
A New Algori m for Computing Theory mplicates Compilations

Pierre Marquis and Samira Sadaoui
CRIN-CNRS and INRIA-Lorraine

Bgtiment LORIA - Campus Scientifique, B.P. 239
F-54506 Vandceuvre-l&-Nancy Cedex, FRANCE

E-mail: {marquis, sadaoui} @loria.fr

Abstract
We present a new algorithm (called TPI /BDD) for
computing the theory prime implicates compilation of a
knowledge base X. In contrast to many compilation
algorithms, TPI /BDD does not require the prime implicates
of Z to be generated. Since their number can easily be
exponential in the size of X, TPI/BDD can save a lot of
computing. Thanks to TPI/BDD, we can now conceive of
compiling knowledge bases impossible to before.

Introduction
Many problems from various AI fields require
propositional reasoning. Unfortunately, the computational
complexity of querying a propositional knowledge base X
is high (CLAUSE ENTAILMENT is co-NP complete);
accordingly, every query answering algorithm runs in time
exponential in the size of Z in the worst case.

In order to circumvent the intractability of propositional
reasoning, several approaches have been proposed so far.
Among them is equivalence-preserving compilation.
Compiling a knowledge base Z consists in translating
(compiling) it during an off-line preprocessing phase into
an equivalent form (a compilation) from which on-line
query answering is tractable. This approach allows on-line
response time to be sped up as soon as the compilation cost
is amortized over a sufficiently large set of queries.

In the following, we are concerned with theory prime
implicates compilations of knowledge bases. In
(Marquis 1995), the main advantages of such compilations
w.r.t. on-line reasoning have been exhibited. Hereafter, we
complete this study by focusing on the off-line compiling
process. Indeed, equivalence-preserving compilation can
prove helpful only if the compilation time is reasonable for
ofS-line computation (de1 Val 1994). This motivates the
search for efficient algorithms (w.r.t. off-line compiling).

From a theoretical point of view, it is very unlikely that a
polynomial time compilation function exists; indeed, for
every equivalence-preserving compilation technique, the
size of the compiled knowledge base is not polynomial in
the size of the original knowledge base in the worst case,
unless NP E P / poly (this is a direct consequence of
Theorem 5 from (Kautz & Selman 1992)). Accordingly,
our main objective is to increase the number of knowledge
bases which can be compiled in practice, only.

To this end, we propose a new algorithm (called

504 Knowledge Compilation

TPI /BDD) for computing the theory prime implicates
compilation of a knowledge base ZZ w.r.t. a tractable theory
@. Actually, TPI/BDD computes the minimal implicates
of C w.r.t. @, which coincide with its theory prime
implicates each time Q, is a logical consequence of C.
TPI /BDD is based on PI /BDD (Madre & Coudert

1991), one of the most efficient prime implicates algorithm
we found in the literature. Both algorithms rely on a BDD
(Binary Decision Diagram) representation of C;
particularly, they do not require C to be put into CNF in a
preliminary step and they avoid redundancy by sharing
identical formulas embedded at different places in C.
The key of TPI /BDD is to compute the minimal

implicates of X recursively from the minimal implicates of
its restriction formulas (i.e. the formulas rooted <(below >>
Z in the BDD). Thus, every implicate of a restriction
formula of C which is not minimal w.r.t. 1~ can be
removed as soon as it is generated. Accordingly,
TPI / BDD does not require the prime implicates of Z to be
computed; this contrasts with the algorithm TPI pointed
out in (Marquis 1995) and with many prime implicates-
based compilation functions, including PI (Reiter & de
Kleer 1987), FPI,, FPI, (de1 Val 1994) and those given
in (Mathieu & Delahaye 1994). Since the number of prime
implicates of Z can easily be exponential in the size of Z,
TPI /BDD can save a lot of computing. Thus, we show
that the number of clauses generated by TPI /BDD is
always smaller than the number of clauses generated by
PI /BDD; as a consequence, the number of deduction
checks (w.r.t. a,> performed by TPI /BDD can be
significantly lower than the number of standard
subsumption checks performed by PI / BDD (even if this
is not always the case). We present some preliminary
experimental results providing evidence for the substantial
computational savings achievable with this new algorithm.
Because we can now conceive of compiling knowledge
bases impossible to before, TPI /BDD gives to the theory
prime implicates compilation technique a decisive
advantage over prime implicates-based techniques.

