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Abstract 

We present a novel method for building ABSTRIPS- 
style abstraction hierarchies in planning. The aim of 
this method is to minimize the amount of backtracking 
between abstraction levels. Previous approaches have 
determined the criticality of operator preconditions by 
reasoning about plans directly. Here, we adopt a sim- 
pler and faster approach where we use numerical sim- 
ulation of the planning process. We demonstrate the 
theoretical advantages of our approach by identifying 
some simple properties lacking in previous approaches 
but possessed by our method. We demonstrate the 
empirical advantages of our approach by a set of four 
benchmark experiments using the ABTWEAK sys- 
tem. We compare the quality of the abstraction hi- 
erarchies generated with those built by the ALPINE 
and HIGHPOINT algorithms. 

Introduction 
In an ABSTRIPS-style abstraction, operator precon- 
ditions are ranked according to a criticality (Sacerdoti 
1973). The i-th abstract space is constructed by ignor- 
ing preconditions with rank i or less. To refine a plan 
at the i-th level, we need to achieve those precondi- 
tions of rank i whilst preserving (or, where necessary, 
re-achieving) those with greater rank. Such abstrac- 
tion hierarchies can give an exponential speed-up in the 
time needed to build a plan (Giunchiglia & Walsh 1991; 
Knoblock 1990). However, if we have to backtrack be- 
tween abstraction levels, abstraction can greatly in- 
crease the time to find a plan. The “downward re- 
finement property” (Bacchus & Yang 1994) removes 
the need to backtrack as every abstract plan can be 
refined to a concrete plan. Unfortunately, relatively 
few abstraction hierarchies possess this property. In 
practice, we therefore try to build abstractions which 
limit the amount of backtracking but do not preclude 
it altogether. 

Previous approaches for building ABSTRIPS-style 
abstractions have reasoned about plans directly. For 
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example, in ABSTRIPS (Sacerdoti 1973) low critical- 
ities were assigned to those preconditions which can 
be achievied with short plans assuming all high criti- 
cality preconditions are true. More recently, ALPINE 
reasoned about operators to build abstraction hierar- 
chies which satisfy the “ordered monotonicity” prop- 
erty (Knoblock 1994). In (Bacchus & Yang 1994)) Bac- 
thus and Yang show that backtracking may be needed 
with such abstraction hierarchies. To reduce back- 
tracking, they propose the HIGHPOINT procedure. 
This refines the abstraction hierarchies produced by 
the ALPINE procedure using estimates of the proba- 
bility for successful refinement. The abstractions pro- 
duced by HIGHPOINT are close to having the down- 
ward refinement property (in the terminology of (Bac- 
thus & Yang 1994), they are “near-DRP”) but may 
still cause backtracking. 

In this paper, we offer a novel method for building 
abstraction hierarchies which is both fast and simple. 
Instead of reasoning about plans directly, we simulate 
the planning process numerically. The simplicity of 
this simulation allows us to impose two simple “mono- 
tonicity” conditions not guaranteed by previous meth- 
ods. These conditions ensure that harder precondi- 
tions are achieved at higher levels of abstractions. This 
greatly limits the amount of backtracking between ab- 
straction levels. On four benchmark examples, our 
method give hierarchies which offer superior perfor- 
mance to those generated by both the ALPINE and 
HIGHPOINT algorithms. 

Criticality functions 
Given a set of operators, Ops, we compute the crit- 
icality of the operator precondition, p by successive 
approximation. At the n-th iteration, the criticality 
function C(p) n) returns the numerical criticality of p. 
This converges to a limiting value as we iterate n. The 
intuition is that the easier it is to achieve p, the smaller 
the numerical criticality of p should be. We collect to- 
gether the limiting numerical criticalities of the same 
value to give the sets Si. We then order these sets using 
less than, giving Sr < . . . < S,. Following (Sacerdoti 
1973)) the criticality of a precondition, p is the index 
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i such that p E Si. In the i-th level of abstraction, Peot 1992; Peot & Smith 1993). There are three oper- 
we drop all preconditions of criticality i or less. We ators which shape, drill and paint objects. For simplic- 
thereby achieve the hardest preconditions in the most ity, we consider just their primary effects. The first op- 
abstract space. 

