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Abstract 
We present a new algorithm (called TPI /BDD) for 
computing the theory prime implicates compilation of a 
knowledge base X. In contrast to many compilation 
algorithms, TPI /BDD does not require the prime implicates 
of Z to be generated. Since their number can easily be 
exponential in the size of X, TPI/BDD can save a lot of 
computing. Thanks to TPI/BDD, we can now conceive of 
compiling knowledge bases impossible to before. 

Introduction 
Many problems from various AI fields require 
propositional reasoning. Unfortunately, the computational 
complexity of querying a propositional knowledge base X 
is high (CLAUSE ENTAILMENT is co-NP complete); 
accordingly, every query answering algorithm runs in time 
exponential in the size of Z in the worst case. 

In order to circumvent the intractability of propositional 
reasoning, several approaches have been proposed so far. 
Among them is equivalence-preserving compilation. 
Compiling a knowledge base Z consists in translating 
(compiling) it during an off-line preprocessing phase into 
an equivalent form (a compilation) from which on-line 
query answering is tractable. This approach allows on-line 
response time to be sped up as soon as the compilation cost 
is amortized over a sufficiently large set of queries. 

In the following, we are concerned with theory prime 
implicates compilations of knowledge bases. In 
(Marquis 1995), the main advantages of such compilations 
w.r.t. on-line reasoning have been exhibited. Hereafter, we 
complete this study by focusing on the off-line compiling 
process. Indeed, equivalence-preserving compilation can 
prove helpful only if the compilation time is reasonable for 
ofS-line computation (de1 Val 1994). This motivates the 
search for efficient algorithms (w.r.t. off-line compiling). 

From a theoretical point of view, it is very unlikely that a 
polynomial time compilation function exists; indeed, for 
every equivalence-preserving compilation technique, the 
size of the compiled knowledge base is not polynomial in 
the size of the original knowledge base in the worst case, 
unless NP E P / poly (this is a direct consequence of 
Theorem 5 from (Kautz & Selman 1992)). Accordingly, 
our main objective is to increase the number of knowledge 
bases which can be compiled in practice, only. 

To this end, we propose a new algorithm (called 
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TPI /BDD) for computing the theory prime implicates 
compilation of a knowledge base ZZ w.r.t. a tractable theory 
@. Actually, TPI/BDD computes the minimal implicates 
of C w.r.t. @, which coincide with its theory prime 
implicates each time Q, is a logical consequence of C. 
TPI /BDD is based on PI /BDD (Madre & Coudert 

1991), one of the most efficient prime implicates algorithm 
we found in the literature. Both algorithms rely on a BDD 
(Binary Decision Diagram) representation of C; 
particularly, they do not require C to be put into CNF in a 
preliminary step and they avoid redundancy by sharing 
identical formulas embedded at different places in C. 
The key of TPI /BDD is to compute the minimal 

implicates of X recursively from the minimal implicates of 
its restriction formulas (i.e. the formulas rooted <( below >> 
Z in the BDD). Thus, every implicate of a restriction 
formula of C which is not minimal w.r.t. 1~ can be 
removed as soon as it is generated. Accordingly, 
TPI / BDD does not require the prime implicates of Z to be 
computed; this contrasts with the algorithm TPI pointed 
out in (Marquis 1995) and with many prime implicates- 
based compilation functions, including PI (Reiter & de 
Kleer 1987), FPI,, FPI, (de1 Val 1994) and those given 
in (Mathieu & Delahaye 1994). Since the number of prime 
implicates of Z can easily be exponential in the size of Z, 
TPI /BDD can save a lot of computing. Thus, we show 
that the number of clauses generated by TPI /BDD is 
always smaller than the number of clauses generated by 
PI /BDD; as a consequence, the number of deduction 
checks (w.r.t. a,> performed by TPI /BDD can be 
significantly lower than the number of standard 
subsumption checks performed by PI / BDD (even if this 
is not always the case). We present some preliminary 
experimental results providing evidence for the substantial 
computational savings achievable with this new algorithm. 
Because we can now conceive of compiling knowledge 
bases impossible to before, TPI /BDD gives to the theory 
prime implicates compilation technique a decisive 
advantage over prime implicates-based techniques. 

