
Approximate Knowledge Corn he First 

Alvaro de1 Val 
Departamento de Ingenieria Informatica 

Universidad Autonoma de Madrid 
28049 Madrid 

delval@ai.ii.uam.es 
http://www.ii.uam.es/-delval 

er Case 

Abstract 

Know Eedge compilation procedures make a knowledge 
base more explicit so as make inference with respect 
to the compiled knowledge base tractable or at least 
more efficient. Most work to date in this area has 
been restricted to the propositional case, despite the 
importance of first order theories for expressing knowl- 
edge concisely. Focusing on (LUB) approximate com- 
pilation (Selman and Kautz 1991), our contribution is 
twofold: 

0 We present a new ground algorithm for approxi- 
mate compilation which can produce exponential 
savings with respect to the previously known algo- 
rithm (Selman and Kautz 1991). 

d We show that both ground algorithms can be lifted 
to the first order case preserving their correctness 
for approximate compilation. 

Introduction 

Knowledge compilation procedures make a knowledge 
base (logical theory) C more explicit so as make infer- 
ence with respect to the compiled knowledge base C* 
tractable, or at least more efficient. The key idea is to 
invest time and space in an extra preprocessing effort 
which will later substantially speed up query answer- 
ing, in the expectation that the cost of compilation 
will be amortized over many queries. Knowledge is 
acquired and stored so as to be reused, so improving 
the efficiency of each occasion of use of knowledge is 
evidently a worthy goal. This is specially so because 
of the large potential for redundant work during the 
lifecycle of query-intensive knowledge bases. 

Compilation can be exact, or equivalence-preserving, 
when C* is equivalent to the source C, thus guarantee- 
ing efficient answers to all possible queries (see (de1 Val 
1994, Marquis 1995)). Alternatively, compilation can 
be approximate: we only require that the compiled the- 
ory “approximates” the source in some precise sense, 
and as result only a subset of the possible queries can 
be efficiently processed. In this paper, we will be con- 
cerned with approximate compilation, specifically with 
the approach introduced in (Selman and Kautz 1991, 

498 Knowledge Compilation 

Selman and Kautz 1995) of computing the Lowest Up- 
per Bound (LUB) of a theory C as a way to “approx- 
imate” C in some fixed “target language” ,+. Our 
contribution is twofold. 

First, we develop a new algorithm (GLUB-2) for 
computing ground LUB approximations, and show it 
correct for target languages closed under subsump- 
tion whose complement is closed under resolution. As 
shown in (de1 Val 1995), only closure under subsump- 
tion is needed for the correctness of the original al- 
gorithm (GLUB-1) (Selman and Kautz 1991), so the 
new algorithm has a more restricted scope of applica- 
bility; nevertheless, some of the most important target 
languages for approximate compilation, such as Horn, 
&quasi-Horn (clauses with at most k positive literals, 
for a fixed k), and others, satisfy this additional re- 
striction, as discussed below. The new GLUB-2 can 
be exponentially more efficient than the old GLUB-1. 

Second, we show that the main results on the prop- 
erties of both algorithms for computation of the &- 
LUB can be lifted to the predicate calculus under quite 
general conditions, with only some relatively mild ad- 
ditional assumptions about the behavior under instan- 
tiation resulting from the choice of target language. 

Almost all work in knowledge compilation to date 
considers only the propositional case. One reason for 
this is that first order compilation raises a number of 
significant and subtle issues such as termination of the 
compilation algorithms, finiteness of the compiled the- 
ory, and semidecidability of inference, which do not 
appear in propositional compilation and which are not 
as important for standard first order automated rea- 
soning as they are for compilation. Nevertheless, the 
need for a first order analysis of knowledge compila- 
tion is evident from the richer expressivity of pred- 
icate calculus. Even more than expressivity, we are 
often after conciseness. As an example common in the 
database and AI literature and practice, consider the 
case in which we assume a finite domain of objects. 
This can be expressed by a domain closure axiom, or 
less restrictively through an axiom expressing a fixed 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



