
member functions” eliminates some of the burden of
procedural control.

Yet another use of R++ rules is to exploit the “data-
driven” or “event-driven” nature of rules to propa-

class Device {
Set-of-p<Device> dependents;
Set-of-p<Alarm> alarms;
Set-of-p<Alarm> dependent-alarms;
. . o

rule
rule

alarm-dependent-alarm;
dependent-alarm-transitive;

class Controller : public Device { . . . };

rule Device::alarm-dependent-alarm {
Device * dependent @ dependents &&
Alarm * alarm @ alarms

=> dependent->insert-dependent-alarms(alarm);

rule Device::dependent-alarm-transitive {
Device * dependent @ dependents &&
Alarm * alarm @ dependent-alarms

=> dependent->insert-dependent-alarms(alarm);
‘1

Figure 5: Rules on Device

gate change through or update the status of an ob-
ject model. We are using R++ rules in this manner,
among others, in a monitoring system for 4ESS tele-
phone switches (Crawford et al. 1995). Two rules from
this system that propagate alarms to dependent de-
vices are shown in Figure 5. Note that these rules
work for all objects that belong to the class Device,
even those that also belong to subclasses such as Con-
troller.

Implementation Issues
R++ is implemented by means of an R++ to C++ trans-
lator, itself written in C++.5 C++ is not an ideal lan-
guage for our purpose. We would have preferred to
make R++ largely a library of classes, thus requiring
fewer extensions to the base language. However, C++
does not support the kind of control over object cre-
ation or destruction that such an architecture would
require. It also does not provide monitoring of all ac-
cesses to object members. Therefore we have had to
create an extension of the C++ language, as detailed
above.

Even this extension process is less-than-ideal in C-t-+.
C++ is not type-safe-casts can change the typing of

5The approach we have taken is similar to the approach
used in the Ode (Agrawal & Gehani 1989) system, an
object-oriented database management system that incor-
porates 0++ (Dar, Agrawal, & Gehani 1993), an extension
to c++.

494 Knowledge Compilation

objects, violating encapsulation. Further, C++ allows
pointers to object data members to be created, which
can then be used to change the object. For C++ to
be easy to extend, it should allow a comprehensive no-
tification mechanism whereby a rule-system would be
notified whenever a relevant change occurred to any
object. In C++ such a mechanism would require com-
plete parsing of all code in a program.

In order to render the notification problem tractable
and avoid parsing all the C++ code in R++ programs,
we have placed two restrictions on proper code.

1. No casts can be performed on classes used by rules.
(This restriction is just a stronger restatement of the
normal C++ caveat that casts violate encapsulation
and can result in incorrect execution.)

2. Changes to data members of classes that are used
in rules must be made via stereotypic modifica-
tion functions, as shown in the example rules.
These modification functions are called set-cmem ber
name> for scalar data member and insert-<member
name> and remove-<member name> for set-valued
data members and are automatically generated by
the R++ translator. It is generally considered good
C++ programming style to use such modification
functions.6

Violation of these restrictions may cause improper be-
havior of R++ rules. This is not an ideal solution, but
is required because of the limitations of C++.

The algorithm for processing path-based rules is sim-
pler and more efficient than the “inference engines”
of pattern-matching rule languages in the OPS family
since pointer-following is much less complex than join
operations. For each data member monitored by a rule,
the R++ translator adds a rule-specific data member
that, during execution, contains backpointers to root
objects from which the rule’s path to the current ob-
ject have been traced. (Root objects themselves to
not need these pointers, of course.) When a relevant
change is made to a data member of some object, each
triggered rule will follow each of its backpointers to
a root object and then evaluate its condition on all
paths that can be formed from that root and that also
pass through the changed data member of the changed
object. Given n objects, T rules, and w variables in
the largest rule rule condition, the worst-case heap-
storage requirements for R++ are thus O(rn2) whereas
the RETE algorithm (Forgy 1982) and its variants use
space O(rn”)). The algorithms used to process path-
based rule are also much simpler than the algorithms
that have been developed to support pattern-matching
rules; so much so that there is no run-time interpreter
for R++-rules simply compile into C++ procedures
that are executed whenever a relevant change occurs.