The rest of this paper is organized as follows. After
some formal preliminaries, prime implicates, theory prime
implicates and minimal implicates are successively
defined. On this ground, TPI /BDD is presented and
illustrated. Finally, the performances of TPI /BDD are
analyzed and compared with those offered by PI/BDD.

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Formal Preliminaries
Let PS be a finite set of propositional variables. PROPpS
denotes the propositional language built in the usual way
upon PS and the connectives.

The notions of interpretation over PROPpS, model,
insatisfiable formula, valid formula, logical entailment 1
and logical equivalence = are defined in the usual way.
PROPpS / = denotes the quotient set of PROPpS induced
by =. We shall note 0 (resp. 1) the representative of the
class of all the insatisfiable (resp. valid) formulas in
PROPpS / =.

Let Q be a finite set of formulas. b denotes the pre-
ordering over PROPpS defined by CT b z iff Q b <T a Z.
Let =‘Q, denote the equivalence relation over PROPpS
induced by b and defined by CT =Q, z iff 0 b z and
z b CT. PROPpS / =a, denotes the quotient set of PROPpS
induced by =<p.

Given a set of clauses EC, min(E, b) denotes the subset
of Z consisting of all its minimal elements w.r.t. the
ordering b over PROPpS / =m. The number of clauses in
X is noted #I;.

The Shannon expansion of a propositional formula v
around variable x is the formula (Tx A vO) v (x A vi) of
PROPpS / =, where ~0 (resp. yri) is the (so-called direct
restriction) formula of w (w.r.t. x) obtained by replacing
every occurrence of x in w by 0 (resp. 1). More generally,
when S is a set of variables occurring in v, 0 is a
restriction formula of u/ (w.r.t. S) iff CT is obtained by
substituting (uniformly) in v every occurrence of variables
from S by 0 (or by 1). Shannon expansion can be iterated
until all the variables occurring in w are eliminated. The
corresponding decomposition tree is called a Shannon tree
of \v. In many situations, some nodes in this tree are
redundant; they can be removed to produce a directed
acyclic graph, called a Binary Decision Diagram (BDD) of
v (see (Bryant 1992) for a survey).

Prime Implicates, Theory Prime Implicates
and Minimal Implicates

Let Y and @ be finite sets of formulas:

e A prime implicate (pi for short) of Y is a clause 7t s.t.:
8 ‘I’ 1 ‘IE holds, and
a for every clause XII;‘, if Y b n;’ and n’ b n; hold, then

n’ = 7~ holds.
e A theory prime implicate (tpi for short) of Y w.r.t. @ is

a clause n s.t.:
. Y b ‘IC holds, and
0 for every clause rc’, if Y b ‘TE’ and n;’ b n hold, then

n’ -Q, n: holds.
m A minimal implicate (mi for short) of Y w.r.t. @ is a

clause n s.t.:
0 Y k n holds, and
0 for every clause z’, if Y \ ‘IC’ and n;’ b n; hold, then

n’ =(I[, n holds.

PI(Y) (resp. TPI(Y, a), MinPI(Y, Q)) will denote the
set of pis (resp. tpis, resp. mis) of Y (resp. w.r.t. @).

Clearly enough, the pis of Y are the minimal elements
w.r.t. b in the set of all the clauses implied by Y (the
so-called implicates of Y). TPI(Y, @) is composed of the
minimal elements w.r.t. b in the set of all the implicates
of Y u @. MinPI(Y, 0) is composed of the implicates of
Y which are minimal w.r.t. b. Tpis (resp. mis) are
considered up to =m: only one representative
Per equivalence class is kept in TPI(Y, <D)
(resp. MinPI(Y, @)).

