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Abstract 

Spatial aggregation is a framework for organizing com- 
putations around image-like, analogue representations 
of physical processes in data interpretation and control 
tasks. It conceptualizes common computational struc- 
tures in a class of implemented problem solvers for dif- 
ficult scientific and engineering problems. It comprises 
a mechanism, a language, and a programming style. 
The spatial aggregation mechanism transforms a nu- 
merical input field to successively higher-level descrip- 
tions by applying a small, identical set of operators to 
each layer given a metric, neighborhood relation and 
equivalence relation. This paper describes the spatial 
aggregation language and its applications. 
The spatial aggregation language provides two ab- 
stract data types - neighborhood graph and field - 
and a set of interface operators for constructing the 
transformations of the field, together with a library 
of component implementations from which a user can 
mix-and-match and specialize for a particular applica- 
tion. The language allows users to isolate and express 
important computational ideas in different problem 
domains while hiding low-level details. We illustrate 
the use of the language with examples ranging from 
trajectory grouping in dynamics interpretation to re- 
gion growing in image analysis. Programs for these 
different task domains can be written in a modular, 
concise fashion in the spatial aggregation language. 

Introduction 
Effective reasoning about a physical system requires 
an appropriate mapping from the system character- 
istics to abstractions that match the requirements of 
the task at hand. Spatial aggregation organizes com- 
putations around image-like, analogue representations 
of physical processes in data interpretation and control 
tasks (Yip & Zhao 1996). In Qualitative Physics, three 
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ontological abstractions are widely used: device, pro- 
cess, and constraint. Spatial aggregation introduces 
a new ontological abstraction, the field ontology, to 
unify many reasoning tasks involving the image-like 
analogue representations such as the velocity field for 
fluid motion, phase space for dynamical systems, and 
configuration space for mechanism analysis. 

The input to spatial aggregation is a data massive, 
numerical field. ’ The desired output is a high-level, 
parsimonious description of the structure and behav- 
ior of the physical process that the field represents. 
To bridge the semantic gap between the analogue in- 
put field and the final symbolic description, spatial ag- 
gregation introduces layers of intermediate structures 
called spatial aggregates to capture spatial adjacencies 
among objects of the field at multiple spatial and tem- 
poral scales. A spatial aggregate is constructed from 
a metric, a neighborhood relation and an equivalence 
relation supplied by a user according to the objective 
of computation. The spatial aggregation mechanism 
transforms the input field to successively higher-level 
descriptions by applying a small, identical set of oper- 
ators to each layer of the spatial aggregates. 

The spatial aggregation framework grows out 
of a class of problem solvers, KAM (Yip 1991), 
MAPS (Zhao 1994) and HIPAIR (Joskowicz & Sacks 
1991), that derive their power primarily from percep- 
tual operators on analogue representations, and only 
secondarily from search and analytical methods. These 
programs have exhibited expert performance on dif- 
ficult problems in hydrodynamics, nonlinear control, 
and engineering mechanism analysis. Spatial aggre- 
gation abstracts the common computational structure 
and a set of generic operators from these problem 
solvers. It can also apply to a wide variety of other 
task domains such as image analysis and geographic 
information databases applications. The generic op- 

‘A field maps one continuum to another. Examples in- 
clude velocity field (R3 + R3), temperature field (R3 + 
RI), image field (R2 + R1), and vector field (R” + R”). 
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erators of spatial aggregation can be viewed as a 
particular instantiation of Ullman’s “visual routines” 
for visual information processing tasks (Ullman 1984; 
Mahoney 1995). 

Other researchers have developed related frame- 
works and systems for reasoning about spatial, ana- 
logue representations of physical world. For example, 
Forbus et al. developed the Metric Diagram/Place Vo- 
cabulary (MD/PV) framework for qualitative spatial 
reasoning (Forbus, Nielsen, & Faltings 1991). Chan- 
drasekaran and Narayanan proposed a direct ana- 
logue simulation of elementary mechanics problem us- 
ing a diagrammatic representation (Chandrasekaran & 
Narayanan 1990). In comparison, the spatial aggre- 
gation framework comprises multi-layer spatial aggre- 
gates with identical computational structure at, each 
layer and focuses on the problem of recovering struc- 
tures from numerical fields. 

This paper describes the spatial aggregation lan- 
guage and the development of applications in the style 
of spatial aggregation. We give an overview of the basic 
features of the language, illustrated with an example of 
trajectory grouping in dynamics analysis. We describe 
the language syntax, component library, implementa- 
tion, and a sample program written in the language 
for a region growing operation in image analysis. We 
then summarize the language experience in application 
development. 