6We could have translated assignments to data members
into calls to the modification functions, but instead chose
a method that emphasizes data encapsulation.

path branching # of R++ rate C5 rate
length factor leaves (for sets)

0 NA 1 120000 2083
1 1 1 25575 1428
1 2 2 23831 1428
1 4 4 23301 1333
1 8 8 22310 1391
1 16 16 21399 1391
1 32 32 20164 1411
1 64 64 19418 1383
1 128 128 18078 1383
2 1 1 13797 1363
2 2 4 8065 1333
2 4 16 4854 1317
2 8 64 2849 1280
2 16 256 1524 1024
2 32 1024 682 640
2 64 4096 309 244
2 128 16384 138 42
3 1 1 9362 1200
3 2 8 3196 1142
3 4 64 1024 1200
3 8 512 264 682
3 16 4096 57 107
3 32 32768 13 13

Table 1: Rule-firing rates for R++ and 65

The performance of the implementation of R++ rel-
ative to the pattern-matching rules of C5, a C-based
superset of OPS5 using a RETE algorithm, is shown
in Table 1. Rates are given in rule firings per second
on a Sun SPARCstation 10.

In each performance measurement a tree7 of objects
of a specified depth (path length) and breadth (branch-
ing factor) was created; a path-length of n means that
n+ 1 objects are in the path. The tree is monitored by
a single rule that follows a path from the root object
to a leaf object.

To test the worst-case for R++, all triggering changes
were made in leaf objects. R++ outperforms C5, espe-
cially with small path lengths and low branching fac-
tors, where it is much faster. This is largely due to the
elimination of the bookkeeping that is required for the
RETE algorithm.

7Trees can be implemented in C++ with either lists or
sets, depending on whether order is important or not. Ta-
ble 1 shows only the R++ rate for sets because trees in
C5 are inherently unordered since they arise from joins
among working memory elements. If order is important,
it is easy to obtain in R++ simply by using lists instead of
sets, though there is a performance penalty to be paid. In
C5 and other OPS derivatives it is much more difficult and
time-consuming to process a tree in an ordered way.

Knowledge Compilation 495

Related Work
Sophisticated programming constructs have a long his-
tory in AI. Just about any frame system has had a sim-
ple version of rules, such as the attached procedures of
FRL (Roberts & Goldstein 1977) or the active values
of LOOPS (Bobrow & Stefik 1981). These attached
procedures are generally directly triggered by the mod-
ification or access of a single data member, and do not
have a condition that can refer to multiple objects as
the rules of R++ have.

Full forward-chaining rules exist in many AI-related
languages and systems, including, of course, OPS
(Cooper & Wogrin 1988). The rules of OPS are more
general than the rules of R++, and do not fit into the
object-oriented paradigm as well as the rules of R++
do. OPS-style rules have different semantics than R++
rules, involving a conflict resolution scheme with rule
priorities. The above comments also apply to the rules
in more-recent AI-related languages and systems such
as ART-IM (Inf 1987), CERS (Miranker et al. 1993),
ILOG rules (Albert 1994), RAL/C++ (Forgy 1994),
and Rete++ (Hal 1993). Further, none of these sys-
tems has as close an integration with C++ as R++ has.

Of course, the most-closely related system to R++ is
Algernon (Crawford & Kuipers 1991; Crawford 1990).
R++ moves the path-based rules of Algernon into the
object-oriented language C++ and integrates the rules
into the C++ object system.

The work in active object-oriented databases has
some similarities to R++. In particular, integrity con-
straints and triggers in object-oriented databases are
somewhat similar to the rules of R++. For exam-
ple the triggers of ODE (Gehani & Jagadish 1991;
1996) allow for the execution of C++ code when a con-
dition is satisfied on an object. The difference between
ODE triggers and R++ rules is that an ODE trigger
on an object is executed only when a method is run
on that object-there is no mechanism for deferring
the execution of the trigger action until a condition
involving other objects is satisfied.

