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Abstract 

Human beings often estimate others’ beliefs and 
intentions when they interact with others. Es- 
timation of others’ beliefs will be useful also in 
controlling the behavior and utterances of arti- 
ficial agents, especially when lines of communi- 
cation are unstable or slow. But, devising such 
estimation algorithms and background theories 
for the algorithms is difficult, because of many 
factors affecting one’s belief. We have proposed 
an algorithm that estimates others’ beliefs from 
observation in the changing world. Experimental 
results show that this algorithm returns natural 
answers to various queries. However, the algo- 
rithm is only heuristic, and how the algorithm 
deals with beliefs and their changes is not entirely 
clear. We propose certain semantics based on a 
nonstandard structure for modal logic. By using 
these semantics, we shed light on a logical mean- 
ing of the belief estimation that the algorithm 
deals with. We also discuss how the semantics 
and the algorithm can be generalized. 

Introduction 
Human beings often estimate others’ beliefs and in- 
tentions when they interact with others. Estimation 
of others’ beliefs will be useful also in controlling the 
behavior and utterances of artificial agents such as 
robots, especially when lines of communication are un- 
stable or slow. 

Suppose Alice, Bob, and Charlie are researchers in 
a research laboratory. The laboratory has a computer 
room whose light can be turned off with a switch on its 
outside wall. One cannot see whether the light is on or 
off when the door is closed. In the initial world, Alice 
and Bob were working in the computer room, while 
Charlie was working in his office. Later, Alice and 
Bob left the computer room. Alice closed and locked 
the door, and turned off the switch. Since Bob saw 
Alice turn off the switch, he believes that the light is 
off without checking this by opening the door. Then 
Alice believes that Bob believes that the light is off 
because Alice believes that Bob observed her action. 
On the other hand, Alice does not believe that Charlie 
believes that the light is off, because she believes he 

can observe neither the light nor her actions. Hence, 
she might want to inform Charlie that the light is off 
and that the door is locked, but she will not inform 
Bob of these facts. 

The above example illustrates how one can estimate 
others’ beliefs based on one’s observations, without the 
use of utterances. We have proposed an algorithm 
that estimates others’ beliefs from observation in the 
changing world (Isozaki 1995). Experiment al results 
show that this algorithm returns natural answers to 
various queries. For this estimation, it uses domain 
knowledge represented by a database about the initial 
world, postconditions of events, incompatibility rela- 
tions of propositions, and observability conditions of 
events and propositions. 

We use a symbol a0 to indicate the agent that exe- 
cutes our algorithm. The function belief(p, lc, m) de- 
fined in the algorithm (Fig. 1) returns yes, no, or 
unknown depending on whether a0 should believe that 
al believes that a2 believes that . . . that ur; believes 
that p is true when a0 has observed a sequence of events 
el, . . ..em in this order. e3 indicates an event that a0 
observed on the transition from time point j - 1 to j. 
If a0 was not able to observe any event at that time, 
we assume e’ = nop. 

However, the algorithm is only heuristic, and how 
the algorithm deals with beliefs and their changes is 
not entirely clear. We propose certain semantics based 
on a nonstandard structure for modal logic. By using 
these semantics, we shed light on a logical meaning of 
the belief estimation that the algorithm deals with. We 
also discuss how the semantics and the algorithm can 
be generalized. 

In modal logic, belief is usually represented by modal 
operators characterized by the axiom system KD45, 
or K45, (Fagin et al. 1995). The modal formula B,$ 
means that agent a believes 4. Some researchers are 
working on extensions of the standard semantics of the 
logic to mitigates the problem of logical omniscience 
( i.e., the constraint that each agent has to believe 
all logical consequences of its belief) and to represent 
changes in belief. Fagin et al. proposes an alternate 
nonstandard structure to represent incomplete and in- 
coherent beliefs (Fagin et al. 1995). As another ap- 
proarch, Meyden proposes Zubelled trees equivalent to 
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K45, situations to represent changes in belief (van der 
Meyden 199413). 

