
Spatial Aggregation: Language and Applications*

Christopher Bailey-Kellogg and Feng Zhao Kenneth Yip
Computer and Information Science Department

The Ohio State University
2015 Neil Ave.

Columbus, OH 43210 U.S.A.
{kellogg,fz}Qcis.ohio-state.edu

Abstract

Spatial aggregation is a framework for organizing com-
putations around image-like, analogue representations
of physical processes in data interpretation and control
tasks. It conceptualizes common computational struc-
tures in a class of implemented problem solvers for dif-
ficult scientific and engineering problems. It comprises
a mechanism, a language, and a programming style.
The spatial aggregation mechanism transforms a nu-
merical input field to successively higher-level descrip-
tions by applying a small, identical set of operators to
each layer given a metric, neighborhood relation and
equivalence relation. This paper describes the spatial
aggregation language and its applications.
The spatial aggregation language provides two ab-
stract data types - neighborhood graph and field -
and a set of interface operators for constructing the
transformations of the field, together with a library
of component implementations from which a user can
mix-and-match and specialize for a particular applica-
tion. The language allows users to isolate and express
important computational ideas in different problem
domains while hiding low-level details. We illustrate
the use of the language with examples ranging from
trajectory grouping in dynamics interpretation to re-
gion growing in image analysis. Programs for these
different task domains can be written in a modular,
concise fashion in the spatial aggregation language.

Introduction
Effective reasoning about a physical system requires
an appropriate mapping from the system character-
istics to abstractions that match the requirements of
the task at hand. Spatial aggregation organizes com-
putations around image-like, analogue representations
of physical processes in data interpretation and control
tasks (Yip & Zhao 1996). In Qualitative Physics, three

* FZ is supported by an NSF National Young Investi-
gator Award CCR-9457802, a Sloan Foundation Research
Fellowship, a grant from Xerox Palo Alto Research Center,
and an NSF grant CCR-9308639. CBK is supported by
FZ’s NSF NY1 grant CCR-9457802. KY is supported by
an NSF National Young Investigator Award ECS-935777.

MIT Artificial Intelligence-Laboratory
545 Technology Square

Cambridge, MA 02139 U.S.A.
yip@martigny.ai.mit.edu

ontological abstractions are widely used: device, pro-
cess, and constraint. Spatial aggregation introduces
a new ontological abstraction, the field ontology, to
unify many reasoning tasks involving the image-like
analogue representations such as the velocity field for
fluid motion, phase space for dynamical systems, and
configuration space for mechanism analysis.

The input to spatial aggregation is a data massive,
numerical field. ’ The desired output is a high-level,
parsimonious description of the structure and behav-
ior of the physical process that the field represents.
To bridge the semantic gap between the analogue in-
put field and the final symbolic description, spatial ag-
gregation introduces layers of intermediate structures
called spatial aggregates to capture spatial adjacencies
among objects of the field at multiple spatial and tem-
poral scales. A spatial aggregate is constructed from
a metric, a neighborhood relation and an equivalence
relation supplied by a user according to the objective
of computation. The spatial aggregation mechanism
transforms the input field to successively higher-level
descriptions by applying a small, identical set of oper-
ators to each layer of the spatial aggregates.

The spatial aggregation framework grows out
of a class of problem solvers, KAM (Yip 1991),
MAPS (Zhao 1994) and HIPAIR (Joskowicz & Sacks
1991), that derive their power primarily from percep-
tual operators on analogue representations, and only
secondarily from search and analytical methods. These
programs have exhibited expert performance on dif-
ficult problems in hydrodynamics, nonlinear control,
and engineering mechanism analysis. Spatial aggre-
gation abstracts the common computational structure
and a set of generic operators from these problem
solvers. It can also apply to a wide variety of other
task domains such as image analysis and geographic
information databases applications. The generic op-

‘A field maps one continuum to another. Examples in-
clude velocity field (R3 + R3), temperature field (R3 +
RI), image field (R2 + R1), and vector field (R” + R”).

Abstraction 517

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

erators of spatial aggregation can be viewed as a
particular instantiation of Ullman’s “visual routines”
for visual information processing tasks (Ullman 1984;
Mahoney 1995).