Other active database work is less similar to
R++. The event-condition-action rules in many ac-
tive databases, including POSTGRES (Potamianos &
Stonebraker 1996) and Starburst (Widom 1996), trig-
ger on specific events in the database, such as adding
a tuple to a relation, and not on a boolean condition
involving the data members of various objects (but
then allow a condition to filter the rule action). The
condition-action rules in Ariel (Hanson 1996) and a
few other active database systems are global rules with
conditions similar to the conditions in OPS-style pro-
duction rules, and thus are more general (in that they
do not need to follow access paths) but less object-
oriented than the rules in R++.

The rules in R++ are not at all like the rules in de-
ductive databases, even object-oriented deductive data
bases such as Coral++ (Srivastava et al. 1993). The

rules in deductive data bases are run
and so have a very different purpose.

to satisfy queries

ture Work
There are a number of issues that have not been ad-
dressed in the current R++ implementation, but that
are candidates for future versions of R++.

First, the current version of R++ runs rules after
every change to monitored data. It would be useful
to be able to defer the running of rules occasionally,
treating a group of changes as an atomic batch. There
are semantic problems with this, such as how to treat
changes to monitored data that are undone inside the
batch.

Second, the current version of R++ works entirely on
in-core data. As there is considerable interest in active
databases, it would be interesting to combine the R++
approach to rules with an object-oriented database.
Since R++ rules are simpler to implement than the rules
in most active databases, such a system should be able
to support more rules without having to add triggers
to control the activation of rules.

Third, R++ interacts badly with file-dependency re-
compilation of large C++ programs. The header files re-
sulting from R++ are larger than standard C++ header
files and are more interconnected, so recompilation
takes even more time than with standard C++ pro-
grams. A better mechanism for recompiling C++ pro-
grams is required to really solve this problem, but some
changes to how R++ generates header files would help
somewhat.

Fourth, R++ requires that rules branch only on data
in objects. This was done so that changes to the branch
structure would be easy to detect. Branching on an
expression is possible, under the same caveat as given
above for data used by functions, but keeping track of
the branching is more difficult.

Summary
As a “reactive” member function, an R++ rule is a new
kind of class member that adds data-driven behavior
to a class. Data-driven rules are valuable in object-
oriented programs as an aid to maintaining model in-
tegrity and, more generally, as a way to express and
apply situation-action directives to a domain model.
Rules can make programs clearer because a single rule
expressing a multi-object constraint or invariant or pol-
icy can replace several variants of the same logic scat-
tered throughout procedural code. Also, rules relieve
the programmer of the burden of explicit procedural
control as the rules are triggered automatically by rel-
evant change (and construction).

In order to naturally embed into an object-oriented
framework, R++ rules are path-based; object-oriented
domain models make important relationships explicit
as links or “paths” between objects, enabling path-
based rules to build directly on such designs with-
out the need for arbitrary joins. Because of their

496 Knowledge Compilation

path-based conditions, such rules have a more local-
ized effect than OPS-style rules and can therefore be
expected to be more predictable to the programmer.
Since each path-based rule is associated with a class
(like a data-driven method), it can be inherited (and
overridden) in the same way as methods are in the
host object-oriented language. With a syntax similar
to C++ member functions and a semantics like “auto-
matic member functions”, R++ rules are relatively easy
to learn and apply.

In essence, path-based rules define a kind of “mem-
ber rule” that naturally extends the object-oriented
framework. This allows production rules to be easily
merged into the object-oriented paradigm. This syn-
thesis is important in making AI techniques accessible
to the the wider computer-science community.

To encourage further experimentation and research
in multi-paradigm programming languages, R++ is
available free to research institutions. For fur-
ther information, including the R++ User Manual,
see the R++ home page on the world-wide web
at http://www.research.att.com/sw/tools/r++ or
send e-mail to r++@hrmaple. hr. att . corn.

