
uting Abstractio ierarchies

Alan Bundy Faust0 Giunchiglia
Dept of AI IRST, Trento and

University of Edinburgh University of Trento

Abstract

We present a novel method for building ABSTRIPS-
style abstraction hierarchies in planning. The aim of
this method is to minimize the amount of backtracking
between abstraction levels. Previous approaches have
determined the criticality of operator preconditions by
reasoning about plans directly. Here, we adopt a sim-
pler and faster approach where we use numerical sim-
ulation of the planning process. We demonstrate the
theoretical advantages of our approach by identifying
some simple properties lacking in previous approaches
but possessed by our method. We demonstrate the
empirical advantages of our approach by a set of four
benchmark experiments using the ABTWEAK sys-
tem. We compare the quality of the abstraction hi-
erarchies generated with those built by the ALPINE
and HIGHPOINT algorithms.

Introduction
In an ABSTRIPS-style abstraction, operator precon-
ditions are ranked according to a criticality (Sacerdoti
1973). The i-th abstract space is constructed by ignor-
ing preconditions with rank i or less. To refine a plan
at the i-th level, we need to achieve those precondi-
tions of rank i whilst preserving (or, where necessary,
re-achieving) those with greater rank. Such abstrac-
tion hierarchies can give an exponential speed-up in the
time needed to build a plan (Giunchiglia & Walsh 1991;
Knoblock 1990). However, if we have to backtrack be-
tween abstraction levels, abstraction can greatly in-
crease the time to find a plan. The “downward re-
finement property” (Bacchus & Yang 1994) removes
the need to backtrack as every abstract plan can be
refined to a concrete plan. Unfortunately, relatively
few abstraction hierarchies possess this property. In
practice, we therefore try to build abstractions which
limit the amount of backtracking but do not preclude
it altogether.

Previous approaches for building ABSTRIPS-style
abstractions have reasoned about plans directly. For

*Authors are listed in alphabetical order. The first au-
thor is supported by EPSRC grant GR/J/80702, and the
last by a HCM personal fellowship. We thank Qiang Yang
for assistance with ABTWEAK and HIGHPOINT.

oberto Sebastiani Toby lsh
DIST IRST, Trento and

University of Genoa DIST, University of Genoa

example, in ABSTRIPS (Sacerdoti 1973) low critical-
ities were assigned to those preconditions which can
be achievied with short plans assuming all high criti-
cality preconditions are true. More recently, ALPINE
reasoned about operators to build abstraction hierar-
chies which satisfy the “ordered monotonicity” prop-
erty (Knoblock 1994). In (Bacchus & Yang 1994)) Bac-
thus and Yang show that backtracking may be needed
with such abstraction hierarchies. To reduce back-
tracking, they propose the HIGHPOINT procedure.
This refines the abstraction hierarchies produced by
the ALPINE procedure using estimates of the proba-
bility for successful refinement. The abstractions pro-
duced by HIGHPOINT are close to having the down-
ward refinement property (in the terminology of (Bac-
thus & Yang 1994), they are “near-DRP”) but may
still cause backtracking.

In this paper, we offer a novel method for building
abstraction hierarchies which is both fast and simple.
Instead of reasoning about plans directly, we simulate
the planning process numerically. The simplicity of
this simulation allows us to impose two simple “mono-
tonicity” conditions not guaranteed by previous meth-
ods. These conditions ensure that harder precondi-
tions are achieved at higher levels of abstractions. This
greatly limits the amount of backtracking between ab-
straction levels. On four benchmark examples, our
method give hierarchies which offer superior perfor-
mance to those generated by both the ALPINE and
HIGHPOINT algorithms.