We employ labelled trees for alternate nonstandard 
structures as a semantic structure for logic of belief. If 
a0 has an initial belief modelled by a labelled tree 7(O) 
and observes a sequence of events e1 , . . . , em, then 
the tree becomes T(1) after el, then 7(2), and finally 
T(m). In the next section, we describe the algorithm 
and define satisfaction of a formula /= under 7s. 
Next, we show that the algorithm corresponds to the 
trees in the following way. 

e belief@, k, m) = yes iff T(m) I= B,,B,, . . . B,,p. 

e belief(p, k, m) = no iff T(m) b B,,B,, e . . B,,lp. 

0 belief(p, k, m) = unknown 

iff 7(m) k B,,B,, . .. B,,p and I(m) k 
Ba, B,, - - - 6, ‘p. 

Finally, we discuss the results and related works. 

Methodology 
Here we will show a propositional version of the algo- 
rithm and semantics of beliefs. Let ip be the finite set 
of primitive propositions and E the finite set of events. 
The set of agents is A = { 1, . . . , n}. We simplify the 
task of belief estimation by the following assumptions. 

Disregard of messages The interaction between 
messages (or speech acts) and participants’ beliefs 
is very complicated and controversial (Perrault 1990; 
Cohen & Levesque 1990; Appelt & Konolige 1988; 
van der Meyden 199413). To circumvent the problems 
associated with such interaction, the algorithm ignores 
the influence of messages on beliefs, and estimates oth- 
ers’ beliefs only from observation of the external world. 
We have found a way to extend the algorithm for hon- 
est utterances (Isozaki 1996), but for simplicity in the 
present work, we will not discuss it here. 

Persistence of states While we can find many 
propositions that tend to persist. we usually do not 
consider the possibility that they may change. There- 
fore, we assume that an agent believes that an observed 
proposition persists until the agent observes another 
proposition or an event that negates the proposition. 
It is well known that simple persistence does not always 
hold true when one guesses about events (ex. stolen 
car problem (Kautz 1986)). In the present work, we 
separate such abductive reasoning from belief estima- 
tion, and focus on estimation of current beliefs about 
the current world. 

Disregard of preconditions We assume that the 
algorithm is being applied to an observed action se- 
quence. This implies that every action must have satis- 
fied its preconditions immediately before it took place. 
This in turn obviates the need to check the precon- 
ditions of others’ actions. Although it is possible to 
make an algorithm that checks preconditions, it will 
not work for complex worlds, because the reasoner’s 

belief alone is often insufficient for checking precon- 
ditions. Moreover, preconditions are usually less sig- 
nificant than postconditions in estimating agents’ be- 
liefs about a current situation. It is more important 
to make a belief estimation algorithm simple and fast, 
even if it fails in some cases. 

Simplification of the world changes It is as- 
sumed that every event has zero duration and no two 
events occur simultaneously. We assume a discrete 
time structure, and specify a time point with a nat- 
ural number; 0 means the initial state, 1 means the 
next time point, and so on. We allow only one event 
et on the transition from time point t - 1 to t. No 
occurrrence of an event is represented by et = nop. 

Simplification of observations Although in real- 
ity one is not always aware of all observable things, we 
assume here that every agent is in fact always aware 
of all observable things. 

Moreover, we assume 
common knowledge. 

that agents have the following 

Postconditions The postcondition post(e) of an 
event e is a set of primitive propositions that become 
true by the fact of the event’s occurrence. We assume 
that all postconditions are common knowledge. When 
an agent was not able to observe any event at a certain 
time, define this as the agent observing the event nop 
where post(nop) = {}. 

Observability conditions An observability condi- 
tion ob[u, z] is a propositional formula that determines 
whether agent a can observe X( E Q, U E). Agent a can 
observe p if both p and ob[u,p] are true. Note that ob[u, 
p] does not address the observability of 1p.l Agent a 
can observe an occurrence of event e if ob[u, e] is true 
immediately before the occurrence. We assume that 
all observability conditions are common knowledge and 
are given in DNF (Disjunctive Normal Form). 

Integrity constraints When an agent receives new 
information, it changes its belief to make its belief con- 
sistent with the new information. A constraint that 
must be satisfied after every belief change is called an 
integrity constraint. We cannot expect that all agents 
have the ability to maintain arbitrary integrity con- 
straints. 