finite upper limit on the cardinality of the universe of 
any satisfying interpretation. Any finite FOL theory C 
supplemented with such an axiom can be replaced by 
an essentially equivalent finite “propositional” theory 
consisting of ground clauses, possibly after the addi- 
tion of new constants. But the size of this proposi- 
tional theory can easily grow exponentially with re- 
spect to the initial FOL theory, as any n-ary predicate 
can yield up to Dn ground atomic instances for a do- 
main of size D. The problem is even more acute for 
model-based representations (Kautz and Selman 1992, 
Khardon and Roth 1994), as the size of the descrip- 
tion of just a single model can also grow exponentially, 
and the number of models doubly-exponentially. So 
even with finite domains the use of purely propositional 
compilation on propositional theories is computation- 
ally unfeasible, specially in comparison with the cost 
of compiling equivalent first order theories. 

In the category of related work, (Selman and Kautz 
1995) successfully deal with first order GLB (great- 
est lower bound) compilation. Also close to the ap- 
proach studied in this paper, for example in its em- 
phasis on “consequence finding” and restricted target 
languages, is the paper by (Inoue 1992). Some discus- 
sion of this work in connection with LUB approxima- 
tions can be found in (de1 Val 1995). Inoue’s method 
attempts to actuaZEy compute all the (target language) 
consequences of the input theory, even though there 
might be an infinite number of them. In contrast, the 
purpose of LUB approximations and other forms of 
compilation is only to ensure that all the (target lan- 
guage) consequences are eficiently derivable from the 
compiled theory. 

The structure of this paper is as follows. After some 
initial definitions which are useful for characterizing 
languages, we review the notion of LUB approxima- 
tion. Then we present the new ground algorithm, and 
subsequently we show that the results on the proper- 
ties of both ground LUB algorithms can be lifted to 
predicate calculus. We consider next the types of tar- 
get languages for which the algorithms are suitable, 
and we end with some discussion of issues in first or- 
der compilation. 

Definitions 

For our purposes, a language is simply a set of clauses 
over some fixed vocabulary of predicate symbols and 
term constructors. Alphabetic variants of clauses are 
regarded as identical. We use l for the “complete lan- 
guage” consisting of all clauses on the given vocabu- 
lary, & for the chosen target language, andz (or CR) 
for l\ CT, the complement of the target language. A 
theory is also a set of clauses. We assume basic famil- 

iarity with resolution inference procedures (including 
factoring), and associated concepts and terminology 
such as resolution trees, etc. 

Definition 1 A clause C subsumes a clause D iff 
Ca C_ D for some substitution 0’. C B-subsumes D 
iff C subsumes D and C has no more Ziterals than D. 

In the propositional case both notions of subsumption 
are identical to the subset relation. In FOL, if C sub- 
sumes D but does not B-subsume it, then there exists 
a factor Ca of C such that Ca &subsumes D. 

efinition 2 A cZausaZ Zanguage &J is closed under 
(&) subsumption $ for every C E CT, if a clause C’ 

subsumes (O-subsumes, respectively) C then C’ E CT. 

Definition 3 A cZausaZ language ,& is closed under 
resolution i# for every B, C E LT, if A is a resozvent 

ofB andC thenAG&. 

We will also refer to closure under ground subsump- 
tion and ground resolution, meaning the restriction of 
the corresponding properties to the ground portion of 
the given language. 

Definition 4 A clause D is a strict ground instance 
of a clause C # D is ground, Co = D for some sub- 

stitution (T, and C and D contain the same number of 
predicate occurrences. C is said to be a strict general- 
ization of D. 

Note that if D is a ground instance of C then D is a 
strict ground instance of either C or a factor of C. For 
example, let C = P(X) V P(y). P(a) is a (non-strict) 
ground instance of C, and a strict ground instance of 
a factor of C, namely P(z). 

Definition 5 A cZausaZ language &J is closed under 
strict ground instantiation if D E .$ whenever C E 

LT and D is a strict ground instance of C. 