The rest of this paper is organized as follows. After 
some formal preliminaries, prime implicates, theory prime 
implicates and minimal implicates are successively 
defined. On this ground, TPI /BDD is presented and 
illustrated. Finally, the performances of TPI /BDD are 
analyzed and compared with those offered by PI/BDD. 
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Formal Preliminaries 
Let PS be a finite set of propositional variables. PROPpS 
denotes the propositional language built in the usual way 
upon PS and the connectives. 

The notions of interpretation over PROPpS, model, 
insatisfiable formula, valid formula, logical entailment 1 
and logical equivalence = are defined in the usual way. 
PROPpS / = denotes the quotient set of PROPpS induced 
by =. We shall note 0 (resp. 1) the representative of the 
class of all the insatisfiable (resp. valid) formulas in 
PROPpS / =. 

Let Q be a finite set of formulas. b denotes the pre- 
ordering over PROPpS defined by CT b z iff Q b <T a Z. 
Let =‘Q, denote the equivalence relation over PROPpS 
induced by b and defined by CT =Q, z iff 0 b z and 
z b CT. PROPpS / =a, denotes the quotient set of PROPpS 
induced by =<p. 

Given a set of clauses EC, min(E, b) denotes the subset 
of Z consisting of all its minimal elements w.r.t. the 
ordering b over PROPpS / =m. The number of clauses in 
X is noted #I;. 

The Shannon expansion of a propositional formula v 
around variable x is the formula (Tx A vO) v (x A vi) of 
PROPpS / =, where ~0 (resp. yri) is the (so-called direct 
restriction) formula of w (w.r.t. x) obtained by replacing 
every occurrence of x in w by 0 (resp. 1). More generally, 
when S is a set of variables occurring in v, 0 is a 
restriction formula of u/ (w.r.t. S) iff CT is obtained by 
substituting (uniformly) in v every occurrence of variables 
from S by 0 (or by 1). Shannon expansion can be iterated 
until all the variables occurring in w are eliminated. The 
corresponding decomposition tree is called a Shannon tree 
of \v. In many situations, some nodes in this tree are 
redundant; they can be removed to produce a directed 
acyclic graph, called a Binary Decision Diagram (BDD) of 
v (see (Bryant 1992) for a survey). 

Prime Implicates, Theory Prime Implicates 
and Minimal Implicates 

Let Y and @ be finite sets of formulas: 

e A prime implicate (pi for short) of Y is a clause 7t s.t.: 
8 ‘I’ 1 ‘IE holds, and 
a for every clause XII;‘, if Y b n;’ and n’ b n; hold, then 

n’ = 7~ holds. 
e A theory prime implicate (tpi for short) of Y w.r.t. @ is 

a clause n s.t.: 
. Y b ‘IC holds, and 
0 for every clause rc’, if Y b ‘TE’ and n;’ b n hold, then 

n’ -Q, n: holds. 
m A minimal implicate (mi for short) of Y w.r.t. @ is a 

clause n s.t.: 
0 Y k n holds, and 
0 for every clause z’, if Y \ ‘IC’ and n;’ b n; hold, then 

n’ =(I[, n holds. 

PI(Y) (resp. TPI(Y, a), MinPI(Y, Q)) will denote the 
set of pis (resp. tpis, resp. mis) of Y (resp. w.r.t. @). 

Clearly enough, the pis of Y are the minimal elements 
w.r.t. b in the set of all the clauses implied by Y (the 
so-called implicates of Y). TPI(Y, @) is composed of the 
minimal elements w.r.t. b in the set of all the implicates 
of Y u @. MinPI(Y, 0) is composed of the implicates of 
Y which are minimal w.r.t. b. Tpis (resp. mis) are 
considered up to =m: only one representative 
Per equivalence class is kept in TPI(Y, <D) 
(resp. MinPI(Y, @)). 