We impose various restrictions on criticality func- 
tions. For example, criticality functions should be or- 
der independent. That is, they should not depend on 
the order of the operators in the set Ops or the or- 
der of preconditions within an operator. Criticality 
functions also ought to treat symmetric preconditions 
symmetrically. If swapping the precondition p for the 
precondition q merely reorders the operators then p 
and q are said to be symmetric preconditions. 

Definition 1 (Symmetry) If p and q are symmetric 
preconditions then then C(p, n) = C(q, n). 

We also demand that criticality functions treat equiv- 
alent effects equivalently. Let Pre(op) be the precon- 
ditions of the operator op and Ops(p) be the subset 
of operators which have p as primary effects. We say 
that a set of operators, S is equivalent to a set of oper- 
ators, T iff ISI = ITI and for any opl E S there is some 
0~2 E T with Pre(opl) = Pre(op2) and vice versa. 

Definition 2 (Precondition equivalence) If 
Ops(p) is equivalent to Ops(q) then C(p, n) = C(q, n). 

Finally, to reduce backtracking between levels, we de- 
mand that the numerical criticality of a precondition 
decreases with the number of operators which achieve 
it (operator monotonicity), and increases with the 
number of preconditions to operators which achieve it 
(precondition monotonicity). 

Definition 3 (Operator monotonicity) If Ops(p) 
is equivalent to a subset of Ops(q) then C(p, n) 2 
C(a, 4. 

We say that a set of operators, S is subsumed by a set 
of operators, T iff ISI = ITI and for any opl E S there 
is some 0~2 E T with Pre(op1) _> Pre(op2). Note that 
if S is equivalent to T then S is subsumed by T and T 
is subsumed by S. 

Definition 4 (Precondition monotonicity) If 
Ops(p) is subsumed by Ops(q) then C(p) n) 2 C(q, n). 

If operator monotonicity is satisfied, hard precondi- 
tions (those that are effects of few operators) will 
be proved in the higher abstraction levels. This will 
tend to minimize backtracking between abstraction 
levels. Similarly, if precondition monotonicity is sat- 
isfied, hard preconditions (those effects of operators 
with many preconditions) will be proved in the higher 
abstraction levels. Again this will tend to minimize the 
need to backtrack. Precondition and operator mono- 
tonicity both imply precondition equivalence. 

ALPINE and HIGHPOINT generate abstraction hi- 
erarchies which fail to satisfy these properties and 
therefore cause unnecessary backtracking. Consider, 
for example, the manufacturing domain of (Smith & 

erator has a single precondition Obj ect and has Shaped 
as its effect. The second operator also has the single 
precondition Object and has Drilled as its effect. The 
third operator paints a steel object. It has Ob j ect and 
Steel as preconditions and has Painted as its effects. 
Precondition monotonicity ensure that the numerical 
criticality of Painted is greater or equal to that of both 
Shaped and Drilled. This agrees with our intuitions, 
as Painted requires an extra precondition. ALPINE, 
by comparison, assigns Painted the lowest criticality. 
As we will see in a later section, this can result in a 
large amount of backtracking. 

Note that the trivial criticality function which as- 
signs every precondition the same numerical critical- 
ity satisfies every one of these properties. This corre- 
sponds to no abstraction levels. We therefore maxi- 
mize the number of abstraction levels by treating the 
“greater than or equal to” relations derived from the 
monotonicity properties as “strictly greater than” re- 
lations wherever possible. There are many non-trivial 
functions which satisfy these properties. However, 
these properties are often sufficient to rank numeri- 
cal criticalities. For example, the rankings generated 
by our method in the next sections follow immediately 
from these properties. 

ESISTOR model 
We propose a criticality function which satisfies the 
properties of the previous section based upon a model 
of “resistance to change”. This model is analogous 
to that of electrical resistance. It attempts to model 
the difficulty of achieving preconditions. Precondition 
monotonicity means that operator preconditions act 
like resistors in series. Increasing the number of pre- 
conditions makes an operator harder to apply. Opera- 
tor monotonicity, on the other hand, means that oper- 
ators with the same effects act like resistors in parallel. 
Increasing the number of operators with the effect p re- 
duces the difficuly of achieving p since we have parallel 
paths for achieving p. We shall refer to this as the 
RESISTOR model for computing criticalities. 