Criticality functions
Given a set of operators, Ops, we compute the crit-
icality of the operator precondition, p by successive
approximation. At the n-th iteration, the criticality
function C(p) n) returns the numerical criticality of p.
This converges to a limiting value as we iterate n. The
intuition is that the easier it is to achieve p, the smaller
the numerical criticality of p should be. We collect to-
gether the limiting numerical criticalities of the same
value to give the sets Si. We then order these sets using
less than, giving Sr < . . . < S,. Following (Sacerdoti
1973)) the criticality of a precondition, p is the index

Abstraction 523

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

i such that p E Si. In the i-th level of abstraction, Peot 1992; Peot & Smith 1993). There are three oper-
we drop all preconditions of criticality i or less. We ators which shape, drill and paint objects. For simplic-
thereby achieve the hardest preconditions in the most ity, we consider just their primary effects. The first op-
abstract space.

We impose various restrictions on criticality func-
tions. For example, criticality functions should be or-
der independent. That is, they should not depend on
the order of the operators in the set Ops or the or-
der of preconditions within an operator. Criticality
functions also ought to treat symmetric preconditions
symmetrically. If swapping the precondition p for the
precondition q merely reorders the operators then p
and q are said to be symmetric preconditions.

Definition 1 (Symmetry) If p and q are symmetric
preconditions then then C(p, n) = C(q, n).

We also demand that criticality functions treat equiv-
alent effects equivalently. Let Pre(op) be the precon-
ditions of the operator op and Ops(p) be the subset
of operators which have p as primary effects. We say
that a set of operators, S is equivalent to a set of oper-
ators, T iff ISI = ITI and for any opl E S there is some
0~2 E T with Pre(opl) = Pre(op2) and vice versa.

Definition 2 (Precondition equivalence) If
Ops(p) is equivalent to Ops(q) then C(p, n) = C(q, n).

Finally, to reduce backtracking between levels, we de-
mand that the numerical criticality of a precondition
decreases with the number of operators which achieve
it (operator monotonicity), and increases with the
number of preconditions to operators which achieve it
(precondition monotonicity).

Definition 3 (Operator monotonicity) If Ops(p)
is equivalent to a subset of Ops(q) then C(p, n) 2
C(a, 4.

We say that a set of operators, S is subsumed by a set
of operators, T iff ISI = ITI and for any opl E S there
is some 0~2 E T with Pre(op1) _> Pre(op2). Note that
if S is equivalent to T then S is subsumed by T and T
is subsumed by S.

Definition 4 (Precondition monotonicity) If
Ops(p) is subsumed by Ops(q) then C(p) n) 2 C(q, n).

If operator monotonicity is satisfied, hard precondi-
tions (those that are effects of few operators) will
be proved in the higher abstraction levels. This will
tend to minimize backtracking between abstraction
levels. Similarly, if precondition monotonicity is sat-
isfied, hard preconditions (those effects of operators
with many preconditions) will be proved in the higher
abstraction levels. Again this will tend to minimize the
need to backtrack. Precondition and operator mono-
tonicity both imply precondition equivalence.

ALPINE and HIGHPOINT generate abstraction hi-
erarchies which fail to satisfy these properties and
therefore cause unnecessary backtracking. Consider,
for example, the manufacturing domain of (Smith &

erator has a single precondition Obj ect and has Shaped
as its effect. The second operator also has the single
precondition Object and has Drilled as its effect. The
third operator paints a steel object. It has Ob j ect and
Steel as preconditions and has Painted as its effects.
Precondition monotonicity ensure that the numerical
criticality of Painted is greater or equal to that of both
Shaped and Drilled. This agrees with our intuitions,
as Painted requires an extra precondition. ALPINE,
by comparison, assigns Painted the lowest criticality.
As we will see in a later section, this can result in a
large amount of backtracking.

Note that the trivial criticality function which as-
signs every precondition the same numerical critical-
ity satisfies every one of these properties. This corre-
sponds to no abstraction levels. We therefore maxi-
mize the number of abstraction levels by treating the
“greater than or equal to” relations derived from the
monotonicity properties as “strictly greater than” re-
lations wherever possible. There are many non-trivial
functions which satisfy these properties. However,
these properties are often sufficient to rank numeri-
cal criticalities. For example, the rankings generated
by our method in the next sections follow immediately
from these properties.