Other researchers have developed related frame-
works and systems for reasoning about spatial, ana-
logue representations of physical world. For example,
Forbus et al. developed the Metric Diagram/Place Vo-
cabulary (MD/PV) framework for qualitative spatial
reasoning (Forbus, Nielsen, & Faltings 1991). Chan-
drasekaran and Narayanan proposed a direct ana-
logue simulation of elementary mechanics problem us-
ing a diagrammatic representation (Chandrasekaran &
Narayanan 1990). In comparison, the spatial aggre-
gation framework comprises multi-layer spatial aggre-
gates with identical computational structure at, each
layer and focuses on the problem of recovering struc-
tures from numerical fields.

This paper describes the spatial aggregation lan-
guage and the development of applications in the style
of spatial aggregation. We give an overview of the basic
features of the language, illustrated with an example of
trajectory grouping in dynamics analysis. We describe
the language syntax, component library, implementa-
tion, and a sample program written in the language
for a region growing operation in image analysis. We
then summarize the language experience in application
development.

Overview
Given an input field, the spatial aggregation mecha-
nism constructs a neighborhood graph (N-graph) from
primitive objects of the field, explicates their spatial
adjacencies, and forms equivalence classes of these ob-
jects using an equivalence relation determined by the
objective of the task. An equivalence class can be re-
described as a primitive object at a higher level if nec-
essary, and the identical steps of aggregation to form
a new N-graph and classification to form equivalence
classes apply with a new metric, neighborhood rela-
tion, and equivalence relation. This iteration termi-
nates when the desired behavioral and structural de-
scription can be readily derived from the N-graph. The
N-graph and field serve as computational glue for the
operations that search, transform, and filter the spa-
tial objects. Figure 1 illustrates the data flow in the
main operations of the language at each level of spatial
aggregation.

Spatial aggregation represents primitive objects of
a physical process or system with spatial objects. For
instance, a spatial object might describe a state of a
dynamical system - a point and its direction of move-
ment in an n-dimensional phase space spanned by the

High-Level Description

Higher-Level Objects

Lower-Level Objects

Input Field

Figure 1: Spatial aggregation: the lower-level objects
from the numerical input field are transformed into
higher-level objects through a sequence of operations
available in the language. The higher-level objects t,hen
become the input to another level of spatial aggrega-
tion where the identical set of operators apply.

state variables. A spatial object comprises a geomet-
ric description and a feature description. The geo-
metric description is specified in a metric space defin-
ing distances between geometric primitives. The fea-
ture description belongs to one or more feature spaces.
For example, in image analysis, a pixel spatial ob-
ject uses the pixel location as the geometric descrip-
tion and the associated brightness value as the fea-
ture description. Likewise, a region spat,ial object, de-
fines a geometric region in an image and an average
or minimum/maximum brightness value of the con-
stituent pixels. In a meteorology applicat,ion, each
spatial object, specifies a location in space and a tem-
perature, barometric pressure, and air flow velocity in
feature space. The distance between values in a fea-
ture space represents how different the corresponding
spatial objects are. Spatial aggregation forms neigh-
borhood graphs for spatial objects using the geometric
description and groups the spatial objects using simi-
larity or proximity measures in feature space. For ex-
ample, spatial aggregation could group text with the
same font, using a feature space defined by font char-
acteristics. In a mechanism analysis system, it could
group configurations in a configuration space.

As an example of how spatial aggregation provides
organizational principles and building blocks to facili-
tate the development of programs for engineering prob-
lems, consider an interpretation task in dynamical sys-

518 Knowledge Representation

* * * * * * ** * ** * *** * * * ;k * **** * *
* ***** ** * * * ** ** *

** * * z ** * * * * * * *
(a)

Figure 2: Trajectory interpretation: (a) Input field:
points in phase space. (b) A neighborhood graph
(MST) for the points. (c) Points grouped into tra-
jectories labeled by a through 1 respectively. (d) Tra-
jectories grouped into bundles labeled a through d re-
spectively.

tern analysis. The input is a field of sampled states as
points in phase space shown in Figure 2(a). The ob-
jective is to group the states into trajectories and then
trajectories into trajectory bundles that share the same
qualitative behaviors, as shown in Figure 2(c) and Fig-
ure 2(d) respectively. Even though the example is in
2D space, the operators apply to higher-dimensional
spaces as well.

The first step, aggregation, forms a neighborhood
graph using a neighborhood relation to explicitly in-
dicate pairs of adjacent spatial objects. Different ap-
plications require different neighborhood relations. In
the trajectory interpretation application, a minimal
spanning tree (MST) is appropriate; other applications
use Voronoi diagrams, nearness criteria, and so forth.
The spatial aggregation code shown in Figure 3(a)
uses the operator aggregate to compute the neigh-
borhood graph (the argument points-ngraph-f ac -
constructed from language library components - spec-
ifies how to build an MST). Figure 2(b) shows the re-
sult. The operator aggregate allows the user to focus
on choosing a good neighborhood relation while hiding
implement at ion details.