Example 1 Let Z =def ( p v q v r, r v s, lp v q, p v lq, 
-qv7r} and@=def{7pvq, pvlq, -qv-r}. 
eb PI(Z) = (-9~ v -c, 7p v s, p v r, r v s, lp v q. q v r, 

pvlq, lqv+-, 7qvs) (up to 3). 
0 TPI(Z, @) = MinPI(X, @) = {r v s, p v r} (up to SQ). 

The interplay between these three notions is made 
precise by Proposition 1. 

Proposition 1 Let Y and @ be finite sets of formulas. 
1) PI(Y) = TPI(Y, { }) = MinPI(Y, { )) (up to =). 
2) TPI(Y, @)=min(PI(Y u a), b) (up to =a,). 
3) MinPI(Y, @) = min(PI(Y), b) (up to =Q). 
4) TPI(Y, @) = MinPI(Y u Q, @) (up to =<D). 

As a straightforward consequence of Proposition l(2) 
(resp. l(3)), the number of tpis (resp. mis) of Y w.r.t. any 
Q, is always lower (or equal) to the number of pis of Y. 

Corollary Let Y and @ be finite sets of formulas. 
#TPI(Y, @) I #PI(Y) and #MinPI(Y, @) I #PI(Y). 

Proposition 2 shows that the tpis (resp. mis) of a 
disjunction of formulas can be computed from the tpis 
(resp. mis) of its d’sjuncts. Several pi algorithms, including 
(Slagle, Chang & Lee 1970; Jackson & Pais 1990) are 
based on it when restricted to the pi situation (i.e. CD = { }). 

Proposition 2 Let Yi, . . . . YIP and @ be finite sets of 
formulas. 
1) TPI(Yr v . . . v Y,, @) = min({ n;i v . . . v xi,; 

EiE TPI(Yi,@)foriE [1 ..p]},b)(uptoEa). 
2) MinPI(Yi v . . . v Y,, @) = min( { 7t1 v .,. v ‘TC,; 

ni E MinPI(Yi, @) for i E [ 1 . . p] } , b) (UP to =a)). 

Proposition 3 shows that the pis (resp. mis) of a formula 
can be computed from the pis (resp. mis) of its direct 
restriction formulas and the pis (resp. mis) of their 
disjunction. 

Proposition 3 Let Y and Q, be finite sets of formulas. Let 
(TX A Yo) v (x A Y,) be the Shannon expansion of Y 
around any variable x occurring inY. 
1) PI(Y) = PI(Yo v Y,) u {TX v 7~; rc E PI(Yi) and 

V n’~ PI(Yo v Yi), ~‘#7c} u {x v X; n: E PI(Yo) and 
)J 7fE PI(Y0 v Y,), 7c’&r} (up to -). 

2) MinPI(Y, a) = min(MinPI(Yo v Y i, a,> u ({lx} v 
MinPI(Yr, @)) u ({x} v MinPI(Yo, @)), b) 
(up to =a). 
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Proposition 3(l) (pi situation) is (the dual of) the main 
property the algorithm PI /BDD relies on. It shows how 
some subsumption checks can be avoided between clauses 
n;’ from the three sets PI(YO v Yr), {TX v n; n: E PI(Wi)}, 
(x v n; n; E PI(YO)}. Indeed, such n’ are pis (hence, no 
intra-set subsumption checks are necessary); additionally, 
every d in (7x v n; n; E PI(Yi) } (resp. { x v n;; 
7c E PI(Yo)}) contains literal lx (resp. x); subsequently, n’ 
can neither subsume nor be subsumed by a clause from 
{x v n; n; E PI(YO)} (resp. {-IX v n;; Z E PI(Y,)}) 
(i.e. some inter-set subsumption checks can be avoided). 