To simplify the presentation, we introduce the no- 
tion of the numerical criticality of an operator. This 
represents the difficulty of applying an operator. As 
with serial resistors, the numerical criticality of an op- 
erator increases with the number of preconditions. We 
define the numerical criticality of an operator as the 
sum of the numerical criticalities of its preconditions. 
As with electrical resistors in parallel, multiple op- 
erators with the same effect reduce the difficulty of 
achieving that effect. We therefore define the numeri- 
cal criticality of a precondition as the parallel sum of 
the numerical criticalities of the operators with this 
precondition as effects. 

We interpret C(p) n) as the difficulty of achieving p 
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with a maximum depth of n operator applications. In 
the base case, n = 0. That is, no operator applica- 
tions are used. The difficulty of a precondition is the 
constant ae. This models the constant time database 
lookup in the initial state. We therefore define, 

C(P,O) = ao* (1) 
Note that a0 always factors out of the final numerical 
criticalities. In the step case, a precondition can either 
be achieved using n operator applications or by being 
true in the initial state. The difficulty of a precondition 
is thus the parallel sum of the difficulty in the initial 
state and of the difficulty of any operators of which it 
is an effect. That is, 

Finally, applying an operator at depth n is as difficult 
as the serial sum of the difficulties of its preconditions 
at depth n - 1. That is, 

C(oP,n) = C C(p,n - 1). (3) 
pEP4w) 

The recursive nature of these definitions naturally 
leads to an iterative procedure for computing numeri- 
cal criticalities. 

Unsupervised preconditions are those that cannot be 
changed by any operators. Previous methods have con- 
ventionally given them the maximum criticality. By 
Equation (1)) unsupervised preconditions are assigned 
the numerical criticality a0 at n = 0. By Equation (2), 
their numerical criticality remains at a0 for all subse- 
quent n. Since a0 is the largest numerical criticality 
possible, unsupervised preconditions are assigned the 
maximum criticality as required. 

An Example 
To illustrate the RESISTOR model for computing crit- 
icalities numerically, we use the computer hardware do- 
main of (Bacchus & Yang 1994). This domain has four 
operators which print files, turn on devices, plug de- 
vices into power outlets, and transfer files onto comput- 
ers. In Table 1, we give the numerical criticalities com- 
puted by the RESISTOR model for the different pre- 
conditions in this domain. The unsupervised precon- 
ditions are CableCanReach, Functional, IsComputer, 
IsOutlet, and Isprinter. At n = 4, the numerical 
criticalities reach their limiting values. It can easily 
be proved that if, as at n = 4, the numerical criticali- 
ties remain stable for one iteration, then they will not 
change subsequently. 

We group these numerical criticalities together, and 
order them using the less than relation. Loaded is as- 
signed the lowest criticality of 0, Poweron is given a 
criticality of 1, PluggedIn is assigned a criticality of 
2, Printed is given a criticality of 3 and the unsuper- 
vised preconditions are given the highest criticality of 

X C(X, n)/ao 
n=0ln=lln=2ln=3ln=co 

I I I I I 

unsupervised 1 1.000 I 1.000 I 1.000 I 1.000 1 1.000 
1 

Printed 1.000 0.833 0.800 0.795 0.795 
PluggedIn 1.000 0.667 0.667 0.667 0.667 
Pow&On 1.000 1 0.667 0.625 0.625 0.625 
Loaded 1.000 I 0.667 0.625 0.619 0.619 

Table 1: Numerical 
ware domain 

criticalities for the computer hard- 

4. This is in line with our intuitions for this domain. 
The unsupervised preconditions cannot be changed so 
must be achieved in the most abstract space. The 
next hardest precondition to achieve is Printed since 
we must have a computer and printer turned on, and 
the file to print loaded on the computer. As we must 
plug in a device before turning it on, PluggedIn is 
assigned a greater numerical criticality than PowerOn. 
Finally, as loading a file onto a computer is less im- 
portant than getting computers and printers plugged 
in and turned on, Loaded is given the lowest numerical 
criticality. In a later section, we demonstrate that this 
abstraction hierarchy is significantly better than that 
produced by the ALPINE algorithm, and offers slightly 
superior performance to the hierarchy generated by the 
HIGHPOINT procedure on larger problems. 

Theoretical results 
The RESISTOR criticality function is bounded in 
[0, ue] and monotonically decreasing. It is therefore 
convergent. Indeed, it typically converges very quickly. 
In the experiments in the next section, the change in 
numerical criticalities appears to decrease by at least 
a constant factor at each iteration. To explore this an- 
alytically, we developed a simple model in which each 
operator has m preconditions and each precondition 
can be achieved by I distinct operators. This gives an 
and-or search tree in which m is the and-branching 
and I is the or-branching. Under these assumptions, 
the numerical criticality of a precondition converges 
rapidly, with the difference between successive itera- 
tions being O((l/m)“) for d < m, O(l/n2) for 1 = m, 
and O((m/l)n) for d > m. 