However, there is a restricted class of integrity con- 
straints that most agents can maintain. For exam- 
ple, if one is in California, one is not in Oregon at the 
same time. This illustrates that a certain pair of prim- 
itive propositions cannot hold at the same time. From 
this point, we will consider only this restricted class 
of integrity constraints: binary nogoods. Accordingly 

‘Suppose a security guard is watching a department 
store through a TV camera. If the guard percieves a lady 
on the TV screen, she must necessarily be in the store. 
However, the guard cannot say definitely that she is not in 
the store when she is not on the screen. 
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each p E ~2 has a fixed set of primitive propositions 
that cannot hold when p holds. This set N({p}) is 
called p’s incompatible proposition set, and we define 

Belief est h-nation algorithm 

Figure 1 shows Algorithm 1, a propositional version 
of our algorithm (Isozaki 1995). Algorithm 1 checks 
the following three factors. 

observation If one is observing a 
one believes the proposition now. 

proposition now, 

Effects If one has just observed an event, then one 
believes in all of its expected effects, even if one has 
not yet observed them. 

Memory If no new information 
vious belief remains valid. 

is available, one’s pre- 

The upper half of the definition of the function belief 

computes one’s own belief. The lower half computes 
one’s belief about someone else’s belief. Each part 
checks observation, effects, and memory, in that order. 
Functions obs-one and ohs-all check observability. 

One’s own belief If the query is about so’s initial 
belief, Algorithm 1 determines its value by the input 
Z+ and Z- where Z+ (or Z-) is the set of primitive 
propositions that a0 believes true (or false) in the ini- 
tial state. They should satisfy the following conditions: 

e z+nz-={}: a0 does not believe both p and lp in 
the initial state. 

e N(Z+) C Z-: if a0 believes p, he/she should believe 
that any proposition in N({p}) is false. 

e 2+ should contain all of the primitive propositions 
that a0 is able to observe in the initial state. 

If the query is about so’s belief at time m( 1 l), Al- 
gorithm 1 checks so’s observation at time m (the input 
Oh(m)) and the expected eflects of em. If the above 
two factors do not give yes/no, Algorithm 1 checks so’s 
memory, i.e., so’s belief at time m - 1. 

Someone else’s belief If the given query is about 
someone else’s (al, ‘s) initial belief, Algorithm 1 checks 
ak’s observation in the initial state. If the query is 
about ak’s belief at time m( 2 l), it checks ak’s obser- 
vation, e m’~ efiects, and ak’s memory. 

The function obs-one(z, k, m) determines if ak can 
observe IX: according to so’s belief about al’s belief 
about . . . a&l’s belief. Since ob[a,x] is in DNF, the 
function tries to find a true disjunct in ob[a, z]. Tl in 
the algorithm is a disjunct and L, is a literal in the 
disjunct. )LzL) is a primitive proposition in L,. 

If ah does not notice the occurrence of em, ah will not 
take em into account when it estimates others’ beliefs. 
To compensate this, the function obs_all(em, k,m - 1) 
checks the observability conditions of all agents in the 
list al, . . ..ak. 

INPUT: 
P a query proposition 
z-+,z- the initial belief 
Ul , . . . . ak an agent list (ah # ah-l) 
e1 em , “‘1 a sequence of observed 

events 
Oh(l), . . . . Oh(m) a sequence of the sets of 

observed propositions 
N({P)) p’s incompatible proposi- 

tion set (p E G?) 
post(e) e’s postconditions (e E E) 
ob[a, 4 observability condition 

(a E A, J: E @u E) 
OUTPUT: belief(p, k, m) 

function belief(p, k, m) { 
if (k = 0) { % ONE ’ S OWN BELIEF 

if (m = 0) { % INITIAL BELIEF 
if (p E I+) {return (yes); } 
if (p E Z-) {return (no); } 
return (unknown); } 

% OBSERVATION 
if (p E Oh(m)) {return (yes); } 
if (3q E N( {p}) n Oh(m)) {return no; } 
% EFFECTS 
if (p E post(e”)) {return (yes);} 
if (34 E N( {p}) 6 post(em)) {reiurn (no); } 
% MEMORY 
return belief(p, k, m - 1); 

1 
% ESTIMATION OF OTHERS’BELIEF 
% OBSERVATION 
if (belief(p, k - 1, m) = yes and 

ohs-one(p, k,m) = yes) {return (yes);} 
if (3q E N( {p}) s.t. belief(q, k - 1,m) = yes 

and ohs-one(q, k, m) = yes) {return (no); } 
% EFFECTS 
if (m = 0) {return (unknown);} 
if (obs-aIl(e”, k, m - 1) = yes) { 

if (p E post(em)) {return (yes);} 
if (3q E N( {p}) n post(em)) {return (no); } 

> 
% MEMORY 
return belief(p, k, m - 1); 