(define points-ngraph
(aggregate input-field points-ngraph-fat))

(define point-classes
(classify
points-ngraph points *point-distance-tol*)) I -

(bi
I

(define trajs
(redescribe point-classes traj/create>>

(4 I
.. Aggregate the trajectories.
idefine traj-ngraph
(aggregate trajs traj-ngraph-fat))

** Form equivalence classes.
idefine traj-bundles
(classify
traj-ngraph trajs *vector-similar ity-tol*))

Figure 3: Trajectory interpretation code: (a) Aggre-
gation of trajectory points. (b) Classification of tra-
jectory points. (c) Redescription of point classes as
trajectories. (d) Aggregation and classification of tra-
jectories.

The next main step, classification, forms equivalence
classes of neighboring spatial objects according to their
similarity in the feature space. In the trajectory inter-
pretation example, a point can be considered similar to
a neighbor if their separation is not significantly longer
than the distances separating other nearby neighbors.
In the code of Figure 3(b), classify forms equiva-
lence classes of points from the MST, points-ngraph,
by deleting edges that are too long according to the
threshold *point-distance-tol*; the result is shown
in Figure 2(c). Other classifiers, discussed later in the
paper, use more powerful mechanisms, such as consis-
tency predicates testing formed classes. The opera-
tor classify allows the user to select an appropriate
equivalence relation and a classification mechanism.

The third main step of spatial aggregation, re-
describing, maps equivalence classes of objects at one
level to single higher-level objects at the next level.
In the trajectory interpretation example, each equiva-
lence class of points becomes a single trajectory object;
Figure 3(c) shows the spatial aggregation code. The
redescribe operator shifts the level of abstraction so
that the aggregation process can repeat at a higher
level. The inverse of redescribing is localizing, which
maps each higher-level object to the equivalence class
of constituent objects at the lower level.

To group trajectories into trajectory bundles, the

Abstraction 519

same process repeats, using the operators aggregate,
classify, and redescribe. The only differences are
in the metric, neighborhood relation, and equivalence
relation: trajectories are aggregated into a neighbor-
hood graph where the neighborhood is defined by a
sphere of some fixed radius, and neighboring trajec-
tories are bundled using an equivalence relation com-
paring corresponding vectors along trajectories. Fig-
ure 3(d) shows the spatial aggregation code, and Fig-
ure 2(d) shows the result. The aggregation process can
repeat at a even higher level if necessary.

As the example illustrates, programs written in the
spatial aggregation language are modular, using a com-
mon data structure (neighborhood graph) and sn iden-
tical set of generic operators. They are concise and
make explicit the important computational character-
istics of the problem: neighborhood and equivalence
relations.

Additional operators are available for manipulating
the objects in the neighborhood graph. For exam-
ple, search starts at any of a list of objects in the
graph and moves from neighbor to neighbor, following
some desired control strategy (e.g. depth-first search or
breadth-first search) and finding paths satisfying some
criteria. Interfaces to standard geometric and numeri-
cal libraries could further extend the capabilities of the
language.

Spatial Aggregation Language
The spatial aggregation language provides operators
and abstract data types (ADTs), together with a li-
brary of basic components providing commonly used
implementations, for constructing the transformations
of the field. To use the language, a user selects oper-
ators and components, mixing-and-matching and spe-
cializing them with necessary field metric and simi-
larity measure information for each spatial aggregate
layer.

The core of the language
The core of the language comprises two abstract data
types, the field and the ngraph, and a set of inter-
face operators. Table 1 summarizes the syntax of the
language data types and operators.

Field A field defines a metric space for the geo-
metric descriptions of spatial objects, and can answer
spatial queries. The field data type is supported in
the language component library by several commonly
used spatial indexing methods (e.g. array, grid, and k-d
tree).

N-graph An ngraph defines a neighborhood relation
for a set of spatial objects, and can return the neigh-

520 Knowledge Representation

o Data types:

- Field interface:
create: objects + field
Returns a field indexing the objects.
domain: field + objects
Returns objects defined in the field.
near: field * object * distance + objects
Returns objects within distance of the object in
the field.

- Ngraph interface:
create: field + ngraph
Returns an ngraph aggregating objects in the field.
neighbors: ngraph * object + objects
Returns neighbors of the object in the ngraph.