Overview 
Given an input field, the spatial aggregation mecha- 
nism constructs a neighborhood graph (N-graph) from 
primitive objects of the field, explicates their spatial 
adjacencies, and forms equivalence classes of these ob- 
jects using an equivalence relation determined by the 
objective of the task. An equivalence class can be re- 
described as a primitive object at a higher level if nec- 
essary, and the identical steps of aggregation to form 
a new N-graph and classification to form equivalence 
classes apply with a new metric, neighborhood rela- 
tion, and equivalence relation. This iteration termi- 
nates when the desired behavioral and structural de- 
scription can be readily derived from the N-graph. The 
N-graph and field serve as computational glue for the 
operations that search, transform, and filter the spa- 
tial objects. Figure 1 illustrates the data flow in the 
main operations of the language at each level of spatial 
aggregation. 

Spatial aggregation represents primitive objects of 
a physical process or system with spatial objects. For 
instance, a spatial object might describe a state of a 
dynamical system - a point and its direction of move- 
ment in an n-dimensional phase space spanned by the 

High-Level Description 

Higher-Level Objects 

Lower-Level Objects 

Input Field 

Figure 1: Spatial aggregation: the lower-level objects 
from the numerical input field are transformed into 
higher-level objects through a sequence of operations 
available in the language. The higher-level objects t,hen 
become the input to another level of spatial aggrega- 
tion where the identical set of operators apply. 

state variables. A spatial object comprises a geomet- 
ric description and a feature description. The geo- 
metric description is specified in a metric space defin- 
ing distances between geometric primitives. The fea- 
ture description belongs to one or more feature spaces. 
For example, in image analysis, a pixel spatial ob- 
ject uses the pixel location as the geometric descrip- 
tion and the associated brightness value as the fea- 
ture description. Likewise, a region spat,ial object, de- 
fines a geometric region in an image and an average 
or minimum/maximum brightness value of the con- 
stituent pixels. In a meteorology applicat,ion, each 
spatial object, specifies a location in space and a tem- 
perature, barometric pressure, and air flow velocity in 
feature space. The distance between values in a fea- 
ture space represents how different the corresponding 
spatial objects are. Spatial aggregation forms neigh- 
borhood graphs for spatial objects using the geometric 
description and groups the spatial objects using simi- 
larity or proximity measures in feature space. For ex- 
ample, spatial aggregation could group text with the 
same font, using a feature space defined by font char- 
acteristics. In a mechanism analysis system, it could 
group configurations in a configuration space. 

As an example of how spatial aggregation provides 
organizational principles and building blocks to facili- 
tate the development of programs for engineering prob- 
lems, consider an interpretation task in dynamical sys- 
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* * * * * * ** * ** * *** * * * ;k * **** * * 
* ***** ** * * * ** ** * 

** * * z ** * * * * * * * 
(a) 

Figure 2: Trajectory interpretation: (a) Input field: 
points in phase space. (b) A neighborhood graph 
(MST) for the points. (c) Points grouped into tra- 
jectories labeled by a through 1 respectively. (d) Tra- 
jectories grouped into bundles labeled a through d re- 
spectively. 

tern analysis. The input is a field of sampled states as 
points in phase space shown in Figure 2(a). The ob- 
jective is to group the states into trajectories and then 
trajectories into trajectory bundles that share the same 
qualitative behaviors, as shown in Figure 2(c) and Fig- 
ure 2(d) respectively. Even though the example is in 
2D space, the operators apply to higher-dimensional 
spaces as well. 

The first step, aggregation, forms a neighborhood 
graph using a neighborhood relation to explicitly in- 
dicate pairs of adjacent spatial objects. Different ap- 
plications require different neighborhood relations. In 
the trajectory interpretation application, a minimal 
spanning tree (MST) is appropriate; other applications 
use Voronoi diagrams, nearness criteria, and so forth. 
The spatial aggregation code shown in Figure 3(a) 
uses the operator aggregate to compute the neigh- 
borhood graph (the argument points-ngraph-f ac - 
constructed from language library components - spec- 
ifies how to build an MST). Figure 2(b) shows the re- 
sult. The operator aggregate allows the user to focus 
on choosing a good neighborhood relation while hiding 
implement at ion details. 