> 
function obs-one(z, k, m){ 

if (3Tl E Ob[Uk,x]( = T1 V -- - V Tt) s.t. 
VL, E T1( = L1 A - . . A L,) : 
(L, = l&l and belief(IL,I, k - l,m) = yes) or 
(L, = lILuI and belief(lL,l, k - 1,m) = no)) { 
return (yes);} else {return (no); > 

1 
function obs-all(em, k, m - l){ 

if (Vai(l < i 5 k) : obs-one(em,i,m - 1) = yes) ( 
return (yes); } else {return (no); } 

> 

Figure 1: Algorithm 1 - A propositional version of 
the belief estimation algorithm (Isozaki 1995) 
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Semantics of beliefs 
We use a propositional modal language C, generated 
over the set of primitive propositions +P. ,C, contains 
a modal operator B, for each agent a to represent, a’s 
belief. 

Kripke structures A Kripke structure is a tuple 
A4 = (W,7rJ3,, . . . , a,) where W is a set of worlds, 
7r is an interpretation that gives a truth assignment 
7(w) : a + {true,false} for each w E W, and Bi is a 
binary relation on W. A K45, structure is a Kripke 
structure where each .t3i is transitive and Euclidean 
(Chellas 1980). A K45, situation is a pair of (111, w) 
where M is a K45, structure and w is a world of iVl. 
Satisfaction of a formula in a situation can be defined 
as usual (Fagin et al. 1995). 

If a is smart enough, we can expect B,q5 A B,(q5 + 
$J) + B,$ (distribution axiom), B,c#I + B,B,q5 (pos- 
itive introspection), and lBaqb s BalBa$ (negative 
introspection). K45, structures have these properties. 

Alternate nonstandard structures However, 
Kripke structures are not appropriate for representing 
the beliefs of logically incomplete agents. Fagin 
et al. proposed an alternate nonstandard structure 
((Fagin et al. 1995)’ p. 350), which is a tuple (IV, 
rr,B1+, . . . ,Bnf,131-, . . . ,a,-) where W is a set of 
worlds, n is an interpretation that gives a nonstandard 
truth assignment X(W) for each w E W, and each .13,+ 
and ,13i- is a binary relation in W. A nonstandard 
truth assignment r gives each literal a truth value: 
7-:a?lJ1@-+ {true, false} where -3 def (1p I p E @}. 
Satisfaction of formulas in a nonstandard situation is 
defined as follows: 
@ (Ad, w) + p (p E @) iff z-(w)(p) = true, 

satisfies (20,~) E Bi-. 
Disjunction 4 V 11, is given by ~(14 A l$) as usual. 

Since implication 4 + $J given by 14 V T+!J does not 
capture the intuition of if-then, we introduce strong 
implication 4 L, $ (Fagin et al. 1995). 

Labelled trees Since a K45, situation describes 
one’s beliefs, belief change can be considered as an 
operation that transforms one K45, situation into an- 
other K45, situation. But handling transformations of 
situations directly is difficult to cope with this. Mey- 
den has introduced a labelled tree, which can be con- 
structed by unravelZing a K45, structure (van der Mey- 
den 199413). Figure 2 shows a labelled tree. Its root 

Figure 2: A labelled tree (van der Meyden 1994b) 

vertex corresponds to the external world. Two vertices 
accessible from the root show worlds that agent al in 
this world regards as possible. Z,, Zb, and Z, are vertex 
labels, and al and a2 are edge labels. Meyden shows 
the equivalence of labelled trees and K45, situations 
and represents nested belief change as rewriting a la- 
belled tree. 

Let L be the whole set of vertex labels. Each ver- 
tex label Z E L has a truth assignment r(Z). Each 
vertex v in a labelled tree is uniquely represented by 
an alternate sequence of vertex labels and edge la- 
bels ZoaoZlal . . . Zk-Iab-lZk where k 2 0, Zj E L, and 
a3 # aj+l for all j 2 0. Such a sequence is called an (L, 
n)-sequence. The last label Zk of v is denoted X(v). v’s 
parent par(v) is a vertex specified by ZoaoZlal . . . Zk-1. 
Thus, a labelled tree 7 is a set of (L, n)-sequences that 
is closed under prefixes2 and that contains a unique (L, 
n)-sequence 1 0, which is 7’s root (root(7)). 