Example 1 Let Z =def (p v q v r, r v s, lp v q, p v lq,
-qv7r} and@=def{7pvq, pvlq, -qv-r}.
eb PI(Z) = (-9~ v -c, 7p v s, p v r, r v s, lp v q. q v r,

pvlq, lqv+-, 7qvs) (up to 3).
0 TPI(Z, @) = MinPI(X, @) = {r v s, p v r} (up to SQ).

The interplay between these three notions is made
precise by Proposition 1.

Proposition 1 Let Y and @ be finite sets of formulas.
1) PI(Y) = TPI(Y, { }) = MinPI(Y, {)) (up to =).
2) TPI(Y, @)=min(PI(Y u a), b) (up to =a,).
3) MinPI(Y, @) = min(PI(Y), b) (up to =Q).
4) TPI(Y, @) = MinPI(Y u Q, @) (up to =<D).

As a straightforward consequence of Proposition l(2)
(resp. l(3)), the number of tpis (resp. mis) of Y w.r.t. any
Q, is always lower (or equal) to the number of pis of Y.

Corollary Let Y and @ be finite sets of formulas.
#TPI(Y, @) I #PI(Y) and #MinPI(Y, @) I #PI(Y).

Proposition 2 shows that the tpis (resp. mis) of a
disjunction of formulas can be computed from the tpis
(resp. mis) of its d’sjuncts. Several pi algorithms, including
(Slagle, Chang & Lee 1970; Jackson & Pais 1990) are
based on it when restricted to the pi situation (i.e. CD = { }).

Proposition 2 Let Yi, YIP and @ be finite sets of
formulas.
1) TPI(Yr v . . . v Y,, @) = min({ n;i v . . . v xi,;

EiE TPI(Yi,@)foriE [1 ..p]},b)(uptoEa).
2) MinPI(Yi v . . . v Y,, @) = min({ 7t1 v .,. v ‘TC,;

ni E MinPI(Yi, @) for i E [1 . . p] } , b) (UP to =a)).

Proposition 3 shows that the pis (resp. mis) of a formula
can be computed from the pis (resp. mis) of its direct
restriction formulas and the pis (resp. mis) of their
disjunction.

Proposition 3 Let Y and Q, be finite sets of formulas. Let
(TX A Yo) v (x A Y,) be the Shannon expansion of Y
around any variable x occurring inY.
1) PI(Y) = PI(Yo v Y,) u {TX v 7~; rc E PI(Yi) and

V n’~ PI(Yo v Yi), ~‘#7c} u {x v X; n: E PI(Yo) and
)J 7fE PI(Y0 v Y,), 7c’&r} (up to -).

2) MinPI(Y, a) = min(MinPI(Yo v Y i, a,> u ({lx} v
MinPI(Yr, @)) u ({x} v MinPI(Yo, @)), b)
(up to =a).

Knowledge Compilation 505

Proposition 3(l) (pi situation) is (the dual of) the main
property the algorithm PI /BDD relies on. It shows how
some subsumption checks can be avoided between clauses
n;’ from the three sets PI(YO v Yr), {TX v n; n: E PI(Wi)},
(x v n; n; E PI(YO)}. Indeed, such n’ are pis (hence, no
intra-set subsumption checks are necessary); additionally,
every d in (7x v n; n; E PI(Yi) } (resp. { x v n;;
7c E PI(Yo)}) contains literal lx (resp. x); subsequently, n’
can neither subsume nor be subsumed by a clause from
{x v n; n; E PI(YO)} (resp. {-IX v n;; Z E PI(Y,)})
(i.e. some inter-set subsumption checks can be avoided).

Proposition 3(2) (mi situation) is the key property on
which our algorithm TPI / BDD is based. Unlike PI / BDD,
both intra-set and inter-set deduction checks (w.r.t. @)
between clauses from the three sets MinPI(Ya v Yr, @),
{ --rx v n; n E MinPI(Yi, <D) } , { x v n;; ‘II; E MinPI(Yo, @) }
are required in the general case.

Thanks to Propositions 2 and 3, the pis (resp. mis) of Y
(w.r.t. a,) can be characterized from the pis (resp. mis) of
its direct restriction formulas Yo and Yi. Contrastingly, the
tpis of Y w.r.t. Q cannot be characterized from the tpis of
its restriction formulas. Fortunately, we are interested in
computing tpi compilations; in this situation, the tpis of Y
w.r.t. <I[, can be computed as the mis of Y w.r.t. @ since tpis
and mis coincide when Y b Q, (see Proposition l(4) and
Example 1 for illustration).