(define points-ngraph 
(aggregate input-field points-ngraph-fat)) 

(define point-classes 
(classify 
points-ngraph points *point-distance-tol*)) I - 

(bi 
I 

(define trajs 
(redescribe point-classes traj/create>> 

(4 I 
.. Aggregate the trajectories. 
idefine traj-ngraph 
(aggregate trajs traj-ngraph-fat)) 

** Form equivalence classes. 
idefine traj-bundles 
(classify 
traj-ngraph trajs *vector-similar ity-tol*)) 

Figure 3: Trajectory interpretation code: (a) Aggre- 
gation of trajectory points. (b) Classification of tra- 
jectory points. (c) Redescription of point classes as 
trajectories. (d) Aggregation and classification of tra- 
jectories. 

The next main step, classification, forms equivalence 
classes of neighboring spatial objects according to their 
similarity in the feature space. In the trajectory inter- 
pretation example, a point can be considered similar to 
a neighbor if their separation is not significantly longer 
than the distances separating other nearby neighbors. 
In the code of Figure 3(b), classify forms equiva- 
lence classes of points from the MST, points-ngraph, 
by deleting edges that are too long according to the 
threshold *point-distance-tol*; the result is shown 
in Figure 2(c). Other classifiers, discussed later in the 
paper, use more powerful mechanisms, such as consis- 
tency predicates testing formed classes. The opera- 
tor classify allows the user to select an appropriate 
equivalence relation and a classification mechanism. 

The third main step of spatial aggregation, re- 
describing, maps equivalence classes of objects at one 
level to single higher-level objects at the next level. 
In the trajectory interpretation example, each equiva- 
lence class of points becomes a single trajectory object; 
Figure 3(c) shows the spatial aggregation code. The 
redescribe operator shifts the level of abstraction so 
that the aggregation process can repeat at a higher 
level. The inverse of redescribing is localizing, which 
maps each higher-level object to the equivalence class 
of constituent objects at the lower level. 

To group trajectories into trajectory bundles, the 
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same process repeats, using the operators aggregate, 
classify, and redescribe. The only differences are 
in the metric, neighborhood relation, and equivalence 
relation: trajectories are aggregated into a neighbor- 
hood graph where the neighborhood is defined by a 
sphere of some fixed radius, and neighboring trajec- 
tories are bundled using an equivalence relation com- 
paring corresponding vectors along trajectories. Fig- 
ure 3(d) shows the spatial aggregation code, and Fig- 
ure 2(d) shows the result. The aggregation process can 
repeat at a even higher level if necessary. 

As the example illustrates, programs written in the 
spatial aggregation language are modular, using a com- 
mon data structure (neighborhood graph) and sn iden- 
tical set of generic operators. They are concise and 
make explicit the important computational character- 
istics of the problem: neighborhood and equivalence 
relations. 

Additional operators are available for manipulating 
the objects in the neighborhood graph. For exam- 
ple, search starts at any of a list of objects in the 
graph and moves from neighbor to neighbor, following 
some desired control strategy (e.g. depth-first search or 
breadth-first search) and finding paths satisfying some 
criteria. Interfaces to standard geometric and numeri- 
cal libraries could further extend the capabilities of the 
language. 

Spatial Aggregation Language 
The spatial aggregation language provides operators 
and abstract data types (ADTs), together with a li- 
brary of basic components providing commonly used 
implementations, for constructing the transformations 
of the field. To use the language, a user selects oper- 
ators and components, mixing-and-matching and spe- 
cializing them with necessary field metric and simi- 
larity measure information for each spatial aggregate 
layer. 

The core of the language 
The core of the language comprises two abstract data 
types, the field and the ngraph, and a set of inter- 
face operators. Table 1 summarizes the syntax of the 
language data types and operators. 

Field A field defines a metric space for the geo- 
metric descriptions of spatial objects, and can answer 
spatial queries. The field data type is supported in 
the language component library by several commonly 
used spatial indexing methods (e.g. array, grid, and k-d 
tree). 

N-graph An ngraph defines a neighborhood relation 
for a set of spatial objects, and can return the neigh- 
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o Data types: 

- Field interface: 
create: objects + field 
Returns a field indexing the objects. 
domain: field + objects 
Returns objects defined in the field. 
near: field * object * distance + objects 
Returns objects within distance of the object in 
the field. 

- Ngraph interface: 
create: field + ngraph 
Returns an ngraph aggregating objects in the field. 
neighbors: ngraph * object + objects 
Returns neighbors of the object in the ngraph. 

0 Interface operators: 
aggregate: field * ngraph-fat + ngraph 
Groups objects of the field into an ngraph. 

classify: ngraph * objects * threshold + classes 
Returns equivalence classes of the objects in the 
ngraph according to the feature similarity threshold. 
redescribe: classes * redescribe-function + objects 
Abstracts equivalence classes to higher-level objects. 
localize: objects * localize-function + classes 
Converts higher-level objects to classes of constituent 
objects. 
search: ngraph * objects * goal-predicate + paths 
Returns paths through the ngraph starting from the 
objects and satisfying goal-predicate. 
map, filter, and geometric operations on spatial ob- 
jects. 
A user must specify the neighborhood relation, field met- 
ric, and equivalence relation for these operators explic- 
itly, or provide procedures that compute the ngraph and 
equivalence classes. 