The RESISTOR criticality function is trivially order 
independent and symmetric. It also treats equivalent 
preconditions equivalently. 
Theorem 1 C(p, n) is precondition equivalent 

Proof: By induction on n. In the base case, by Equa- 
tion (1)) all preconditions are assigned the same numer- 
ical criticality, a~. Equivalent preconditions therefore 
have the same numerical criticality. In the step case, 
we unfold with Equations (2) and (3) and appeal to 
the induction hypothesis. 

The RESISTOR criticality function also satisfies 
both the monotonicity properties. 
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Theorem 2 C(p, n> is operator and precondition 
monotonic. 

Proof: (Sketch) We define a notion of monotonicity 
which combines both operator and precondition mono- 
tonicity. The proof then uses induction on n. The 
base case follows immediately from Equation (1) since 
all preconditions have the same criticality. In the step 
case, using Equations (2) and (3) and some simple in- 
equality reasoning, we can again appeal to the induc- 
tion hypothesis. 

For reasons of space, full proofs for all these theorems 
appear in an associated technical report. 

Empirical results 
To demonstrate the empirical advantages of the RE- 
SISTOR model, we ran a set of four benchmark exper- 
iments using the ABTWEAK system (Yang, Tenen- 
berg, & Woods 1996), a state-of-the-art non-linear 
planner combining Abstrips-style abstractions (Sac- 
erdoti 1973) with Tweak-style partial-order planning 
(Chapman 1987). In each experiment, we compared 
the quality of the abstraction hierarchies generated by 
the RESISTOR model with those built by the ALPINE 
and HIGHPOINT algorithms (Knoblock 1994; Bac- 
thus & Yang 1994). Th ese are two of the best available 
procedures for generating abstraction hierarchies. 

The four experiments use standard benchmark prob- 
lems taken from the literature. The first domain ap- 
pears in (Knoblock 1994) and (Yang, Tenenberg, & 
Woods 1996). The next three are presented in (Bac- 
thus & Yang 1994). We either repeated exactly the 
same experiments (for example, in the manufacturing 
domain), or we run them in a more exhaustive man- 
ner (for example, in the robot-box domain). We used 
two different measurements to evaluate ABTWEAK’s 
performance with the different abstraction hierarchies: 
CPU time and the number of nodes expanded. The 
later is often a more reliable measurement of per- 
formance. All experiments were on a SUN Spare 
10 workstation with 32Mbytes RAM running com- 
piled Allegro CL 4.2 under the Solaris 2 operating 
systeml. 

Tower of Hanoi 

The goal is to move a pile of three disks of differ- 
ent sizes from one peg to another using a third in- 
termediate peg. At no time is a larger disk allowed 
to sit on a smaller one. The representation consists 
of an unsupervised type predicate Is-peg(peg), and 
three predicates On-small (peg), On-medium(peg) and 
On-large (peg). ALPINE, HIGHPOINT and RESIS- 
TOR all produced the same abstraction hierarchy in 
which preconditions are abstracted according to their 
size. Thus, in the most abstract space, we just consider 

'Code used in these experiments can be found 
at ftp://ftp.mrg.dist.unige.it/ in the directory 
/pub/mrg-systems/criticalities. 
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the IarEe disk. In the next level of abstraction, we con- 
sider l&h the medium and large disks. Anh in the 
ground space, we consider all the disks. ALPINE gen- 
erates this hierarchy in O.Ols, RESISTOR in 0.06s, and 
HIGHPOINT in 7.79s. In (Knoblock 1990), Knoblock 
shows that such a hierarchy reduces a bieadth first 
search from exponential to linear. Similar abstraction 
levels are generated for towers with more disks giving, 
as here, an exponential reduction in search. 

1 Critica.litv I Precondition 1 

I 

1 On-small 

Table 2: Criticalities generated by all methods for 
Tower of Hanoi domain. 

Robot-box domain 

This domain comes from (Bacchus & Yang 1994) and is 
a variant of the well-known ABSTRIPS robot domain 
(Sacerdoti 1973). The robot can either carry or pull 
boxes between one of six rooms. The doors connect- 
ing rooms may be either open or closed. Closed doors 
rniy be either openable 0; not openable. 
configuration is given in Figure 1. 