Obviously, if CT is closed under ground instantiation 
then LR = G is closed under strict generalization of 
ground clauses. That is, if D E CR is a strict ground 
instance of C then C E CR. 

kUI3 approximations 
LUB approximations were introduced in (Selman and 
Kautz 1991) for the Horn case, and then generalized 
in (Kautz and Selman 1991, Selman and Kautz 1995). 
The basic idea is to approximate a theory in a given 
source language by bounding from above and from be- 
low the set of models of the theory, where the bounds 
can be expressed in a computationally less difficult (or 
simply better suited to some specific task) target lan- 
guage CT. We will only be concerned with one type 
of bound, the &-lowest upper bound (IST-LUB for 
short) Clzlb of the input theory C. For reasons of 

Knowledge Compilation 499 



space, we focus only on those details that are tech- 
nically important to the paper; additional motivation 
and applications of the LUB approach can be found 
in (Selman and Kautz 1991, Selman and Kautz 1995, 
de1 Val 1995). Let A4ocZ(I’) denote the set of models of 
r, and let k denote the classical logical consequence 
relation. The &-LUB of a theory C is the strongest 
theory of the language J!ZT entailed by C, that is: 

DefinitiOn 6 Cl& c CT is an LT-lowest upper bound 
(LUB) Of c & L ifl Mod(C) 6 k!%d(&,b) (i.e. club 

is an LT-upper bound oft) and for no c’ & & it is 
the case that Mod(C) 5 Mod@‘) C Mod(&b), 

The CT-LUB of a theory is equivalent to the con- 
junction of all &-upper bounds; hence it always exists 
and is unique up to logical equivalence. Furthermore, 
when the query language is a subset of & then only 
the &-LUB is needed, i.e. the ET-LUB is deductively 
COn@dX with reSpeCt to CT-queries: 

Theorem 1 (de1 Val 1995, theorem 1) Let Cl&, C LT, 
C C 1s. The following statements are equivalent: 

0 Club is the CT-LUB of C. 

More generally, we can use the &+LUB Cl& and 
the LT-GLB Cglb of C (GLBs are defined similarly) 
for answering queries whether C k C, for any clause 
C, as follows. If &ub b C then C i= C, and if Cglb &c= C 
then C k C (otherwise, answer “don’t know”, or use 
a complete theorem prover to answer). 

Computing ground LWBs 

GLUB-1, the previously known algorithm for comput- 
ing the CT-LUB of a ground (propositional) theory, is 
due to (Selman and Kautz 1991). The method consists 
in running a resolution procedure to exhaustion, under 
the restriction that at least one parent clause in each 
resolution step is not in the target language. We pro- 
pose a new method, GLUB-2, which strengthens this 
requirement by disallowing resolutions between clauses 
both of which are not in LT. E.g. if LT is the Horn 
language then the old algorithm requires that at least 
one parent clause is non-Horn, whereas the new al- 
gorithm requires that exactly one clause is non-Horn. 
Leaving aside details about deletion strategies (specif- 
ically deletion of subsumed and tautologous clauses), 
both algorithms can be succintly described as follows: 

8 GLUB-1 (c, &): Compute the resolution closure 
of C under the restriction that at least one parent 
clause in each reso&ion step is in LR = CT, storing 
,&-clauses in C$ and LR-clauses in C]R. 

500 Knowledge Compilation 

@ GLUB-2@,&): Compute the resolution closure 
of C under the restriction that exactly one parent 
ChUse in each RsOhtiOn step is in CR = G, storing 
&+clauses in Cc and CR-clauses in IX&. 

The CT-LUB of C is given by the final value of Cb, 
hence C$ and C$ are equivalent for those target lan- 
guages in which both algorithms are correct. GLUB-1 
was proved correct for LUB generation for any target 
language closed under subsumption, and extended to 
arbitrary target languages, in (de1 Val 1995). GLUB-2, 
as discussed below, is correct if and only if the target 
language is closed under subsumption and its comple- 
ment is closed under resolution. Only GLUB-1 has 
been proven compatible with deletion strategies such 
as deletion of subsumed and tautologous clauses. 

Any resolution deduction satisfying the restriction 
of GLUB-1, is called an CR-resolution deduction (for 
the requirement that at least one parent clause is in 
the “restricted language” lR).l Any resolution de- 
duction satisfying the restriction of GLUB-2 is called 
and L&T-resolution deduction. We use the following 
notation for (propositional or first order) derivability 
relations, where I’ is a set of clauses and C a clause: 

r I- C if there is a resolution deduction of a clause 
C’ that subsumes C from I’. 

r t-R C if there is an LR-resolution deduction of a 
clause C’ that subsumes C from I’. 