Proposition 3(2) (mi situation) is the key property on 
which our algorithm TPI / BDD is based. Unlike PI / BDD, 
both intra-set and inter-set deduction checks (w.r.t. @) 
between clauses from the three sets MinPI(Ya v Yr, @), 
{ --rx v n; n E MinPI(Yi, <D) } , { x v n;; ‘II; E MinPI(Yo, @) } 
are required in the general case. 

Thanks to Propositions 2 and 3, the pis (resp. mis) of Y 
(w.r.t. a,) can be characterized from the pis (resp. mis) of 
its direct restriction formulas Yo and Yi. Contrastingly, the 
tpis of Y w.r.t. Q cannot be characterized from the tpis of 
its restriction formulas. Fortunately, we are interested in 
computing tpi compilations; in this situation, the tpis of Y 
w.r.t. <I[, can be computed as the mis of Y w.r.t. @ since tpis 
and mis coincide when Y b Q, (see Proposition l(4) and 
Example 1 for illustration). 

A New Algorithm for TPI Compilations 
Based on complexity considerations, our central motivation 
is to design a new tpi compilation algorithm which does not 
require the pis of 2 to be generated; indeed, because it 
does not satisfy this requirement, the algorithm TPI 
(Marquis 1995) appears as very time consuming, so 
impractical for many applications. 

Additionally, TPI applies to CNF knowledge bases, 
only. While any formula can be put into CNF in linear time 
(introducing new variables), (Ngair 1993) shows that the 
cost of generating additional new pis (containing such new 
variables) usually outweighs the benefit of the compact 
encoding (an exponential number of useless pis can be 
generated). This is also true for tpis: in the general case, the 
restriction of accepting only CNF formulas as input leads to 
significant computational overhead. Accordingly, we are 
looking for a tpi compilation algorithm which accepts any 
propositional formula as its input. 

An Outline of PI/BDD 

Because tpis (and mis) are direct generalizations of pis 
(cf. Proposition l(l)), we turn towards pi algorithms 
satisfying this last constraint in the objective of extending 
them to the tpi situation. 

Though many pi algorithms can be found in the 
literature, only one algorithm, namely (Madre & 
Coudert 1991), fulfills this requirement, Since the 
algorithm sketched in (Madre & Coudert 1991) was 
oriented towards the generation of prime implicants (the 
dual notion of pi), we adapted it to compute pis and called 

the resulting algorithm PI / BDD. 
Interestingly, PI /BDD is based on a BDD 

representation of Z; because it avoids redundancy by 
sharing identical restriction formulas embedded at 
different places in C, it is one of the most efficient pi 
algorithm we can find (especially when non-normalized 
knowledge bases are considered). 

Basically, PI/BDD relies on Propositions 2 (restricted 
to the pi situation) and 3(l). Some additional properties 
allow one to avoid useless computations; in particular, 
when ‘u, and Yi are the direct restriction formulas of Y 
(w.r.t. x), every clause of PI(Y0) n PI(Yr) is a pi of Y. 
More generally, every clause of PI(Y0) (resp. PI(Yi)) 
which is subsumed by a clause of PI(Yl) (resp. PI(YO)) is 
a pi of Y; subsequently, we can remove such clauses from 
their respective sets before computing PI(YO v Yi) as 
min({no v ni; 7Ci E PI(Yi) for i E [0 . . l] }, k) 
(see (Madre & Coudert 1991) for details). 

TPI/BDD 

The key of TPI/BDD is to compute the mis of X 
recursively from the mis of its restriction formulas. 
Accordingly, every implicate of a restriction formula of I: 
which is not minimal w.r.t. FQ can be removed as soon as 
it is generated. To be more specific, TPI /BDD basically 
consists in computing recursively the rnis of each 
restriction formula of Z in a bottom-up way from its BDD 
representation, thanks to Propositions 2(2) and 3(2). 