A typical 

Figure 1: The robot-box domain. 

For this domain, neither ALPINE or HIGHPOINT 
return criticalities which are order independent. The 
lowest three preconditions can be permuted by reorder- 
ing the operators. This is because ALPINE constructs 
a partial order on preconditions which is then topolog- 
ically sorted. To compare results, we used the ordering 
of operators which generates the same abstraction hi- 
erarchy as in (Bacchus & Yang 1994). 

We ran experiments with both “easy” and “hard” 
problems. In the first set of experiments, all doors 
are openable. HIGHPOINT then constructs the same 
abstraction hierarchy as ALPINE. The criticalities are 
given in Table 3. ALPINE took O.Ols, HIGHPOINT 
22.32s and RESISTOR 0.18s to generate these hier- 
archies. We ran ABTWEAK on all 30 possible goals 



of moving between different rooms using these criti- 
calities. Table 4 shows that while RESISTOR per- 
forms marginally better than ALPINE/HIGHPOINT, 
the differences between the hierarchies are not signifi- 
cant as backtracking is never needed. 

ALPINE/HIGHPOINT 

4 Connects 
Is-Box 
Is-Door 
Is-Room 
Openable 

3 Box-In-Room 
2 Attached 
1 Loaded 
0 Open 

RESISTOR 

3 Connects 
Is-Box 
Is-Door 
Is-Room 
Openable 

2 Box-In-Room 
1 Open 
0 Attached 

Loaded 

Table 3: Criticalities for the “easy” robot-box domain. 

plan CPU times (sets) nodes expanded samples 
len A/H 1 RES A/H 1 RES 
3 0.66 I 0.62 28.86 1 27.86 14 
6 11 4.24 1 4.07 11 143.64 1 142.64 11 
8 I( 12.95 1 12.55 11 379.50 1 378.50 11 2 1 

Table 4: Mean performance on the “easy” robot-box 
domain in which doors can be unlocked. 

In the harder set of experiments, certain doors are 
locked. HIGHPOINT increases the criticality of Bpen 
so that it is above Attached and Loaded. This reduces 
the probability of the robot meeting a locked door and 
thus the amount of backtracking. All other criticalities 
remain the same. ALPINE and RESISTOR return the 
same criticalities as before. We ran four sets of exper- 
iments. In each, door25 and one of door23, door26, 
door35 and door56 are locked. In each case, there 
is just one unique path connecting any pair of rooms. 
For each set of experiments, we ran ABTWEAK on 
all 30 possible goals. In 8 out of the 120 problems, 
ABTWEAK exceeded the cut off bound of 2000 nodes 
using the HIGHPOINT and RESISTOR abstraction 
hierarchies. Using the ALPINE hierarchy, an addi- 
tional problem also failed. The results are given in 
Table 5. 

On this harder domain, the RESISTOR hierarchy 
performs slightly better than the HIGHPOINT hi- 
erarchy. Both perform significantly better than the 
ALPINE hierarchy as there is less backtracking caused 
by meeting locked doors. The poor mean performance 
of the ALPINE hierarchy was, in fact, entirely due to 
a small number of problems where ABTWEAK back- 
tracked extensively. 

Computer Hardware 
We return to the computer hardware domain of (Bac- 
thus & Yang 1994) d iscussed in an earlier section. The 

CPU times (sets) 
ALP em RI% 
0.91 0.74 0.82 
6.20 5.33 5.32 
39.42 29.03 28.99 
82.58 69.64 67.45 

plan nodes expanded samples 
len ALP RI23 . 
3 28.30 28.30 27.30 40 
6 162.92 160.32 159.32 40 
8 775.08 752.67 751.67 
10 1729.78 1654.87 1653.87 

Table 5: Mean performance on the “hard” robot-box 
domain in which two doors are locked. 

task is to print a file in an environment where there are 
a number of computers and printers. Computers and 
printers may not be turned on, may not be functional, 
or located near to a power outlet. As in (Bacchus & 
Yang 1994)) we ran experiments in a domain in which 
at the initial situation just one computer and printer 
are within reach of a power outlet. The criticalities 
generated by the different methods are given in Ta- 
ble 3. ALPINE took 0.01s HIGHPOINT 15.26s and 
RESISTOR 0.12s to generate these hierarchies. As in 
(Bacchus & Yang 1994), we ran ABTWEAK on 30 
different problems involving between 1 and 3 files to 
print, and with between 1 and 10 computers, using a 
time limit of 1800 seconds. The results are given in 
Figures 2 to 4. 