A New Algorithm for TPI Compilations
Based on complexity considerations, our central motivation
is to design a new tpi compilation algorithm which does not
require the pis of 2 to be generated; indeed, because it
does not satisfy this requirement, the algorithm TPI
(Marquis 1995) appears as very time consuming, so
impractical for many applications.

Additionally, TPI applies to CNF knowledge bases,
only. While any formula can be put into CNF in linear time
(introducing new variables), (Ngair 1993) shows that the
cost of generating additional new pis (containing such new
variables) usually outweighs the benefit of the compact
encoding (an exponential number of useless pis can be
generated). This is also true for tpis: in the general case, the
restriction of accepting only CNF formulas as input leads to
significant computational overhead. Accordingly, we are
looking for a tpi compilation algorithm which accepts any
propositional formula as its input.

An Outline of PI/BDD

Because tpis (and mis) are direct generalizations of pis
(cf. Proposition l(l)), we turn towards pi algorithms
satisfying this last constraint in the objective of extending
them to the tpi situation.

Though many pi algorithms can be found in the
literature, only one algorithm, namely (Madre &
Coudert 1991), fulfills this requirement, Since the
algorithm sketched in (Madre & Coudert 1991) was
oriented towards the generation of prime implicants (the
dual notion of pi), we adapted it to compute pis and called

the resulting algorithm PI / BDD.
Interestingly, PI /BDD is based on a BDD

representation of Z; because it avoids redundancy by
sharing identical restriction formulas embedded at
different places in C, it is one of the most efficient pi
algorithm we can find (especially when non-normalized
knowledge bases are considered).

Basically, PI/BDD relies on Propositions 2 (restricted
to the pi situation) and 3(l). Some additional properties
allow one to avoid useless computations; in particular,
when ‘u, and Yi are the direct restriction formulas of Y
(w.r.t. x), every clause of PI(Y0) n PI(Yr) is a pi of Y.
More generally, every clause of PI(Y0) (resp. PI(Yi))
which is subsumed by a clause of PI(Yl) (resp. PI(YO)) is
a pi of Y; subsequently, we can remove such clauses from
their respective sets before computing PI(YO v Yi) as
min({no v ni; 7Ci E PI(Yi) for i E [0 . . l] }, k)
(see (Madre & Coudert 1991) for details).

TPI/BDD

The key of TPI/BDD is to compute the mis of X
recursively from the mis of its restriction formulas.
Accordingly, every implicate of a restriction formula of I:
which is not minimal w.r.t. FQ can be removed as soon as
it is generated. To be more specific, TPI /BDD basically
consists in computing recursively the rnis of each
restriction formula of Z in a bottom-up way from its BDD
representation, thanks to Propositions 2(2) and 3(2).

In order to avoid useless computations, some additional
(simple) properties are also used. They generalize to the
mis situation the properties used to improve PI /BDD, as
evoked above. Thus:
m If x0 and nl are mis of the same formula, performing

deduction checks (w.r.t. @) between no and nTcI is
useless (both are necessarily minimal w.r.t. 1~).

e If clauses n;o and 7ti are s.t. no b nl then, for every
clause ‘IC, ~0 v x b ni v ;TG holds.

We are now ready to describe the algorithm TPI /BDD:

Function TPIIBDD(Y, a,)
% Input : two formulas Y and Q s-t. Y 1 a.
% output : the set TPI of tpis of Y w.r.t. a.
1. Compute a BDD of Y and put its nodes on a

list L in a decreasing order w.r.t. their
indexes

2. For every node n in L do
Let Y', be the restriction of Y at node n
If n is a sink node
then TPI t {Y',)
else a/ let Y',o (resp. ‘y,l) be the direct

restriction formula of Y', at node n0
(resp. nl)

b/ let MinPIO (resp. MinPIl) be the set
of mis of YnO (resp.Y',l) and let x
be the variable labelling node n

c/ TPI c MinPI(MinPI0, MinPIl, @, x)
3. Return(TP1)