We can construct from a labelled tree 7 a 
K45, structure n/r(7) = (7, ?TM, B1, . . . , a,) where 
TM(w) = r(+>> and each a,( 2 7 x 7) is given 
by: 

Bi d!f ((21, w) 1 w = viX(w) or (v = 
par(v) i X(v) and w = par(v) i X(w))}. 

The former half, w = v i X(w), means that vertices are 
accessible from their parents (see the solid arrows in 
Fig. 2)) and the latter half means that child vertices 
of a vertex are accessible to each other (see the broken 
arrows). Satisfaction of formulas under 7 can be de- 
fined by identifying 7 with a K45, situation (M(7), 
root(7)). 

Incomplete standard structure Instead of a K45, 
situation, we regard a labelled tree as a situation in 
a restricted alternate nonstandard structure called an 
incomplete standard structure (ISS). An ISS is a tuple 
M = (W’7rJ31, . . . , B,) where W is a set of worlds, 
7r is an interpretation that gives an incomplete truth 
assignment X(W) for each w E W, and each .17i is a 

2Whenever Z~a~Z~a~ ...Zk-lak-1Zk E I, we have 
loaollal . ’ . Zh--luh--lZh E 7 for all h I: k. 

546 Knowledge Representation 



binary relation in W. An incomplete truth assignment 
is a nonstandard truth assignment that does not assign 
true to both p and up at the same time. By assuming 
Bi = Bi+ = ,13i- we can regard an ISS as an alter- 
nate nonstandard’ structure. Semantics under an ISS 
follows from semantics under an alternate nonstandard 
structure. We can easily show that $( E C,) and l$ 
do not become true at the same time under ISSs, but 
they may become false at the same time. Occurrence 
of the latter case implies that the truth value of 4 is 
unknown. 

An incomplete labelled tree is defined from a labelled 
tree by replacing each label’s truth assignment with 
an incomplete one. From an incomplete labelled tree 
7, we can construct an ISS 111(7) in the same way 
as we constructed a K45, structure from a labelled 
tree. Hence, we can identify 7 with a situation (n/r(7), 
root(7)). Th e semantics used with incomplete labelled 
trees have the following properties. 

Property 1 The following formulas are true un- 
der any incomplete labelled tree: B,q5 -+ B,B,q5, 
-44 c-t &+-A and &4 A &(4 v $1~ B,+. 

Representation of integrity constraints We can 
represent a finite set of binary nogoods with a formula 
A il(pt A qZ). According to the constraints for ISSs, 

the formula is true when lp, or ‘qi is true for all i. 
However, Algorithm 1 sometimes returns unknown for 
both pi and q2. In such a case, the above formula is 
not true under the correspondence given by Theorem 2. 

Hence, we represent it by the formula IC def A i( (pz L-, 
‘4i) A (4i v 7Pz))- 

In the next section, we will show that IC is a kind 
of mutual belief (Perrault 1990). We use a modal op- 
erator IMBc to represent mutual belief among group 
G of agents: 

(AJ, w) b i’klB~$ iff G & A and (&!, 2) I= 4 for all 
IC that is accessible from w by applying u aE~Ba 
once or more. See the definition of common knowl- 
edge (Fagin et al. 1995). 

Belief change First, we define an operation that 
transforms an incomplete truth assignment to another 
incomplete truth assignment. We denote an incom- 
plete truth assignment r by (T, F) where T = {p E Q, 1 
7(p) = true} and F = {p E @ / I = true}. Then 
wegetTnF={} and T U F 2 @, When one accepts 
a set of primitive propositions S as true, one will add 
S to T and delete S from F. Since T u S might violate 
integrity constraints, N(S) should be removed from T. 
And all elements of N(S) should be false. Hence, we 
define the successor of (T, F) as follows. 

Definition 1 (Atomic change of a vertex label) 
If a vertex has a label (T, F), its successor vertex has 

a label (T o S, F o S) where T o S def (T - N(S)) U S 

andFeSdef(F-S)UN(S). 