I? ART C if there is an LRf+resolution deduction 
of a clause C’ that subsumes C from r. 

r b C (I’ IJg C) if some clause of r subsumes (8- 
subsumes, respectively) C. 

I? I-* C if there is a resolution deduction of C (not 
just of a clause C’ subsuming C) from I’. Similarly 
r I-; C, etc. 

The key results regarding the deductive power of 
these algorithms in the ground case are as follows. Here 
C is a set of ground clauses, and C is a ground clause. 
Cj is the final value of the variable Cj after execution 
of the respective algorithm. 

Lemma 2 (de1 Vu1 1995, lemma 6) (GLUB-1) C I- C 

ifl either C$ I- C or C& b C. 

Lemma 3 (GLUB-2) Suppose LT is closed under sub- 

sumption and LR = G is closed under resolution. 
C I-* C iff either C$ I-* C or CL I-* C. 

‘This terminology is consistent with standard usage 
when CR is replaced by the specific language name. Var- 
ious common forms of resolution, such as unit resolution, 
input resolution, set of support resolution, and semantic 
resolution, are Special cases of LR-resolution. Hence the 
results of this paper also provide a partial analysis of a 
whole family of important resolution procedures. 



It is easy to show with lemma 3 that C$ is the &P 
LUB of C when the assumptions about the target lan- 
guage and its complement are satisfied. We defer the 
formal statement of this result to the first order case. 

Apparently, the difference between both algorithms 
is captured by the replacement of CL b C by Ci t-* 
C. For certain kinds of clauses (mostly those of CR, 
in particular the IZR prime implicates of C), GLUB-1 
computes them all whereas GLUB-2 only gives us the 
means (that is, C&) to derive them all. If we are only 
interested in .&-queries, on the other hand, then the 
extra effort invested by GLUB-1 is clearly superfluous. 
In particular, using the family of theories of (de1 Val 
1995, corollary 12), on which GLUB-2 performs no res- 
olutions at all, we can easily show: 

Theorem 4 GLUB-2 can produce exponential space 
and time savings by comparison with GLUB-1. 

First order compilation 

We now proceed to lifting the correctness of both al- 
gorithms to the FOL case. GLUB-1 and GLUB-2 are 
essentially identical in the first order case, with an im- 
portant qualification: Factoring is treated as a separate 

inference rule, which can be applied at any time to gen- 
erate new clauses, but which is not regarded as part of 
the resolution rule. Thus, in the first order case, with 
CT = Horn, both GLUB-1 and GLUB-2 allow reso- 
lutions between e.g. a non-Horn clause and a Horn 
factor of a non-Horn clause, and forbid resolutions be- 
tween a Horn clause and a Horn factor of a non-Horn 
clause.” Obviously, this implies that the subsumption 
criterion for deletion, if any, should be &subsumption, 
as otherwise all factors would be deleted. 

Not every form of first order compilation is guar- 
anteed to terminate on every instance, in partic- 
ular forms of compilation which are complete for 
(&)consequence-finding. The first requirement in or- 
der to prove the correctness of the lifted algorithms is 
therefore to shift perspective from the possibly infi- 
nite sets Cf to a more computational view of eventual 
derivability in finite time, by restating lemmas 2 and 3 
in terms of the deduction method used, LR- or LR.CT- 
resolution. The next theorem does precisely this, and 
then lifts both kinds of deductions to the first order 
with an additional assumption about instantiation: 

Theorem 5 Suppose LT and LR = z are closed un- 

der strict ground instantiation. Then: 

1. (GLUB-I) C /= C in: 

(a) either th ere exists a set of (target language) 
clauses I? z & such that: 

“We view the latter case simply as a resolution between 
two Horn clauses (one of which happens to be obtained by 
factoring from a non-Horn clause, but this is irrelevant). 

for every Ci E I?, C t-k Ci; 

(b) or c t-_R C. 