ESISTOR model
We propose a criticality function which satisfies the
properties of the previous section based upon a model
of “resistance to change”. This model is analogous
to that of electrical resistance. It attempts to model
the difficulty of achieving preconditions. Precondition
monotonicity means that operator preconditions act
like resistors in series. Increasing the number of pre-
conditions makes an operator harder to apply. Opera-
tor monotonicity, on the other hand, means that oper-
ators with the same effects act like resistors in parallel.
Increasing the number of operators with the effect p re-
duces the difficuly of achieving p since we have parallel
paths for achieving p. We shall refer to this as the
RESISTOR model for computing criticalities.

To simplify the presentation, we introduce the no-
tion of the numerical criticality of an operator. This
represents the difficulty of applying an operator. As
with serial resistors, the numerical criticality of an op-
erator increases with the number of preconditions. We
define the numerical criticality of an operator as the
sum of the numerical criticalities of its preconditions.
As with electrical resistors in parallel, multiple op-
erators with the same effect reduce the difficulty of
achieving that effect. We therefore define the numeri-
cal criticality of a precondition as the parallel sum of
the numerical criticalities of the operators with this
precondition as effects.

We interpret C(p) n) as the difficulty of achieving p

524 Knowledge Representation

with a maximum depth of n operator applications. In
the base case, n = 0. That is, no operator applica-
tions are used. The difficulty of a precondition is the
constant ae. This models the constant time database
lookup in the initial state. We therefore define,

C(P,O) = ao* (1)
Note that a0 always factors out of the final numerical
criticalities. In the step case, a precondition can either
be achieved using n operator applications or by being
true in the initial state. The difficulty of a precondition
is thus the parallel sum of the difficulty in the initial
state and of the difficulty of any operators of which it
is an effect. That is,

Finally, applying an operator at depth n is as difficult
as the serial sum of the difficulties of its preconditions
at depth n - 1. That is,

C(oP,n) = C C(p,n - 1). (3)
pEP4w)

The recursive nature of these definitions naturally
leads to an iterative procedure for computing numeri-
cal criticalities.

Unsupervised preconditions are those that cannot be
changed by any operators. Previous methods have con-
ventionally given them the maximum criticality. By
Equation (1)) unsupervised preconditions are assigned
the numerical criticality a0 at n = 0. By Equation (2),
their numerical criticality remains at a0 for all subse-
quent n. Since a0 is the largest numerical criticality
possible, unsupervised preconditions are assigned the
maximum criticality as required.

An Example
To illustrate the RESISTOR model for computing crit-
icalities numerically, we use the computer hardware do-
main of (Bacchus & Yang 1994). This domain has four
operators which print files, turn on devices, plug de-
vices into power outlets, and transfer files onto comput-
ers. In Table 1, we give the numerical criticalities com-
puted by the RESISTOR model for the different pre-
conditions in this domain. The unsupervised precon-
ditions are CableCanReach, Functional, IsComputer,
IsOutlet, and Isprinter. At n = 4, the numerical
criticalities reach their limiting values. It can easily
be proved that if, as at n = 4, the numerical criticali-
ties remain stable for one iteration, then they will not
change subsequently.

We group these numerical criticalities together, and
order them using the less than relation. Loaded is as-
signed the lowest criticality of 0, Poweron is given a
criticality of 1, PluggedIn is assigned a criticality of
2, Printed is given a criticality of 3 and the unsuper-
vised preconditions are given the highest criticality of

X C(X, n)/ao
n=0ln=lln=2ln=3ln=co

I I I I I

unsupervised 1 1.000 I 1.000 I 1.000 I 1.000 1 1.000
1

Printed 1.000 0.833 0.800 0.795 0.795
PluggedIn 1.000 0.667 0.667 0.667 0.667
Pow&On 1.000 1 0.667 0.625 0.625 0.625
Loaded 1.000 I 0.667 0.625 0.619 0.619