ALPINE 

4 Cable-Can-Reach 
Functional 
Is-Computer 
Is-Printer 
Is-Outlet 

3 Printed 
2 Loaded 
1 Power-On 
0 Plugged-In 

HIGHPOINT 

Functional 

Is-Printer 

1 1 Loaded 

I RESISTOR I 

I I 0 I Loaded 

Table 6: Criticalities for the computer hardware do- 
main. 

ALPINE performs poorly in this domain, again due 
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14 - ALPINE c 
HIGHPOINT +- 
RESISTOR .a.. 

12 - 

10 - 

6- 

1 2 3 4 5 6 7 6 9 10 
computers Y 

350 
I 

ALPINE c 
HIGHPOINT +- 
RESISTOR .e.. 

Figure 2: CPU time and nodes explored, 1 file to print. 

to backtracking when devices are not plugged-in. RE- 
SISTOR and HIGHPOINT both require much less 
backtracking. The RESISTOR hierarchy gives slightly 
better performance, most noticeably on the larger 
problems. 

Manufacturing 
We return to the manufacturing domain of (Smith & 
Peot 1992; Peot & Smith 1993). The goal is to shape, 
drill and paint an object from stock. Recall that only 
steel objects can be painted. We assume that just one 
out of the large number of objects in stock are made 
from steel. The criticalities generated by the different 
methods are given in Table 7. ALPINE took 0.01s 
HIGHPOINT 13.33s and RESISTOR 0.68s to generate 
these hierarchies. 

HIGHPOINT 

Table 7: Criticalities for the manufacturing domain. 

ALPINE’s abstraction hierarchy violates the pre- 
condition monotonicity property as the Painted pre- 

1600 

1400 

lxx) 

f 10w 

i 6w 

400 

200 

0 
1 2 3 4 5 6 7 6 9 10 

compulersx 

Figure 3: CPU time and nodes explored, 2 files to 
print. 

condition should not be lower than either the Shaped 
or Drilled preconditions. HIGHPOINT compensates 
for the low probability of an object from stock being 
paintable by collapsing together the bottom three lev- 
els of ALPINE’s abstraction hierarchy. This reduces 
the need to backtrack but gives just one level of ab- 
straction. 

RESISTOR is able to generate an additional level of 
abstraction. The Shaped and Drilled preconditions 
are equivalent and are placed at the bottom of the ab- 
straction hierarchy. The Painted precondition appears 
above them as the operator for achieving it has an ad- 
ditional unsupervised precondition. The RESISTOR 
hierarchy is in line with the suggestions of Smith and 
Peot in (Smith & Peot 1992). 

As in (Bacchus & Yang 1994), we ran ABTWEAK 
on problems with between 100 and 200 objects in stock. 
Results are plotted in Figure 5. The RESISTOR hi- 
erarchy results in less backtracking than the ALPINE 
hierarchy, and performs significantly better than the 
HIGHPOINT hierarchy due to the additional level of 
abstraction. 

Conclusions 
We have proposed a novel method for building 
ABSTRIPS-style abstractions automatically. The aim 
of this method is to minimize the amount of backtrack- 
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Figure 4: CPU time and nodes explored, 3 files to Figure 5: CPU time and nodes explored for the man- 
print. ufacturing domain. 

ing between abstraction levels. Unlike previous ap- 
proaches which reasoned about plans directly, we sim- 
ulate the planning process numerically. Our model is 
based upon an analogy with electrical resistance. It is 
both fast and simple. The simplicity of our approach 
allows us to guarantee various theoretical properties 
hold lacking in previous approaches. In particular, 
the abstraction hierarchies constructed by our method 
satisfy two simple “monotonicity” properties. These 
ensure that the harder preconditions are achieved in 
the higher abstract levels. These monotonicity proper- 
ties limit the amount of backtracking required between 
abstraction levels. We have compared our method 
with those in the ALPINE and HIGHPOINT proce- 
dures. Using a comprehensive set of experiments, we 
have demonstrated that the hierarchies constructed are 
better than those generated by ALPINE and HIGH- 
POINT. In addition, our method builds these hierar- 
chies rapidly. 
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