506 Knowledge Compilation

Function MinPI(MinPI0, MinPIl, @, x)
% Input : the two sets MinPIO (resp. MinPIl) of
mis of YO (resp. Yl) w.r.t. <D and the variable x
s.t. (-1x~Y0)v (x~Y1) is the Shannon expansion of
Y around x.
% output : the set MinPI of mis of Y w.r.t. a.
1. Set impMinPI0, impMinPI1, nonimpMinPI0,

nonimpMinPI1 to the empty set
2. For every clause z in MinPIO do

If there exists X' in MinPIl s-t. n'b~
then impMinPI0 t 17~) u impMinPI0
else nonimpMinPI0 t (n} u nonimpMinPI0

3. For every clause ?'t in MinPIl do
If there exists X' in nonimpMinPI0 s.t. T'C'~X
then impMinPI1 t {K} u impMinPI1
else nonimpMinPI1 t 1x1 u nonimpMinPI1

4. MinPIl t min({xl v x2; nl E nonimpMinPI1,
7~2 E nonimpMinPIl), b)

5. MinP12 C min({x v K; 7~ E nonimpMinPIO1 u
{TX v n; 7c E nonimpMinPIl},b)

6. MinPI C min2(min2(min2(impMinPIO, impMinPI1,
b), MinPIl),b), MinP12, &)

7. Return(MinP1)

impMinPI0 (resp. impMinPI1) denotes the subset of the
mis of MinPIO (resp. MinPIl) which are implied
(w.r.t. @) by a mi of MinPIl (resp. nonimpMinPI0); the
complement of impMinPI0 (resp. impMinPI1) in
MinPIO (resp. MinPIl) is denoted nonimpMinPI0
(reSp. nonimpMinPI1); min2(MIl, M12, t=@) COITlputCS

min(Mr 1 u ~12, ka>) while avoiding intra-set deduction
checks (i.e. every element of ~11 (resp. ~12) is assumed
minimal w.r.t. k@ in MI1 (resp. M12)).

Basically, the correctness of TPI/BDD w.r.t. tpi
computation relies on Propositions l(4), 2(2) and 3(2) and
the simple properties given above.
TPI/BDD can be enhanced in several directions. Some

improvements concern the BDD generation (step l/).
Particularly, Reduced BDDs (RBDDs for short), also
referred to as free Boolean graphs or one-time branching
programs (Bryant 1992), can be preferred to (standard)
Reduced Ordered BDDs (ROBDDs); indeed, requiring that
every path from the root to a sink of the BDD respect the
same (total) ordering over the variables of X is unnecessary
for our purpose. Interestingly, every ROBDD is a RBDD
but the converse does not hold, so the size of the smallest
RBDD of Z is always smaller (or equal) to the size of its
smallest ROBDD. In practice, instead of pointing out a
fixed variable ordering before computing the BDD, the
variables of ZZ can be ordered dynamically in each branch
of its Shannon tree while building up this tree, so as to
minimize the expected depth of each branch. Such dynamic
variable ordering can result in huge computational savings
in the BDD generation. Particularly, when ZZ is in CNF,
branching rules used in the old good Davis&Putnam
procedure for SAT (Hooker & Vinay 1995) may apply here
advantageously.

Further improvements of TPI /BDD are related to the
mis generation itself. Thus, the mis computed at each node
can be sorted w.r.t. their size, putting the smallest clauses
first in the ordering (we can also use the heuristic given in
(Jackson & Pais 1990) instead). The computational cost of
this additional processing can be balanced by the savings it

conveys at steps 2131 in MinPI (most general clauses can
be found more quickly since the smallest clauses are often
the most general ones). Additionally, when C is in CNF,
TPI /BDD can be boosted by removing in a preliminary
step every clause of C which is a logical consequence
of@.