Minimum coherent trees A minimum coherent 
tree (MCT) is an infinitely deep incomplete labelled 
tree of which each vertex has just one outgoing edge 
for each agent. To characterize Algorithm 1, it is suffi- 
cient to consider only MCTs whose vertex label set L 
is the whole set of incomplete truth assignments on @. 
We assume that every 7(j) mentioned in the introduc- 
tion is an MCT. Then we can define 7(j) by Definition 
1. 

Since an agent list a~, * * . , ah specifies a unique 
vertex loaollal . . . l/&hlh+r in 7(j), lh+r is denoted 
w(h+l,j)( = (T(h+l,j), F(h+l,j)) E L). Moreover, 
weusew(h+l,j) ~+or(T(h+l,j),F(h+l,j)) b$ 
to indicate that a propositional formula 4 is true for a 
labelled tree that contains only one vertex whose label 
is v(h + 1,j). 

Construct ion of trees Each tree 7(j) requires a 
root vertex. Since a0 can not know the actual truth 
assignment in the external world, we do not define 
the label w(O,j) of I(j)‘s root. Instead, we assume 
that Oh(j) representing what a0 observed at time j is 
given, and that the following conditions hold because 
postconditions 
to be correct. 

and integrity constraints are assumed 

Oh(j) = {p E @ 1 ~(0, j) k p A ob[n,,p]} for all 
j 2 1, 
post(eJ) & T(O,j), N(post(eJ)) C F(O,j), and 
~(0, j) k IC for all j 2 0. 
The label v(h, j) f o a non-root vertex is given by 

rewriting v(h, j - 1) by eJ’s expected postcondition 
E’(h,j) and a set of newly observed propositions 
New(h,j). We can estimate what ah observed at time 
j by using Q’S belief about al’s belief about . . . about 
ah-r’s belief. If one does not observe an event, one 
will not consider its effects in estimating another’s be- 
lief. Hence, we get the following mutually recursive 
definition: 
Definition 2 (Belief change) Each non-root vertex 
in ‘T(j) has a label v(h,j)( = (T(h,j), F(h,j))) given 
by the following definition: 

8 T(l,O) dsf I+, F&O) def Z-, 

e T(h, 0) def New(h, 0) for h 2 2, 

e F(h,O) dgf N(New(h,O)) for h 2 2, 

e T(h,j) def (T(h,j - 1) 0 Eff(h,j)) 0 New(h,j) for 
h> 1 andj 2 1, 

Q F(h,j) def (F(h,j - 1) e Efs(h,j)) e New(h,j) for 
h>l andj>l. 

where Efs(h,j) is eJ ‘s expected postcondition and 
New(h, j) is a set of newly observed propositions de- 
fined by: 

e New(1, j) dzf Oh(j) for j 2 1, 

New(h, j) dsf {p E @ ) v(h - 1, j) /= pA ob[ah--1,p]} 
for h 2 2 and j 2 0. 
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0 Efl(l,j) def post(ej) if j 2 1, 

e E’(h, j) def Bfs(h-1, j) ifv(h-l,j-1) /= ob[ah-1, 
e-71 and h > 2 and j > 1, 

e Efl(h, j) def {} otherwise. 

The above definition has the following property. 

Property 2 (Lower bound) Every incompatible 
proposition of a true proposition is false: N(T( k, 
m>> C F(b4. 

The next lemma shows that the above method for 
changing beliefs does not violate integrity constraints 
if the original incomplete truth assignment satisfies the 
constraints. 

Lemma 1 (Invariance of integrity constraints) 
If T u F c @ and T n F = {}, the following properties 
hold. 

e (T, F) k IC iflN(T) C F. 

e If (T, F) ]= IC and S n N(S) = {} hold, (To S) n 
(FoS)={} and (ToS,FoS) ]=IC hold. 

Then we can show that IC remain as mutual belief 
by Lemma 1, Property 2, and Definition 2. 

Theorem 1 (Mutual belief) Integrity constraints 
remain as mutual belief. That is, T(m) k MBAIC 
for all m > 0. 

Results 
Now we can compare output of Algorithm 1 and a se- 
quence of labelled trees. The next theorem shows the 
correspondence of Algorithm 1 and the semantics de- 
scribed above. 

Theorem 
any h (1 < 
properties. 