0 Interface operators:
aggregate: field * ngraph-fat + ngraph
Groups objects of the field into an ngraph.

classify: ngraph * objects * threshold + classes
Returns equivalence classes of the objects in the
ngraph according to the feature similarity threshold.
redescribe: classes * redescribe-function + objects
Abstracts equivalence classes to higher-level objects.
localize: objects * localize-function + classes
Converts higher-level objects to classes of constituent
objects.
search: ngraph * objects * goal-predicate + paths
Returns paths through the ngraph starting from the
objects and satisfying goal-predicate.
map, filter, and geometric operations on spatial ob-
jects.
A user must specify the neighborhood relation, field met-
ric, and equivalence relation for these operators explic-
itly, or provide procedures that compute the ngraph and
equivalence classes.

Table 1: Syntax of the spatial aggregation language.

hors of any given object defined in the ngraph. A
wide variety of ngraph implementations, available in
the component library, support different neighborhood
relations such as nearness, MST, and Voronoi diagram.

Interface Operations The ngraph and field are
constructed and accessed by a set of language interface
operators defined in Table 1.

Component library
A prototype of the language is implemented in Scheme.
The ADTs are highly parameterized and can be in-
stantiated with particular field metrics, similarity mea-
sures, etc. Some of the ADTs are pre-specialized with
commonly-used values for efficiency reasons. The mod-
ular design of the ADTs supports language extensions
and user control over tradeoffs such as efficiency vs.

e Field:

Spatial indices: Array, grid, k-d tree, list.

Intensional: User-specified function defines field ob-
jects.

Interpolated: User-specified function interpolates field
objects from given values.

m Ngraph neighborhoods:

Graphical methods: MST, Voronoi diagram.

Nearness: Neighbors within specified radius.
Generating function: Neighbors defined by user-
specified function.

o Classify mechanisms:

Standard: Objects are considered equivalent if they
are neighbors and similar in feature space; equivalence
classes are formed by transitive closure.
Splitting: Classifies with a loose threshold and then
applies a user-supplied consistency check to the classes.
Reclassifies inconsistent classes with successively tighter
thresholds.
Merging: Classifies with a tight threshold and then
merges similar classes using a higher-level aggregation
process.
Stabilizing: Compares classifications over a range of
thresholds, returning the one that persists over the
largest subrange.

Table 2: Library of commonly used components in the
spatial aggregation language.

generality (Weide, Ogden, & Zweben 1991).
The current component library, shown in Table 2,

contains basic implementations for each abstract data
type and operator. Other component implementations
can be built according to the defined specifications and
added to the library if necessary.

Example program
We use a region-growing example from image analy-
sis to illustrate how a simple program can be written
using the language (Figure 4). The program takes as
input a field I- an image mapping pixel coordinates
to brightness values (Figure 5(a)) - and produces a
list of disjoint regions of pixels with similar brightness
values (Figure 5(b)). The pixel spatial objects com-
prise points in a subspace of R2 and corresponding
gray-scale values from (0, 1, 255).

Language Experience
The spatial aggregation language is applicable to a
wide range of problem domains, including dynami-
cal system analysis, fluid flow motion analysis, me-

ms A 14x14 array field
i&fine image-field-fat

(field-array/instantiate ‘(14 14) pixel/point))

; ; 4-adjacency neighborhood using nearness ngrap
*. Neighbors are pixels one unit away
iiefine image-ngraph-fat

(ngraph-near/instantiate image-field-fat 1))

@I
;; Standard classifier
** Similarity measure uses pixel values
iiefine classify

(classify-standard/instantiate
image-ngraph-fat
(lambda (nl n2)

(abs (- (pixel/value nl)
(pixel/value n2)>))>>

(Cl
.. Form a neighborhood graph
iiefine image-ngraph

(aggregate pixels image-ngraph-fat))

(4
.. Form equivalence classes
iief ine classes

(classify image-ngraph pixels *thresh*))
tej

*. Create region objects from lists of pixels
iiefine regions

(redescribe classes region/create))

*. Return lists of pixels from region objects , 8
(define classes

(localize regions region/pixels))

Cd

Figure 4: Region growing code: (a) Field instantiation.
(b) N-graph instantiation. (c) Classifier instantiation.
(d) aggregate. (e) classify. (f) redescribe pixel
equivalence classes as regions. (g) localize.