Interestingly, the BDD produced at step l/ of TPI /BDD
can be viewed as a compact encoding of an implicant
cover of C, hence as a compilation of C (Schrag 1996). In
many situations, the size of this BDD is exponentially
greater than the size of the tpi compilation. However, if the
size of the BDD is sufficiently low, we can decide to stop
TPI/BDD at step l/ and use the BDD as a compilation.
We can also decide to pursue the tpi compiling while
storing the BDD as an additional compilation of C. In this
case, interleaving (or parallelizing) the search through both
compilations can be a way to improve on-line query
answering; indeed, implicant covers are specialized in
queries n which are not consequences of X (pointing out an
implicant 7c’ of C s.t. n’ pn is sufficient to return a << no >>
answer) while tpi compilations are specialized in queries 7c
which are consequences of C, (pointing out a tpi n;
n’ I=@ n is sufficient to return a << yes >> answer).

’ of c s.t.

TPI/BDD at Work

A BDD of the knowledge base Z of Example I is given in
Figure 1. The pis (resp. mis) generated at each node of this
BDD are given in Table 1.

11

Figure 1. BDD of the running example.

Node
root

n0
nl
nO0
nll
nll0

nllO0

Pis A4is
{7pv+, 3ev.5, pvr, {rvs, pvrl

rvs, -pvq, qvr,
Pvlq, Tqv-rr, -qvsl

{TP, r1 {rl
ip, -z, s> (P, s)

{rl {rl
{7r, sl f-, sl

{s) (sl
101 101

Table 1. Pis and mis of the running example.

Table 1 shows that performing deduction checks
w.r.t. b allows one to remove at nodes no, nl and at the
root of the BDD some clauses that are not removed when
standard subsumption checks are considered. Particularly,

Knowledge Compilation 507

while PI /BDD generates 20 clauses (as the pis of the
restriction formulas of C in the BDD) and performs 36
subsumption checks, TPI /BDD generates 11 clauses, only
(as the mis of the restriction formulas of C: w.r.t. @ in the
BDD) and performs 19 deduction checks, only.

Comparing PI and TPI Compilations
We estimate the performances of PI and TPI compilations
w.r.t. off-line compiling as the computational resources
(space and time) needed by the best algorithms (or, at least,
some of the best algorithms) known at that time for
achieving such compilations, namely PI /BDD and
TPI/BDD.

Our objective is to compare both algorithms in a
computer-independent way; particularly, the performances
of such algorithms will not be given in CPU time and Mb
consumed (since such scores are dependent of the computer
and of the programming language that are used). Instead,
more reliable scores are considered and we measure:
* the space complexity of PI / BDD and TPI / BDD as:

0 the number of clauses in the corresponding
compilations, and

total number- of deduction checks which have been
performed.

8 the total number of clauses which have been
generated.

ID the time complexity of PI/BDD and TPI /BDD as the

exponentially smaller (Marquis 1995).
As a consequence, the space required by TPI /BDD for

computing the tpi compilation of Z w.r.t. <D is always
smaller than the space needed by PI / BDD for generating
the pi compilation of X, independently of the way such
resource is estimated. In the following, we shall show that
the space savings can be very significant in practice.

Contrastingly, TPI / BDD does not necessarily yield time
improvement over PI /BDD in all cases. Indeed, as
explained before, some deduction checks that are not
required in the pi situation must be done when mis are
considered. In particular, when @ is the empty theory,
TPI /BDD may easily perform many useless deduction
checks which would be avoided by PI/BDD. However,
this is a pathological situation (but it clearly illustrates the
influence of Q, in TPI / BDD). Although deduction checks
w.r.t. <D are more expensive than standard subsumption
checks, they succeed more frequently (each time n;’ 1 n
then K’ b nr but the converse does not hold). Thus, many
clauses can be given up at each node and many deduction
checks can be avoided at the nodes occurring << above 1)
(i.e. with lower indexes) in the BDD; actually, the
simplification that occurs at each node can easily balance
the computational overhead due to more expensive checks.

Preliminary Experimental Results

As far as space complexity is concerned, our evaluation
takes into account the number of clauses in the
compilations (since it is a lower bound of the space
required to compute them), and the total number of clauses
that have been generated; this number can be viewed as a
upper bound of the space required to compute the
compilation when no memory is released (this is the case in
our SICStus PROLOG implementation).