Table 1: Syntax of the spatial aggregation language. 

hors of any given object defined in the ngraph. A 
wide variety of ngraph implementations, available in 
the component library, support different neighborhood 
relations such as nearness, MST, and Voronoi diagram. 

Interface Operations The ngraph and field are 
constructed and accessed by a set of language interface 
operators defined in Table 1. 

Component library 
A prototype of the language is implemented in Scheme. 
The ADTs are highly parameterized and can be in- 
stantiated with particular field metrics, similarity mea- 
sures, etc. Some of the ADTs are pre-specialized with 
commonly-used values for efficiency reasons. The mod- 
ular design of the ADTs supports language extensions 
and user control over tradeoffs such as efficiency vs. 



e Field: 

Spatial indices: Array, grid, k-d tree, list. 

Intensional: User-specified function defines field ob- 
jects. 

Interpolated: User-specified function interpolates field 
objects from given values. 

m Ngraph neighborhoods: 

Graphical methods: MST, Voronoi diagram. 

Nearness: Neighbors within specified radius. 
Generating function: Neighbors defined by user- 
specified function. 

o Classify mechanisms: 

Standard: Objects are considered equivalent if they 
are neighbors and similar in feature space; equivalence 
classes are formed by transitive closure. 
Splitting: Classifies with a loose threshold and then 
applies a user-supplied consistency check to the classes. 
Reclassifies inconsistent classes with successively tighter 
thresholds. 
Merging: Classifies with a tight threshold and then 
merges similar classes using a higher-level aggregation 
process. 
Stabilizing: Compares classifications over a range of 
thresholds, returning the one that persists over the 
largest subrange. 

Table 2: Library of commonly used components in the 
spatial aggregation language. 

generality (Weide, Ogden, & Zweben 1991). 
The current component library, shown in Table 2, 

contains basic implementations for each abstract data 
type and operator. Other component implementations 
can be built according to the defined specifications and 
added to the library if necessary. 

Example program 
We use a region-growing example from image analy- 
sis to illustrate how a simple program can be written 
using the language (Figure 4). The program takes as 
input a field I- an image mapping pixel coordinates 
to brightness values (Figure 5(a)) - and produces a 
list of disjoint regions of pixels with similar brightness 
values (Figure 5(b)). The pixel spatial objects com- 
prise points in a subspace of R2 and corresponding 
gray-scale values from (0, 1, . . . . 255). 

Language Experience 
The spatial aggregation language is applicable to a 
wide range of problem domains, including dynami- 
cal system analysis, fluid flow motion analysis, me- 

ms A 14x14 array field 
i&fine image-field-fat 

(field-array/instantiate ‘(14 14) pixel/point)) 

; ; 4-adjacency neighborhood using nearness ngrap 
*. Neighbors are pixels one unit away 
iiefine image-ngraph-fat 

(ngraph-near/instantiate image-field-fat 1)) 

@I 
;; Standard classifier 
** Similarity measure uses pixel values 
iiefine classify 

(classify-standard/instantiate 
image-ngraph-fat 
(lambda (nl n2) 

(abs (- (pixel/value nl) 
(pixel/value n2)>))>> 

(Cl 
.. Form a neighborhood graph 
iiefine image-ngraph 

(aggregate pixels image-ngraph-fat)) 

(4 
.. Form equivalence classes 
iief ine classes 

(classify image-ngraph pixels *thresh*)) 
tej 

*. Create region objects from lists of pixels 
iiefine regions 

(redescribe classes region/create)) 

*. Return lists of pixels from region objects , 8 
(define classes 

(localize regions region/pixels)) 

Cd 

Figure 4: Region growing code: (a) Field instantiation. 
(b) N-graph instantiation. (c) Classifier instantiation. 
(d) aggregate. (e) classify. (f) redescribe pixel 
equivalence classes as regions. (g) localize. 