In order to avoid useless computations, some additional 
(simple) properties are also used. They generalize to the 
mis situation the properties used to improve PI /BDD, as 
evoked above. Thus: 
m If x0 and nl are mis of the same formula, performing 

deduction checks (w.r.t. @) between no and nTcI is 
useless (both are necessarily minimal w.r.t. 1~). 

e If clauses n;o and 7ti are s.t. no b nl then, for every 
clause ‘IC, ~0 v x b ni v ;TG holds. 

We are now ready to describe the algorithm TPI /BDD: 

Function TPIIBDD(Y, a,) 
% Input : two formulas Y and Q s-t. Y 1 a. 
% output : the set TPI of tpis of Y w.r.t. a. 
1. Compute a BDD of Y and put its nodes on a 

list L in a decreasing order w.r.t. their 
indexes 

2. For every node n in L do 
Let Y', be the restriction of Y at node n 
If n is a sink node 
then TPI t {Y',) 
else a/ let Y',o (resp. ‘y,l) be the direct 

restriction formula of Y', at node n0 
(resp. nl) 

b/ let MinPIO (resp. MinPIl) be the set 
of mis of YnO (resp.Y',l) and let x 
be the variable labelling node n 

c/ TPI c MinPI(MinPI0, MinPIl, @, x) 
3. Return(TP1) 
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Function MinPI(MinPI0, MinPIl, @, x) 
% Input : the two sets MinPIO (resp. MinPIl) of 
mis of YO (resp. Yl) w.r.t. <D and the variable x 
s.t. (-1x~Y0)v (x~Y1) is the Shannon expansion of 
Y around x. 
% output : the set MinPI of mis of Y w.r.t. a. 
1. Set impMinPI0, impMinPI1, nonimpMinPI0, 

nonimpMinPI1 to the empty set 
2. For every clause z in MinPIO do 

If there exists X' in MinPIl s-t. n'b~ 
then impMinPI0 t 17~) u impMinPI0 
else nonimpMinPI0 t (n} u nonimpMinPI0 

3. For every clause ?'t in MinPIl do 
If there exists X' in nonimpMinPI0 s.t. T'C'~X 
then impMinPI1 t {K} u impMinPI1 
else nonimpMinPI1 t 1x1 u nonimpMinPI1 

4. MinPIl t min({xl v x2; nl E nonimpMinPI1, 
7~2 E nonimpMinPIl), b) 

5. MinP12 C min({x v K; 7~ E nonimpMinPIO1 u 
{TX v n; 7c E nonimpMinPIl},b) 

6. MinPI C min2(min2(min2(impMinPIO, impMinPI1, 
b), MinPIl),b), MinP12, &) 

7. Return(MinP1) 

impMinPI0 (resp. impMinPI1) denotes the subset of the 
mis of MinPIO (resp. MinPIl) which are implied 
(w.r.t. @) by a mi of MinPIl (resp. nonimpMinPI0); the 
complement of impMinPI0 (resp. impMinPI1) in 
MinPIO (resp. MinPIl) is denoted nonimpMinPI0 
(reSp. nonimpMinPI1); min2(MIl, M12, t=@) COITlputCS 

min(Mr 1 u ~12, ka>) while avoiding intra-set deduction 
checks (i.e. every element of ~11 (resp. ~12) is assumed 
minimal w.r.t. k@ in MI1 (resp. M12)). 

Basically, the correctness of TPI/BDD w.r.t. tpi 
computation relies on Propositions l(4), 2(2) and 3(2) and 
the simple properties given above. 
TPI/BDD can be enhanced in several directions. Some 

improvements concern the BDD generation (step l/). 
Particularly, Reduced BDDs (RBDDs for short), also 
referred to as free Boolean graphs or one-time branching 
programs (Bryant 1992), can be preferred to (standard) 
Reduced Ordered BDDs (ROBDDs); indeed, requiring that 
every path from the root to a sink of the BDD respect the 
same (total) ordering over the variables of X is unnecessary 
for our purpose. Interestingly, every ROBDD is a RBDD 
but the converse does not hold, so the size of the smallest 
RBDD of Z is always smaller (or equal) to the size of its 
smallest ROBDD. In practice, instead of pointing out a 
fixed variable ordering before computing the BDD, the 
variables of ZZ can be ordered dynamically in each branch 
of its Shannon tree while building up this tree, so as to 
minimize the expected depth of each branch. Such dynamic 
variable ordering can result in huge computational savings 
in the BDD generation. Particularly, when ZZ is in CNF, 
branching rules used in the old good Davis&Putnam 
procedure for SAT (Hooker & Vinay 1995) may apply here 
advantageously. 