The time complexity of PI /BDD and TPI /BDD is
weighed as the total number of deduction checks which
have been performed, i.e. standard subsumption checks for
PI /BDD and deduction w.r.t. @ for TPI /BDD. Since our
objective is to compare both algorithms, we do not include
the time spent in computing the BDD. The time spent in
generating the clauses could be considered as well but this
would not change our analysis in depth: the time
complexity of many pi algorithms (including PI /BDD)
depends critically on deduction checking (de Kleer 1992).
This is alsc the case for tpi algorithms (in particular,
TPI/BDD).

implemented both PI /BDD and TPI /BDD in SICStus

In order to complete the analysis given above, we

PROLOG 2.1 and tested them on CNF knowledge bases Z
drawn from diagnosis (adder) and qualitative physics

performed

(pipe 2, pipe 3, pipe 4) (Forbus & de Kleer 1993). As a
tractable theory @, we considered the subset of all the

some

Horn clauses of X for the pipe 2, pipe 3, pipe 4

preliminary

examples

experiments. We

and a unit-refutation complete logical
consequence of X (achieved by FPI 0 compiling of a
subset of Z) for the adder example. For all these
theories, checking whether X’ b n: can be done in
O(l@l +I7r’I+IrcI)time.

Comparing PI/BDD and TPI/BDD Analytically
Obviously, for every formula Y rooted at node n in the
BDD of Ic, both the time and the space required to compute
the pis (resp. mis) of Y mainly depends on the number of
pis (resp. mis) of its direct restriction formulas Yo, ‘Pi.

Interestingly, for every formula Y and Cp, the number of
mis of Y w.r.t. Q is always lower (or equal) to the number
of pis of Y (cf. Corollary to Proposition ‘l), and it can be

For each problem, both algorithms use the same BDD
(corresponding to a fixed variable ordering for which
variables are ranked according to their frequency in C:
most frequent first).

Problem 1 #PI(Z) #COA4P~Z) sib

pipe 2 1 638 97 6.6
pipe 3 2360 210 II.2
pipe 4 6208 399 15.6
adder 9700 110 88.2

Problem 1 #PI/BDD #TPI/BDD S,,b
pipe 21 11489 841 13.7
pipe 3 86943 2837 30.6
pipe 4 1923520 8292 232.0
adder 425545 7241 58.8

Table 2. Space complexity (number of clauses).

Table 2 summarizes the space savings which can be
achieved by TPI /BDD w.r.t. PI /BDD. Each line of the
table lists the name of the problem, the number #PI(Z) of

508 Knowledge Compilation

clauses in the pi compilation, the number #COMP&) of
clauses in the tpi compilation (i.e. #TPI(X, @) + #0), the
savings Sib at the lower bound, i.e. #PI(X) / #COMP&),
and the total number #PI /BDD (resp. #TPI /BDD) of
clauses generated by PI /BDD (resp. TPI /BDD). The last
column Sub indicates the global space savings at the upper
bound (#PI/BDD/ #TPI/BDD).

Problem 1 #PI/BDD #TPI/BDD S
pipe 2 1 1164672 14150 82.3

Table 3. Time complexity (number of deduction checks).

Table 3 gives the time complexity of PI / BDD
(resp. TPI / BDD) estimated as the total number #PI / BDD
(resp. #TPI /BDD) of deduction checks that have been
performed. The rightmost column S still gives the relative
savings, i.e. the reduction in deduction checks that is
achieved (#PI/BDD/ #TPI/BDD).

Table 2 and Table 3 indicate dramatic improvements in
the computational resources needed to produce
compilations (between one and over four orders of
magnitude). For all the problems we tested, the fact that
deduction checks w.r.t. @ are more expensive than standard
subsumption checks (with a O(IQl) time overhead per check
in the worst case, only) has been easily balanced by the
savings obtained in the number of checks. Experimentally,
we observed that the number of deduction checks required
grows faster than the square of the final number of tpis (this
was noted in (de Kleer 1992) for the pi situation). This may
explain why the time savings pointed out in Table 3 are
significantly greater than the corresponding space savings
given in Table 2.