References
Agrawal, R., and Gehani, N. H. 1989. Ode (ob-
ject database and environment): The language and
the data model. In Proceedings of the 1989 ACM
SIGMOD International Conference on Mangement of
Data, 36-45. Association for Computing Machinery.

Albert, P. 1994. ILog Rules, embedding rules in C++:
Results and limits. In EOOPS94 (1994).

Bobrow, D. G., and Stefik, M. 1981. The Loops
manual. Technical Report KB-VLSI-81-13, Knowl-
edge Systems Area, Xerox Palo Alto Research Cen-
ters.

Cooper, T. A., and Wogrin, N. 1988. Rule-Based Pro-
gramming with OPS5. San Mateo, California: Mor-
gan Kaufmann.

Crawford, J. M., and Kuipers, B. 1991. Negation
and proof by contradiction in access-limited logic. In
Proceedings of the Ninth National Conference on Ar-
tificial Intelligence, 897-903. American Association
for Artificial Intelligence.

Crawford, J.; Dvorak, D.; Litman, D.; Mishra, A.;
and Patel-Schneider, P. F. 1995. Device representa-
tion and reasoning with affective relations. In Proceed-
ings of the Fourteenth International Joint Conference
on Artificial Intelligence, 1814-1820. International
Joint Committee on Artificial Intelligence.

Crawford, J. M. 1990. Access-Limited Logic-A lan-
guage for knowledge representation. Ph.D. Disserta-
tion, Department of Computer Sciences, The Univer-
sity of Texas at Austin. Also published as Technical
Report AI 90-141, Artificial Intelligence Laboratory,
The University of Texas at Austin.

Dar, S.; Agrawal, R.; and Gehani, N. H. 1993. The
0++ database programming language: Implementa-
tion and experience. In Proceedings of the 9th IEEE
International Conference on Data Engineering.
1994. Position Papers for the OOPSLA’94 Embed-
ded Object-Oriented Production Systems Workshop
(EOOPS).
Forgy, C. L. 1982. RETE: A fast algorithm for the
many pattern/many object pattern matching prob-
lem. Artificial Intelligence 19:17-37.
Forgy, C. L. 1994. RAL/C and RAL/C++: Rule-
based extensions to C and C++. In EOOPS94 (1994).
Gehani, N. H., and Jagadish, H. V. 1991. Active
database facilities in ode. In Proceedings of the Seven-
teenth International Conference on Very Large Data
Bases, 327-336.
Gehani, N. H., and Jagadish, H. V. 1996. Ode as an
active database: Constraints and triggers. In Widom
and Ceri (1996). 207-232.
The Haley Enterprise. 1993. Rete++: Seamless Inte-
gration of Rules and Objects Using the Rete Algorithm
and C++.
Hanson, E. N. 1996. The Ariel project. In Widom
and Ceri (1996). 63-86.
Inference Corporation. 1987. Art Reference Manual.
Miranker, D. P.; Burke, F. H.; Steele, J. J.; Haug,
D. R.; and Kolts, J. 1993. The C++ embeddable
rule system. International Journal on Artificial In-
telligence Tools 2(1):33-46.
Potamianos, S., and Stonebraker, M. 1996. The
POSTGRES rule system. In Widom and Ceri (1996).
43-61.
Roberts, R. B., and Goldstein, I. P. 1977. The FRL
manual. AI Memo 409, Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology.
Srivastava, D.; Ramakrishnan, R.; Sudarshan, S.;
and Seshadri, P. 1993. Coral++: Adding object-
orientation to a logic database language. In Proceed-
ings of the Nineteenth International Conference on
Very Large Databases.
Stroustrup, B. 1991. The C-t+ Programming Lan-
guage. Reading, Massachusetts: Addison Wesley, sec-
ond edition.

Widom, J., and Ceri, S., eds. 1996. Active Database
Systems: Triggers and Rules for Advanced Database
Processing. San Francisco, California: Morgan Kauf-
mann.
Widom, J. 1996. The Starburst rule system. In
Widom and Ceri (1996). 87-109.

Knowledge Compilation 497