(4

aaaaaabbcccccc

e,aaaaabbcccccc

aaaaaabbcccccc

aaaaeabbcccccs

aasaeabbcccccc

aa.aar.abbcccccc

bbbbbbbbbbbbbb

bbbbbbbbbbbbbb

ddddddbbeeeeee

ddddddbbeeeees

ddddddbbeeeeee

ddddddbbeeeeee

ddddddbbeeeeee

ddddddbbeeeeee

w

Figure 5: An example of region growing: (a) Input
image: A 14x 14 array of pixels. (b) Output image:
five regions, a through e, of pixels of similar brightness.

Abstraction 521

chanical mechanism analysis, image analysis, auditory
scene analysis, data mining, and geographic informa-
tion databases. We have developed several small-scale
application programs written in this language. Based
on our experience, programming in the spatial aggre-
gation language has several advantages:

The language allows a user to isolate what is impor-
tant and express the important computational ideas
in terms of the formation of equivalence classes and
the transformation of neighborhood graphs, while
hiding low-level implementation details. For exam-
ple, the classify operator provides means for a user
to specify and search for appropriate classification
thresholds. The resulting programs are modular and
concise.

The language provides field and N-graph data types
for naturally representing physical objects in contin-
uous domains. Field is a commonly used abstrac-
tion in science and engineering and hence facilitates
the scientific and engineering applications of the lan-
guage. N-graph serves as a common interface for
developing programs. The interface operators are
identical for different layers of spatial aggregation.

For a given task, a user can craft a program by mix-
ing and matching and specializing components from
the library provided by the language. A user has
fine control over efficiency and generality in the lan-
guage implementation and can extend the language
capability by adding additional component imple-
mentations. Specializing data types through par-
tial instantiation can improve performance; so can a
more efficient implementation of a component. For
example, a k-d tree field facility that replaces a grid
can improve the object indexing performance in ma-
nipulating non-uniformly distributed points.

The current implementation of the language is lim-
ited in a number of ways. We plan to incorporate ad-
ditional types of components, provide additional com-
ponent implementations, and improve computational
efficiency of the implementation. Other goals include
the implementation of lazy evaluation and incremental
analysis and update for N-graphs. To apply the lan-
guage to large-scale problems, we need to build inter-
faces to existing numerical and computational geome-
try libraries so that the language can tap the power of
the existing software base.

Conclusion
We have described an mplemented language that sup-
ports programming in the style of spatial aggregation

for a number of applications ranging from dynamics in-
terpretation to image analysis. The spatial aggregation
language provides primitives - field, N-graph, and a
small set of operators - and means of abstraction for
building problem solvers that derive concise symbolic
descriptions from analogue representations of physical
phenomena. Our experience provides evidence that the
language supports the development of modular pro-
grams at an appropriate level of abstraction.

A central problem in artificial intelligence is to un-
derstand and construct the mappings from analogue
signals to symbols and back. Spatial aggregation
achieves a descriptive economy for an analogue in-
put field by successively forming equivalence classes of
lower-level objects and transforming a multi-layer of
spatial aggregates, and is a possible realization of the
signal-to-symbol mapping. Many important research
questions remain open: What class of scientific prob-
lems can be formulated and solved in the style of spa-
tial aggregation ? Is there biological evidence that the
brain might be performing spatial aggregation? What
are other styles of reasoning that might bridge the ana-
logue signals with the symbols?

References
Chandrasekaran, B., and Narayanan, N. 1990. To-
wards a theory of commonsense visual reasoning. In
Nori, K., and Madhavan, C., eds., Foundations of
Software Technology and Theoretical Computer Sci-
ence. Springer.

Forbus, K.; Nielsen, P.; and Faltings, B. 1991. Qual-
itative spatial reasoning: the CLOCK project. Arti-
ficial Intelligence 51.

Joskowicz, L., and Sacks, E. 1991. Computational
kinematics. Artificial Intelligence 51:381-416.

Mahoney, J. 1995. Signal-based figure/ground sepa-
ration. Preprint.

Ullman, S. 1984. Visual routines. Cognition 18.

Weide, B.; Ogden, W.; and Zweben, S. 1991.
Reusable software components. Advances in Com-
puters 33:1-65.

Yip, K. M., and Zhao, F. 1996. Spatial ag-
gregation: Theory and applications. J. Artificial
Intelligence Research. To appear. Available from
http://www.cis.ohio-state.edu/“fz/.

Yip, K. M. 1991. KAM: A system for intelligently
guiding numerical experimentation by computer. MIT
Press.

Zhao, F. 1994. Extracting and representing quali-
tative behaviors of complex systems in phase spaces.
Artificial Intelligence 69(1-2):51-92.

522 Knowledge Representation