Table 1: Numerical
ware domain

criticalities for the computer hard-

4. This is in line with our intuitions for this domain.
The unsupervised preconditions cannot be changed so
must be achieved in the most abstract space. The
next hardest precondition to achieve is Printed since
we must have a computer and printer turned on, and
the file to print loaded on the computer. As we must
plug in a device before turning it on, PluggedIn is
assigned a greater numerical criticality than PowerOn.
Finally, as loading a file onto a computer is less im-
portant than getting computers and printers plugged
in and turned on, Loaded is given the lowest numerical
criticality. In a later section, we demonstrate that this
abstraction hierarchy is significantly better than that
produced by the ALPINE algorithm, and offers slightly
superior performance to the hierarchy generated by the
HIGHPOINT procedure on larger problems.

Theoretical results
The RESISTOR criticality function is bounded in
[0, ue] and monotonically decreasing. It is therefore
convergent. Indeed, it typically converges very quickly.
In the experiments in the next section, the change in
numerical criticalities appears to decrease by at least
a constant factor at each iteration. To explore this an-
alytically, we developed a simple model in which each
operator has m preconditions and each precondition
can be achieved by I distinct operators. This gives an
and-or search tree in which m is the and-branching
and I is the or-branching. Under these assumptions,
the numerical criticality of a precondition converges
rapidly, with the difference between successive itera-
tions being O((l/m)“) for d < m, O(l/n2) for 1 = m,
and O((m/l)n) for d > m.

The RESISTOR criticality function is trivially order
independent and symmetric. It also treats equivalent
preconditions equivalently.
Theorem 1 C(p, n) is precondition equivalent

Proof: By induction on n. In the base case, by Equa-
tion (1)) all preconditions are assigned the same numer-
ical criticality, a~. Equivalent preconditions therefore
have the same numerical criticality. In the step case,
we unfold with Equations (2) and (3) and appeal to
the induction hypothesis.

The RESISTOR criticality function also satisfies
both the monotonicity properties.

Abstraction 525

Theorem 2 C(p, n> is operator and precondition
monotonic.

Proof: (Sketch) We define a notion of monotonicity
which combines both operator and precondition mono-
tonicity. The proof then uses induction on n. The
base case follows immediately from Equation (1) since
all preconditions have the same criticality. In the step
case, using Equations (2) and (3) and some simple in-
equality reasoning, we can again appeal to the induc-
tion hypothesis.

For reasons of space, full proofs for all these theorems
appear in an associated technical report.

Empirical results
To demonstrate the empirical advantages of the RE-
SISTOR model, we ran a set of four benchmark exper-
iments using the ABTWEAK system (Yang, Tenen-
berg, & Woods 1996), a state-of-the-art non-linear
planner combining Abstrips-style abstractions (Sac-
erdoti 1973) with Tweak-style partial-order planning
(Chapman 1987). In each experiment, we compared
the quality of the abstraction hierarchies generated by
the RESISTOR model with those built by the ALPINE
and HIGHPOINT algorithms (Knoblock 1994; Bac-
thus & Yang 1994). Th ese are two of the best available
procedures for generating abstraction hierarchies.

The four experiments use standard benchmark prob-
lems taken from the literature. The first domain ap-
pears in (Knoblock 1994) and (Yang, Tenenberg, &
Woods 1996). The next three are presented in (Bac-
thus & Yang 1994). We either repeated exactly the
same experiments (for example, in the manufacturing
domain), or we run them in a more exhaustive man-
ner (for example, in the robot-box domain). We used
two different measurements to evaluate ABTWEAK’s
performance with the different abstraction hierarchies:
CPU time and the number of nodes expanded. The
later is often a more reliable measurement of per-
formance. All experiments were on a SUN Spare
10 workstation with 32Mbytes RAM running com-
piled Allegro CL 4.2 under the Solaris 2 operating
systeml.