Further improvements of TPI /BDD are related to the 
mis generation itself. Thus, the mis computed at each node 
can be sorted w.r.t. their size, putting the smallest clauses 
first in the ordering (we can also use the heuristic given in 
(Jackson & Pais 1990) instead). The computational cost of 
this additional processing can be balanced by the savings it 

conveys at steps 2131 in MinPI (most general clauses can 
be found more quickly since the smallest clauses are often 
the most general ones). Additionally, when C is in CNF, 
TPI /BDD can be boosted by removing in a preliminary 
step every clause of C which is a logical consequence 
of@. 

Interestingly, the BDD produced at step l/ of TPI /BDD 
can be viewed as a compact encoding of an implicant 
cover of C, hence as a compilation of C (Schrag 1996). In 
many situations, the size of this BDD is exponentially 
greater than the size of the tpi compilation. However, if the 
size of the BDD is sufficiently low, we can decide to stop 
TPI/BDD at step l/ and use the BDD as a compilation. 
We can also decide to pursue the tpi compiling while 
storing the BDD as an additional compilation of C. In this 
case, interleaving (or parallelizing) the search through both 
compilations can be a way to improve on-line query 
answering; indeed, implicant covers are specialized in 
queries n which are not consequences of X (pointing out an 
implicant 7c’ of C s.t. n’ pn is sufficient to return a << no >> 
answer) while tpi compilations are specialized in queries 7c 
which are consequences of C, (pointing out a tpi n; 
n’ I=@ n is sufficient to return a << yes >> answer). 

’ of c s.t. 

TPI/BDD at Work 

A BDD of the knowledge base Z of Example I is given in 
Figure 1. The pis (resp. mis) generated at each node of this 
BDD are given in Table 1. 

11 

Figure 1. BDD of the running example. 

Node 
root 

n0 
nl 
nO0 
nll 
nll0 

nllO0 

Pis A4is 
{7pv+, 3ev.5, pvr, {rvs, pvrl 

rvs, -pvq, qvr, 
Pvlq, Tqv-rr, -qvsl 

{TP, r1 {rl 
ip, -z, s> (P, s) 

{rl {rl 
{7r, sl f-, sl 

{s) (sl 
101 101 

Table 1. Pis and mis of the running example. 

Table 1 shows that performing deduction checks 
w.r.t. b allows one to remove at nodes no, nl and at the 
root of the BDD some clauses that are not removed when 
standard subsumption checks are considered. Particularly, 
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while PI /BDD generates 20 clauses (as the pis of the 
restriction formulas of C in the BDD) and performs 36 
subsumption checks, TPI /BDD generates 11 clauses, only 
(as the mis of the restriction formulas of C: w.r.t. @ in the 
BDD) and performs 19 deduction checks, only. 

Comparing PI and TPI Compilations 
We estimate the performances of PI and TPI compilations 
w.r.t. off-line compiling as the computational resources 
(space and time) needed by the best algorithms (or, at least, 
some of the best algorithms) known at that time for 
achieving such compilations, namely PI /BDD and 
TPI/BDD. 

Our objective is to compare both algorithms in a 
computer-independent way; particularly, the performances 
of such algorithms will not be given in CPU time and Mb 
consumed (since such scores are dependent of the computer 
and of the programming language that are used). Instead, 
more reliable scores are considered and we measure: 
* the space complexity of PI / BDD and TPI / BDD as: 

0 the number of clauses in the corresponding 
compilations, and 

total number- of deduction checks which have been 
performed. 