(4 

aaaaaabbcccccc 

e,aaaaabbcccccc 

aaaaaabbcccccc 

aaaaeabbcccccs 

aasaeabbcccccc 

aa.aar.abbcccccc 

bbbbbbbbbbbbbb 

bbbbbbbbbbbbbb 

ddddddbbeeeeee 

ddddddbbeeeees 

ddddddbbeeeeee 

ddddddbbeeeeee 

ddddddbbeeeeee 

ddddddbbeeeeee 

w 

Figure 5: An example of region growing: (a) Input 
image: A 14x 14 array of pixels. (b) Output image: 
five regions, a through e, of pixels of similar brightness. 
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chanical mechanism analysis, image analysis, auditory 
scene analysis, data mining, and geographic informa- 
tion databases. We have developed several small-scale 
application programs written in this language. Based 
on our experience, programming in the spatial aggre- 
gation language has several advantages: 

The language allows a user to isolate what is impor- 
tant and express the important computational ideas 
in terms of the formation of equivalence classes and 
the transformation of neighborhood graphs, while 
hiding low-level implementation details. For exam- 
ple, the classify operator provides means for a user 
to specify and search for appropriate classification 
thresholds. The resulting programs are modular and 
concise. 

The language provides field and N-graph data types 
for naturally representing physical objects in contin- 
uous domains. Field is a commonly used abstrac- 
tion in science and engineering and hence facilitates 
the scientific and engineering applications of the lan- 
guage. N-graph serves as a common interface for 
developing programs. The interface operators are 
identical for different layers of spatial aggregation. 

For a given task, a user can craft a program by mix- 
ing and matching and specializing components from 
the library provided by the language. A user has 
fine control over efficiency and generality in the lan- 
guage implementation and can extend the language 
capability by adding additional component imple- 
mentations. Specializing data types through par- 
tial instantiation can improve performance; so can a 
more efficient implementation of a component. For 
example, a k-d tree field facility that replaces a grid 
can improve the object indexing performance in ma- 
nipulating non-uniformly distributed points. 

The current implementation of the language is lim- 
ited in a number of ways. We plan to incorporate ad- 
ditional types of components, provide additional com- 
ponent implementations, and improve computational 
efficiency of the implementation. Other goals include 
the implementation of lazy evaluation and incremental 
analysis and update for N-graphs. To apply the lan- 
guage to large-scale problems, we need to build inter- 
faces to existing numerical and computational geome- 
try libraries so that the language can tap the power of 
the existing software base. 

Conclusion 
We have described an mplemented language that sup- 
ports programming in the style of spatial aggregation 

for a number of applications ranging from dynamics in- 
terpretation to image analysis. The spatial aggregation 
language provides primitives - field, N-graph, and a 
small set of operators - and means of abstraction for 
building problem solvers that derive concise symbolic 
descriptions from analogue representations of physical 
phenomena. Our experience provides evidence that the 
language supports the development of modular pro- 
grams at an appropriate level of abstraction. 

A central problem in artificial intelligence is to un- 
derstand and construct the mappings from analogue 
signals to symbols and back. Spatial aggregation 
achieves a descriptive economy for an analogue in- 
put field by successively forming equivalence classes of 
lower-level objects and transforming a multi-layer of 
spatial aggregates, and is a possible realization of the 
signal-to-symbol mapping. Many important research 
questions remain open: What class of scientific prob- 
lems can be formulated and solved in the style of spa- 
tial aggregation ? Is there biological evidence that the 
brain might be performing spatial aggregation? What 
are other styles of reasoning that might bridge the ana- 
logue signals with the symbols? 

References 
Chandrasekaran, B., and Narayanan, N. 1990. To- 
wards a theory of commonsense visual reasoning. In 
Nori, K., and Madhavan, C., eds., Foundations of 
Software Technology and Theoretical Computer Sci- 
ence. Springer. 

Forbus, K.; Nielsen, P.; and Faltings, B. 1991. Qual- 
itative spatial reasoning: the CLOCK project. Arti- 
ficial Intelligence 51. 

Joskowicz, L., and Sacks, E. 1991. Computational 
kinematics. Artificial Intelligence 51:381-416. 

Mahoney, J. 1995. Signal-based figure/ground sepa- 
ration. Preprint. 

Ullman, S. 1984. Visual routines. Cognition 18. 

Weide, B.; Ogden, W.; and Zweben, S. 1991. 
Reusable software components. Advances in Com- 
puters 33:1-65. 

Yip, K. M., and Zhao, F. 1996. Spatial ag- 
gregation: Theory and applications. J. Artificial 
Intelligence Research. To appear. Available from 
http://www.cis.ohio-state.edu/“fz/. 

Yip, K. M. 1991. KAM: A system for intelligently 
guiding numerical experimentation by computer. MIT 
Press. 

Zhao, F. 1994. Extracting and representing quali- 
tative behaviors of complex systems in phase spaces. 
Artificial Intelligence 69(1-2):51-92. 

522 Knowledge Representation 