Tower of Hanoi

The goal is to move a pile of three disks of differ-
ent sizes from one peg to another using a third in-
termediate peg. At no time is a larger disk allowed
to sit on a smaller one. The representation consists
of an unsupervised type predicate Is-peg(peg), and
three predicates On-small (peg), On-medium(peg) and
On-large (peg). ALPINE, HIGHPOINT and RESIS-
TOR all produced the same abstraction hierarchy in
which preconditions are abstracted according to their
size. Thus, in the most abstract space, we just consider

'Code used in these experiments can be found
at ftp://ftp.mrg.dist.unige.it/ in the directory
/pub/mrg-systems/criticalities.

526 Knowledge Representation

the IarEe disk. In the next level of abstraction, we con-
sider l&h the medium and large disks. Anh in the
ground space, we consider all the disks. ALPINE gen-
erates this hierarchy in O.Ols, RESISTOR in 0.06s, and
HIGHPOINT in 7.79s. In (Knoblock 1990), Knoblock
shows that such a hierarchy reduces a bieadth first
search from exponential to linear. Similar abstraction
levels are generated for towers with more disks giving,
as here, an exponential reduction in search.

1 Critica.litv I Precondition 1

I

1 On-small

Table 2: Criticalities generated by all methods for
Tower of Hanoi domain.

Robot-box domain

This domain comes from (Bacchus & Yang 1994) and is
a variant of the well-known ABSTRIPS robot domain
(Sacerdoti 1973). The robot can either carry or pull
boxes between one of six rooms. The doors connect-
ing rooms may be either open or closed. Closed doors
rniy be either openable 0; not openable.
configuration is given in Figure 1.

A typical

Figure 1: The robot-box domain.

For this domain, neither ALPINE or HIGHPOINT
return criticalities which are order independent. The
lowest three preconditions can be permuted by reorder-
ing the operators. This is because ALPINE constructs
a partial order on preconditions which is then topolog-
ically sorted. To compare results, we used the ordering
of operators which generates the same abstraction hi-
erarchy as in (Bacchus & Yang 1994).

We ran experiments with both “easy” and “hard”
problems. In the first set of experiments, all doors
are openable. HIGHPOINT then constructs the same
abstraction hierarchy as ALPINE. The criticalities are
given in Table 3. ALPINE took O.Ols, HIGHPOINT
22.32s and RESISTOR 0.18s to generate these hier-
archies. We ran ABTWEAK on all 30 possible goals

of moving between different rooms using these criti-
calities. Table 4 shows that while RESISTOR per-
forms marginally better than ALPINE/HIGHPOINT,
the differences between the hierarchies are not signifi-
cant as backtracking is never needed.

ALPINE/HIGHPOINT

4 Connects
Is-Box
Is-Door
Is-Room
Openable

3 Box-In-Room
2 Attached
1 Loaded
0 Open

RESISTOR

3 Connects
Is-Box
Is-Door
Is-Room
Openable

2 Box-In-Room
1 Open
0 Attached

Loaded

Table 3: Criticalities for the “easy” robot-box domain.

plan CPU times (sets) nodes expanded samples
len A/H 1 RES A/H 1 RES
3 0.66 I 0.62 28.86 1 27.86 14
6 11 4.24 1 4.07 11 143.64 1 142.64 11
8 I(12.95 1 12.55 11 379.50 1 378.50 11 2 1

Table 4: Mean performance on the “easy” robot-box
domain in which doors can be unlocked.

In the harder set of experiments, certain doors are
locked. HIGHPOINT increases the criticality of Bpen
so that it is above Attached and Loaded. This reduces
the probability of the robot meeting a locked door and
thus the amount of backtracking. All other criticalities
remain the same. ALPINE and RESISTOR return the
same criticalities as before. We ran four sets of exper-
iments. In each, door25 and one of door23, door26,
door35 and door56 are locked. In each case, there
is just one unique path connecting any pair of rooms.
For each set of experiments, we ran ABTWEAK on
all 30 possible goals. In 8 out of the 120 problems,
ABTWEAK exceeded the cut off bound of 2000 nodes
using the HIGHPOINT and RESISTOR abstraction
hierarchies. Using the ALPINE hierarchy, an addi-
tional problem also failed. The results are given in
Table 5.