Actually, an additional Le-Lisp 15.2 implementation of
PI /BDD with memory release optimization has been
necessary to derive these tables; indeed, our SPARC 20/50
station failed in computing the pis of X for all the problems,
except pipe 2, using the PROLOG implementation of
PI /BDD (this explains why we do not give absolute run
time saving s in Table 3). Contrastingly, our PROLOG
implementation of TPI /BDD succeeded in compiling all
the problems (though it has not been particularly optimized
w.r.t. the PI /BDD one). Accordingly, from a practical
point of view (i.e. once the programming language and the
computer used for the experiments have been fixed),
TPI-/BDD can achieve the compilation of knowledge bases
which cannot be compiled using PI / BDD.

The analysis clearly shows that, since no amount of
algorithmic - improvement can avoid the complexity
produced by the sheer number of
every compilation

pis, pi compilation (and
technique - which requires pi

computation) is impractical for many applications ((de
Kleer 1992) already pointed it out). Contrastingly, our
experiments show that tpi compilations can prove much
more economical than pis-based compilation techniques
from a computational point of view. bf course, a much
more comprehensive experimental evaluation would be

needed to see whether such improvements
reasonably expected in the general case.

can be

Conclusion
The main contribution of this paper is a new algorithm for
computing theory prime implicates compilations of
propositional knowledge bases C. Because it does not
require the prime implicates of C to be generated,
TPI / BDD can save a lot of computing.

This work must be extended in several directions. A
first direction concerns the empirical validation of this
approach; following (S&rag 1996), we plan to check tpi
compilations against critically constrained knowledge
bases and large real-world problems. A second direction is
related to the performances of the various optimizations of
TPI /BDD mentioned in the paper. Finally, beyond
knowledge compilation, investigating the role of tpis in
diagnosis and machine learning is another topic for further
research.

eferences
Bryant, R.E. Symbolic boolean manipulation with ordered

binary-decision diagrams. ACM Computing Surveys,
24(3):293-318, 1992.

De KIeer, J. An improved incremental algorithm for generating
prime implicates. Proc. AAAI’92, 780-785, San Jose (CA),
1992.

Del Val, A. Tractable databases: how to make propositional unit
resolution complete through compilation. Proc. KR’94,
551-561, Bonn, 1994.

Forbus, K. and de KIeer, J. Building Problem Solvers. MIT
Press, Cambridge (MA), 1993.

Hooker, J.N. and Vinay, V. Branching rules for satisfiability.
Journal of Automated Reasoning, 15~359-383, 1995.

Jackson, P. and Pais, J. Computing prime implicants.
Proc. CADE’90,543-557, Kaiserslautern, 1990.

Kautz, H. and Selman, B. Forming concepts for fast inference.
Proc. AAAI’92,786-793, San Jose (CA), 1992.

Madre, J.-C. and Coudert, 0. A logically complete reasoning
maintenance system based on a logical constraint solver.
Proc. IJCAI’91, 294-299, Sydney, 1991. See also an extended
version entitled << A complete reasoning maintenance system
based on typed decision graphs >p, BULL research report, l-26,
Louveciennes.

Marquis, P. Knowledge compilation using theory prime
implicates, Proc. IJCAI’95, 837-843, Montreal, 1995.

Mathieu, Ph. and Delahaye, J.-P. A kind of logical compilation
for knowledge bases. Theoretical Computer Science,
131:197-218, 1994.

Ngair, T.H. A new algorithm for incremental prime implicate
generation. Proc. IJCAI’93,46-5 1, Chambery, 1993.

Reiter, R. and de Kleer, J. Foundations of assumption-based
truth maintenance systems: preliminary report. Proc. AAAI’87,
183-188, Seattle (WA), 1987.

Schrag, R. Compilation for critically constrained knowledge
bases. Proc. AAAI’96 (this issue), Portland (OR), 1996.

Slagle, J.R., Chang, C.L. and Lee, R.C.T. A new algorithm for
generating prime implicants. IEEE Transactions on
Computers, C-19(4):304-310, 1970.

Knowledge Compilation 509