8 the total number of clauses which have been 
generated. 

ID the time complexity of PI/BDD and TPI /BDD as the 

exponentially smaller (Marquis 1995). 
As a consequence, the space required by TPI /BDD for 

computing the tpi compilation of Z w.r.t. <D is always 
smaller than the space needed by PI / BDD for generating 
the pi compilation of X, independently of the way such 
resource is estimated. In the following, we shall show that 
the space savings can be very significant in practice. 

Contrastingly, TPI / BDD does not necessarily yield time 
improvement over PI /BDD in all cases. Indeed, as 
explained before, some deduction checks that are not 
required in the pi situation must be done when mis are 
considered. In particular, when @ is the empty theory, 
TPI /BDD may easily perform many useless deduction 
checks which would be avoided by PI/BDD. However, 
this is a pathological situation (but it clearly illustrates the 
influence of Q, in TPI / BDD). Although deduction checks 
w.r.t. <D are more expensive than standard subsumption 
checks, they succeed more frequently (each time n;’ 1 n 
then K’ b nr but the converse does not hold). Thus, many 
clauses can be given up at each node and many deduction 
checks can be avoided at the nodes occurring << above 1) 
(i.e. with lower indexes) in the BDD; actually, the 
simplification that occurs at each node can easily balance 
the computational overhead due to more expensive checks. 

Preliminary Experimental Results 

As far as space complexity is concerned, our evaluation 
takes into account the number of clauses in the 
compilations (since it is a lower bound of the space 
required to compute them), and the total number of clauses 
that have been generated; this number can be viewed as a 
upper bound of the space required to compute the 
compilation when no memory is released (this is the case in 
our SICStus PROLOG implementation). 

The time complexity of PI /BDD and TPI /BDD is 
weighed as the total number of deduction checks which 
have been performed, i.e. standard subsumption checks for 
PI /BDD and deduction w.r.t. @ for TPI /BDD. Since our 
objective is to compare both algorithms, we do not include 
the time spent in computing the BDD. The time spent in 
generating the clauses could be considered as well but this 
would not change our analysis in depth: the time 
complexity of many pi algorithms (including PI /BDD) 
depends critically on deduction checking (de Kleer 1992). 
This is alsc the case for tpi algorithms (in particular, 
TPI/BDD). 

implemented both PI /BDD and TPI /BDD in SICStus 

In order to complete the analysis given above, we 

PROLOG 2.1 and tested them on CNF knowledge bases Z 
drawn from diagnosis (adder) and qualitative physics 

performed 

(pipe 2, pipe 3, pipe 4) (Forbus & de Kleer 1993). As a 
tractable theory @, we considered the subset of all the 

some 

Horn clauses of X for the pipe 2, pipe 3, pipe 4 

preliminary 

examples 

experiments. We 

and a unit-refutation complete logical 
consequence of X (achieved by FPI 0 compiling of a 
subset of Z) for the adder example. For all these 
theories, checking whether X’ b n: can be done in 
O(l@l +I7r’I+IrcI)time. 

Comparing PI/BDD and TPI/BDD Analytically 
Obviously, for every formula Y rooted at node n in the 
BDD of Ic, both the time and the space required to compute 
the pis (resp. mis) of Y mainly depends on the number of 
pis (resp. mis) of its direct restriction formulas Yo, ‘Pi. 

Interestingly, for every formula Y and Cp, the number of 
mis of Y w.r.t. Q is always lower (or equal) to the number 
of pis of Y (cf. Corollary to Proposition ‘l), and it can be 

For each problem, both algorithms use the same BDD 
(corresponding to a fixed variable ordering for which 
variables are ranked according to their frequency in C: 
most frequent first). 

Problem 1 #PI(Z) #COA4P~Z) sib 

pipe 2 1 638 97 6.6 
pipe 3 2360 210 II.2 
pipe 4 6208 399 15.6 
adder 9700 110 88.2 

Problem 1 #PI/BDD #TPI/BDD S,,b 
pipe 21 11489 841 13.7 
pipe 3 86943 2837 30.6 
pipe 4 1923520 8292 232.0 
adder 425545 7241 58.8 

Table 2. Space complexity (number of clauses). 