On this harder domain, the RESISTOR hierarchy
performs slightly better than the HIGHPOINT hi-
erarchy. Both perform significantly better than the
ALPINE hierarchy as there is less backtracking caused
by meeting locked doors. The poor mean performance
of the ALPINE hierarchy was, in fact, entirely due to
a small number of problems where ABTWEAK back-
tracked extensively.

Computer Hardware
We return to the computer hardware domain of (Bac-
thus & Yang 1994) d iscussed in an earlier section. The

CPU times (sets)
ALP em RI%
0.91 0.74 0.82
6.20 5.33 5.32
39.42 29.03 28.99
82.58 69.64 67.45

plan nodes expanded samples
len ALP RI23 .
3 28.30 28.30 27.30 40
6 162.92 160.32 159.32 40
8 775.08 752.67 751.67
10 1729.78 1654.87 1653.87

Table 5: Mean performance on the “hard” robot-box
domain in which two doors are locked.

task is to print a file in an environment where there are
a number of computers and printers. Computers and
printers may not be turned on, may not be functional,
or located near to a power outlet. As in (Bacchus &
Yang 1994)) we ran experiments in a domain in which
at the initial situation just one computer and printer
are within reach of a power outlet. The criticalities
generated by the different methods are given in Ta-
ble 3. ALPINE took 0.01s HIGHPOINT 15.26s and
RESISTOR 0.12s to generate these hierarchies. As in
(Bacchus & Yang 1994), we ran ABTWEAK on 30
different problems involving between 1 and 3 files to
print, and with between 1 and 10 computers, using a
time limit of 1800 seconds. The results are given in
Figures 2 to 4.

ALPINE

4 Cable-Can-Reach
Functional
Is-Computer
Is-Printer
Is-Outlet

3 Printed
2 Loaded
1 Power-On
0 Plugged-In

HIGHPOINT

Functional

Is-Printer

1 1 Loaded

I RESISTOR I

I I 0 I Loaded

Table 6: Criticalities for the computer hardware do-
main.

ALPINE performs poorly in this domain, again due

Abstraction 527

16 I-

14 - ALPINE c
HIGHPOINT +-
RESISTOR .a..

12 -

10 -

6-

1 2 3 4 5 6 7 6 9 10
computers Y

350
I

ALPINE c
HIGHPOINT +-
RESISTOR .e..

Figure 2: CPU time and nodes explored, 1 file to print.

to backtracking when devices are not plugged-in. RE-
SISTOR and HIGHPOINT both require much less
backtracking. The RESISTOR hierarchy gives slightly
better performance, most noticeably on the larger
problems.

Manufacturing
We return to the manufacturing domain of (Smith &
Peot 1992; Peot & Smith 1993). The goal is to shape,
drill and paint an object from stock. Recall that only
steel objects can be painted. We assume that just one
out of the large number of objects in stock are made
from steel. The criticalities generated by the different
methods are given in Table 7. ALPINE took 0.01s
HIGHPOINT 13.33s and RESISTOR 0.68s to generate
these hierarchies.

HIGHPOINT

Table 7: Criticalities for the manufacturing domain.

ALPINE’s abstraction hierarchy violates the pre-
condition monotonicity property as the Painted pre-

1600

1400

lxx)

f 10w

i 6w

400

200

0
1 2 3 4 5 6 7 6 9 10

compulersx

Figure 3: CPU time and nodes explored, 2 files to
print.

condition should not be lower than either the Shaped
or Drilled preconditions. HIGHPOINT compensates
for the low probability of an object from stock being
paintable by collapsing together the bottom three lev-
els of ALPINE’s abstraction hierarchy. This reduces
the need to backtrack but gives just one level of ab-
straction.