2. (GLUB-2) Suppose CT is closed under ground sub- 
sumption and CR is closed under ground resolution. 

C t-* C iff there exists a set of clauses r such that: 

@ eitherrg& Orrc&. 

This theorem is compatible with a non-terminating 
inference procedure in the sense that it guarantees that 
whenever C ‘t= C we will eventually derive in finite 
time, with the appropriate form of resolution, either C 
or some finite set I? with the required properties. 

The ground version of theorem 5 is a direct conse- 
quence of lemmas 2 and 3. The theorem is obtained 
by lifting its ground version through a variant of a 
technique due to (Slagle et al. 1969). Using closure 
under strict instantiation of both sublanguages, we en- 
sure that the lifted deductions are of the required kind. 

The correctness of GLUB-1 and GLUB-2 for com- 
puting the CT-LUB in the first order case follows di- 
rectly from theorem 5, interpreting the sets Cf infini- 
tistically if needed. 

Theorem 6 (First order correctness of GLUB-l and 

GLUB-2) Suppose CT and LR = z are closed under 

strict ground instantiation. Then: 

1. 

2. 

(GLUB-1) If C T is closed under O-subsumption then 

C$ is the &r-LUB of C. 

(GLUB-2) If C T is closed under 8-subsumption and 

LR is closed under ground resolution, then C$ is the 

,!ZT-LUB of C. 

In particular, both Ch and C$ are sufficient to an- 
swer all CT-queries. Other properties of the GLUB 
algorithms can also be lifted easily. In particular: 

Theorem 7 Suppose & and LR are closed under 
strict ground instantiation. 

(GLUB-1) If L T is closed under resolution and 
factoring then Ck contains all CR-prime implicates 

of c (i.e. all LR-COnSequenceS Of c nOi! properly 8- 

subsumed by some other consequence of C). 

(GLUB-2) If C T is closed under 8-subsumption, 
resolution, and factoring, and CR is closed under 
ground resolution then C& entails (but does not nec- 
essarily contain) all CR-prime implicates Of c. 

cl 
3Cr is closed under 

aUSe iS alSo in LT. 

factoring if every factor Of an CT- 

Knowledge Compilation 501 



Target languages 

The results of the previous section show that lifting the 
results on LUB approximations to the first order case 
is rather subtle, involving quite a few properties of lan- 
guages. Fortunately, these turn out to be the “right” 
properties, in the sense that most interesting target 
languages which have the corresponding properties in 
the ground case also have them in their natural gen- 
eralization to the first order. We briefly discuss some 
of these target languages next, noting first that all of 
them (and their complements) are closed under strict 
g-round instantiation.4 

1. Any subset of k-CNF (at most k literals per 
clause, for some fixed k) which is closed under t9- 
subsumption, e.g. k-Horn (Horn clauses with at most k 
literals). As in the ground case, we must use GLUB-1, 
since their complements are generally not closed under 
(ground) resolution. This choice of target language will 
tend to ensure small LUB approximations. 

2. Horn and more generally k-quasi-Horn (clauses 
with at most k positive literals, for a fixed k) is closed 
under &subsumption (and for k = 1, under resolution 
and factoring). Furthermore, its complement is closed 
under ground resolution. Hence one can use GLUB-2, 
and in the Horn case also theorem 7. 
3. The language LT = C+J~~L consisting of all 

clauses that do not contain instances of literals from 
a satisfiable set L of literals. E.g. L can be an in- 
terpretation, or, in diagnosis, the positive abnormality 
literals. See (de1 Val 1995, Inoue 1992) for applications 
of this kind of target language. &lE= is closed un- 
der t9-subsumption and resolution, and its complement 
is closed under resolution as L cannot contain com- 
plementary literals. Hence GLUB-2 can be used and 
theorem 7 can also be applied. 