Table 2 summarizes the space savings which can be 
achieved by TPI /BDD w.r.t. PI /BDD. Each line of the 
table lists the name of the problem, the number #PI(Z) of 
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clauses in the pi compilation, the number #COMP&) of 
clauses in the tpi compilation (i.e. #TPI(X, @) + #0), the 
savings Sib at the lower bound, i.e. #PI(X) / #COMP&), 
and the total number #PI /BDD (resp. #TPI /BDD) of 
clauses generated by PI /BDD (resp. TPI /BDD). The last 
column Sub indicates the global space savings at the upper 
bound (#PI/BDD/ #TPI/BDD). 

Problem 1 #PI/BDD #TPI/BDD S 
pipe 2 1 1164672 14150 82.3 

Table 3. Time complexity (number of deduction checks). 

Table 3 gives the time complexity of PI / BDD 
(resp. TPI / BDD) estimated as the total number #PI / BDD 
(resp. #TPI /BDD) of deduction checks that have been 
performed. The rightmost column S still gives the relative 
savings, i.e. the reduction in deduction checks that is 
achieved (#PI/BDD/ #TPI/BDD). 

Table 2 and Table 3 indicate dramatic improvements in 
the computational resources needed to produce 
compilations (between one and over four orders of 
magnitude). For all the problems we tested, the fact that 
deduction checks w.r.t. @ are more expensive than standard 
subsumption checks (with a O(IQl) time overhead per check 
in the worst case, only) has been easily balanced by the 
savings obtained in the number of checks. Experimentally, 
we observed that the number of deduction checks required 
grows faster than the square of the final number of tpis (this 
was noted in (de Kleer 1992) for the pi situation). This may 
explain why the time savings pointed out in Table 3 are 
significantly greater than the corresponding space savings 
given in Table 2. 

Actually, an additional Le-Lisp 15.2 implementation of 
PI /BDD with memory release optimization has been 
necessary to derive these tables; indeed, our SPARC 20/50 
station failed in computing the pis of X for all the problems, 
except pipe 2, using the PROLOG implementation of 
PI /BDD (this explains why we do not give absolute run 
time saving s in Table 3). Contrastingly, our PROLOG 
implementation of TPI /BDD succeeded in compiling all 
the problems (though it has not been particularly optimized 
w.r.t. the PI /BDD one). Accordingly, from a practical 
point of view (i.e. once the programming language and the 
computer used for the experiments have been fixed), 
TPI-/BDD can achieve the compilation of knowledge bases 
which cannot be compiled using PI / BDD. 

The analysis clearly shows that, since no amount of 
algorithmic - improvement can avoid the complexity 
produced by the sheer number of 
every compilation 

pis, pi compilation (and 
technique - which requires pi 

computation) is impractical for many applications ((de 
Kleer 1992) already pointed it out). Contrastingly, our 
experiments show that tpi compilations can prove much 
more economical than pis-based compilation techniques 
from a computational point of view. bf course, a much 
more comprehensive experimental evaluation would be 

needed to see whether such improvements 
reasonably expected in the general case. 

can be 

Conclusion 
The main contribution of this paper is a new algorithm for 
computing theory prime implicates compilations of 
propositional knowledge bases C. Because it does not 
require the prime implicates of C to be generated, 
TPI / BDD can save a lot of computing. 

This work must be extended in several directions. A 
first direction concerns the empirical validation of this 
approach; following (S&rag 1996), we plan to check tpi 
compilations against critically constrained knowledge 
bases and large real-world problems. A second direction is 
related to the performances of the various optimizations of 
TPI /BDD mentioned in the paper. Finally, beyond 
knowledge compilation, investigating the role of tpis in 
diagnosis and machine learning is another topic for further 
research. 
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