RESISTOR is able to generate an additional level of
abstraction. The Shaped and Drilled preconditions
are equivalent and are placed at the bottom of the ab-
straction hierarchy. The Painted precondition appears
above them as the operator for achieving it has an ad-
ditional unsupervised precondition. The RESISTOR
hierarchy is in line with the suggestions of Smith and
Peot in (Smith & Peot 1992).

As in (Bacchus & Yang 1994), we ran ABTWEAK
on problems with between 100 and 200 objects in stock.
Results are plotted in Figure 5. The RESISTOR hi-
erarchy results in less backtracking than the ALPINE
hierarchy, and performs significantly better than the
HIGHPOINT hierarchy due to the additional level of
abstraction.

Conclusions
We have proposed a novel method for building
ABSTRIPS-style abstractions automatically. The aim
of this method is to minimize the amount of backtrack-

528 Knowledge Representation

5-
.--*I q _______._. Q.a 0��

.._._.__.. D ._._.._.__ 0o --�--��

o ,=......,...

0
m o 1 20 1 4 0 1 60 1 80 200

PIECES Y

1100

a __,_._.___ o’ .___.__._ 0 _......... B--“- .-‘....-.
..~ . .._._.___ q

100 120 140 160 160 200
PIECES II

Figure 4: CPU time and nodes explored, 3 files to Figure 5: CPU time and nodes explored for the man-
print. ufacturing domain.

ing between abstraction levels. Unlike previous ap-
proaches which reasoned about plans directly, we sim-
ulate the planning process numerically. Our model is
based upon an analogy with electrical resistance. It is
both fast and simple. The simplicity of our approach
allows us to guarantee various theoretical properties
hold lacking in previous approaches. In particular,
the abstraction hierarchies constructed by our method
satisfy two simple “monotonicity” properties. These
ensure that the harder preconditions are achieved in
the higher abstract levels. These monotonicity proper-
ties limit the amount of backtracking required between
abstraction levels. We have compared our method
with those in the ALPINE and HIGHPOINT proce-
dures. Using a comprehensive set of experiments, we
have demonstrated that the hierarchies constructed are
better than those generated by ALPINE and HIGH-
POINT. In addition, our method builds these hierar-
chies rapidly.

References

Bacchus, F., and Yang, Q. 1994. Downward refine-
ment and the efficiency of hierarchical problem solv-
ing. Artificial Intelligence 71:43-100.
Chapman, D. 1987. Planning for Conjunctive Goals.
Artificial Intelligence 321333-377.

Giunchiglia, F., and Walsh, T. 1991. Using abstrac-
tion. In Proc. of the 8th Conference of the Society for
the Study of Artificial Intelligence and Simulation of
Behaviour. Also IRST-Technical Report 9010-08 and
DAI Research Paper 515, University of Edinburgh.
Knoblock, C. A. 1990. Abstracting the Tower of
Hanoi. In Working Notes of AAAI-90 Workshop
on Automatic Generation of Approximations and Ab-
stractions, 13-23. AAAI.
Knoblock, C. A. 1994. Automatically generating ab-
stractions for planning. Artificial Intelligence 68:243-
302.
Peot, M., and Smith, D. 1993. Threat-Removal
Strategies for Partial-Order Planning. In Proceedings
AAAI-93.
Sacerdoti, E. 1973. Planning in a Hierarchy of Ab-
straction Spaces. In Proceedings of the 3rd Interna-
tional Joint conference on Artificial Intelligence.
Smith, D. E., and Peot, M. A, 1992. A Critical Look
at Knoblock’s Hierarchy Mechanism. In Proc. 1st In-
ternational conference Artificial Intelligence planning
systems (AIPS-92), 307-308.
Yang, Q.; Tenenberg, J. D.; and Woods, S. 1996.
On the Implementation and Evaluation of AbTweak.
Computational Intelligence 12.

Abstraction 529