The combinations of properties which are required 
for each algorithm to be correct in the first order case 
are in a sense quite fortunate. For example, non- 
Horn is not closed under ground instantiation (Q(a) is 
a ground instance of Q (2) V Q(y)) but it is closed under 
strict ground instantiation. Neither the k-CNF lan- 
guages nor the k-quasi-Horn languages are closed un- 
der (standard) subsumption (e.g. the non-Horn clause 
C = P(x, y) V P(y, z) V ~Q(z,z) subsumes the Horn 
clause D = P(z, s) v ~Q(z, z)) yet they are all closed 
under B-subsumption. Finally, of essential importance 
for GLUB-2, we only need closure under ground res- 
olution of the complement language in order for the 
first order GLUB-2 to work. For example, the com- 

*The only interesting languages that seem to be ruled 
out by the instantiation conditions are ground target lan- 
guages, as their complements are not closed under ground 
instantiation. 

502 Knowledge Compilation 

plement of k-quasi-Horn is closed under ground res- 
olution, but not under general resolution (e.g. the 
two non-Horn clauses ~(5, y) V p(y, x) V lq(z, y, x) and 
a(v, vu, v) V p(v, w) have as resolvent the Horn clause 
p(v, v)). In all these cases, the corresponding version 
for the lifted algorithm of any of the properties required 
for the ground case behaves just perfectly for the lifted 
versions of the languages of interest. 

Issues in first order compilation 
As mentioned, the nature of first order inference raises 
a number of significant and challenging issues for 
knowledge compilation. We briefly discuss them next: 

The complexity of inference and the choice 

of target language. While certain properties of lan- 
guages can be lifted relatively easily to FOL, the com- 
plexity of inference is not one of them. In partic- 
ular, tractable target languages are much harder to 
find. The non-ground Horn language (with function 
symbols) is in essence as expressive as full first order 
predicate calculus (Hodges 1993, section lo), hence en- 
tailment and satisfiability when using first order Horn 
LUBS are at best semidecidable; whereas they are 
polynomially decidable in the ground case. Recall how- 
ever that the choice of target language can also be 
guided by the desire to obtain a theory which is com- 
plete with respect to &-queries, while discarding other 
information which is “irrelevant” (for a given task). 
Once the &-LUB is computed, ensuring this degree 
of relative completeness, it can be further compiled by 
some other method. 

Termination. Even for decidable subsets of FOL, 
compilation algorithms are not always guaranteed to 
terminate. Consider the following theories: 

Cl : 1e(zl, 22) v p(zl, “2); 

‘4Y1, Y2) v l&42, Y3) v P(Yl, Y3). 

cg : 1e(21,22) V p(zl,22); 

‘4YI, Y2) v lP(Y2, Y3) v P(YI, 93) v &I, Y3). 

c3 : l4& Y) v lfh 9); 
f+> d v fb7 Y)i 
le(zl,22) V p(zl, 22); 
‘4Yl, Y2) v lP(Y2YY3) v P(Yl, Y3). 

For simplicity, let & be the Horn language. Then: 
1. Any approach which is complete for consequence- 

finding, such as (Minicozzi and Reiter 1972, Inoue 
1992) fails to terminate with either theory, since they 
all have an infinite number of prime consequences. 
Both GLUB-1 and GLUB-2 terminate with Cl, with- 
out performing any resolutions at all. 

2. GLUB-1 fails to terminate on Cz, which has an in- 
finite number of non-Horn unsubsumed consequences. 
GLUB-2 terminates almost immediately. 



3. GLUB-1 and GLUB-2 fail to terminate on Cs, 
generating an infinite sequence of clauses of the form: 

le(x1, x2) V le(x2, x3) V . . . V 7e(xn--1, x,) V p(xl, zn); 
and 

f(xl,22) V le(x2, x3) V . . . V 7e(xn--l, xn) V p(21, x,). 

Note that the corresponding Horn LUBs are in all 
cases finitely axiomatizable, so non-termination cannot 
be justified on these grounds. Furthermore, entailment 
with respect to any of these theories is decidable, as 
they have a finite Herbrand universe, so the use of a 
decidable subset of FOL is not sufficient to guarantee 
termination. 

Fairness and completeness. While it would cer- 
tainly be desirable to have good termination crite- 
ria, there is neverthless an important sense in which 
the lack of termination guarnatees does not affect the 
completeness of the compilation procedures, any more 
than it affects the completeness for consequence find- 
ing of a given resolution procedure. What is needed 
in both cases is a fair control strategy, which ensures 
that any derivable clause is eventually derived in finite 
time. In the case of procedures which are complete for 
consequence-finding, fairness requires that every two 
clauses which are queued for resolution are eventually 
resolved together. In the case of compilation proce- 
dures, we need an additional dimension of fairness. 
Namely, the compilation procedure must be interleaved 
or executed in parallel with the query answering proce- 
dure. For any given C E & the algorithms will eventu- 
ally compute a finite set I? with the desired properties 
(being an upper bound of C and entailing C). Since 
we interleave compilation and query answering (which 
is also assumed to use a fair control strategy), we will 
eventually answer that C does follow from C, in finite 
time. If C does not follow from C then we may not 
be able to ever tell, however. Similar comments apply 
to other approaches to compilation. This interleaving 
strategy is therefore essential in the absence of termi- 
nation guarantees, in contrast with the usual view of 
compilation according to which query answering only 
begins after compilation is completed. 

Discussion 
We have provided a new ground algorithm for comput- 
ing LUB approximations, and shown that both the new 
and the old algorithm can be lifted under very general 
conditions to the first order case. Because FOL is much 
more concise (let alone expressive) than propositional 
logic, the feasibility of any approach to knowledge com- 
pilation depends essentially on its applicability to the 
first order case. While propositional methods are often 
useful and often used in practice, through instantia- 
tion in finite domains, we believe a more practical and 

more principled approach requires us to address the 
first order case head on. We hope the techniques of 
this paper can be used for other approaches to knowl- 
edge compilation, most of which have only focused on 
the propositional case. At the same time, there are a 
number of open issues which arise in first order com- 
pilation and which need to be addressed if the general 
idea of knowledge compilation is to be applied to the 
first order calculus in a well-behaved manner. 

eferences 
Alvaro de1 Val. Tractable databases: How to make propo- 
sitional unit resolution complete through compilation. In 
J. Doyle, E. Sandewall, and P. Torassi, editors, KR’94, 
Proceedings of Fourth International Conference on Prin- 
ciples of Knowledge Representation and Reasoning, pages 
551-561, 1994. 

Alvaro de1 Val. An analysis of approximate knowledge 
compilation. In IJCAI’95, Proceedings of the Fourteenth 
International Joint Conference on Artificial Intelligence, 
pages 830-836, 1995. 

Wilfred Hodges. Logical features of Horn clauses. In 
Dov M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, 
Handbook of Logic in Artificial Intelligence and Logic Pro- 
gramming, pages 449-503. Oxford University Press, 1993. 

Katsumi Inoue. Linear resolution for consequence-finding. 
Artificial Intelligence, 56:301-353, 1992. 

Henry Kautz and Bart Selman. A general framework 
for knowledge compilation. In Proceedings of the Inter- 
national Workshop on Processing Declarative Knowledge 
(PDK), 1991. 

Henry Kautz and Bart Selman. Horn approximations of 
empirical data. Artificial Intelligence, 1992. 

Roni Khardon and Dan Roth. Reasoning with models. In 
AAAI’94, Proceedings of the Twelfth National American 
Conference on Artificial Intelligence, pages 1148-1153, 
1994. 

Pierre Marquis. Knowledge compilation using theory 
prime implicates. In Proceedings of the Fourteenth Inter- 
national Joint Conference on Artificial Intelligence, pages 
837-843, 1995. 

Eliana Minicozzi and Raymond Reiter. A note on lin- 
ear resolution strategies in consequence-finding. Artificial 
Intelligence, 3:175-180, 1972. 

Bart Selman and Henry Kautz. Knowledge compilation 
using Horn approximations. In Proceedings of the Ninth 
Conference of the AAAI, 1991. 

Bart Selman and Henry Kautz. Knowledge compilation 
and theory approximation. Journal of the ACM, in press, 
1995. 

J. R. Slagle, C. L. Chang, and R. C. T. Lee. Completeness 
theorems for semantic resolution in consequence finding. 
In Proceedings of the International Joint Conference on 
Artificial Intelligence, 1969. 

Knowledge Compilation 503 