2 (Correspondence) If ah-1 # ah for 
h 5 k)“, Algorithm 1 satisfies the following 

e belief(p, k, m) = yes ifs T(m) I= B,,,B,, . . . B,,p. 
o belief(p, k, m) = no ifs 7(m) b B,,,B,, . . . B,,lp. 
o belief(p, k,m) = unknown ifs m4 F 

B&L, - - - B,,p and I(m) p B,,,B,, - - . B,, up. 

Since 7(m) + B,, B,, . . . B,,$ is equivalent to 
v(k + 1, m) /= 4 for any propositional formula $, the 
above theorem can be proved by the following induc- 
tion hypothesis. We will give the proof in the full pa- 
per. 

Assumption 1 (Induction hypothesis) We as- 

sume that the following relations hold if both h < k 
and j 5 m hold or both h 5 k and j < m hold. 

o belief(p, h,j) = yes iflp E T(h + 1,j). 
o belief(p, h, j) = no ifip E F(h + 1,j). 
o belief(p, h, j) = unknown iff p @ T(h + 1, j) and p @ 

F(h + 1, j). 

31f ah-1 = ah, we can use Property 1. 

In order to prove the main theorem from this in- 
duction hypothesis, we have to show that ohs-all and 
obs-one correspond to observability conditions. 

Lemma 2 (Observability condition) The follow- 
ing properties hold under Assumption 1. 

I. obs-one(z, k,m) = yes iff w(k,m) I= ob[aA:,x]. 

2. If post(em) = {} holds, Eff(k + 1,m) = {} holds for 
any k 2 0. 

3. If post(em) # {} holds, ohs-all(em, k,m - 1) = yes is 
equivalent to E@(k + 1,m) = post(em). 

Discussion 
Complexity of algorithm To determine ak’s belief 
about p, Algorithm 1 checks ak-l’s belief about ob[ak, 
p] that depends on ub-r’s belief about ak’s location. 
If ob[ak,p] turns out to be false, Algorithm 1 picks 
up an element q from N ({p}) and checks ab-l’s belief 
about ob[ak, q] that also depends on ak-l’s belief about 
ak’s location. Thus, Algorithm 1 computes the same 
function value several times to process a given query. 

Our experiments show that a variant, Algorithm 2, 
of Algorithm 1 that records and reuses function values 
is several times faster than Algorithm 1. Aside from 
the extra computation time for the reuse, Algorithm 2 
requires much less computation than a progressive al- 
gorithm, Algorithm 3, that can be easily specified from 
Definition 2. We can estimate the time complexity of 
Algorithm 3. Let C be the time complexity of com- 
puting v(h, j) from w(h - 1, j - I), w(h - 1, j), and v(h, 
j - 1). Then Algorithm 3 computes w(l,j), . . . , w(k, 
j) from w(l,j - l), . . . , v(k,j - 1) in O(kC) and v(k, 
m) from w(l,O) in O(m k C). 

Improvement of expressiveness Algorithm 1 is 
not very general, but we can improve it in various ways. 
Since the original algorithm (Isozaki 1995) accepts do- 
main knowledge that contains variables, we would like 
to extend the above result to first-order cases. We 
might be able to find another algorithm based on magic 
sets (Ullman 1988) for Datalog-like domain knowledge. 
Our latest algorithm (Isozaki 1996) can take simple 
honest utterances as well as negation by introspection 
into account. Introduction of probability and utility 
will improve the verisimilitude of the estimation. In- 
troduction of an abductive reasoning mechanism will 
allow estimation of unobserved events based on various 
evidences. 

However, we should consider the time complexity 
of extended algorithms. Estimating others’ beliefs by 
means of an overly complex algorithm might take more 
time than just asking them directly. Hence, it is impor- 
tant to refine the algorithm by applying it to real-world 
problems. 

We have considered only binary nogoods such as 
l(pAq), and translated it as (p t-, lq)A(q L-, 1~). The 
constraint behaves just like Boolean Constraint Propa- 
gation or BCP (Forbus & de Kleer 1993). If we employ 
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the idea of BCP, we can translate any CNF (Conjunc- 
tive Normal Form) formula into a formula with strong 
implications. For example, we can translate lpvqv lr 
as(pAlqqlr)A(iqA r L-, lp) A (r A p L, q). we 
expect such representation will not increase the size of 
labelled trees much even if a general CNF formula is 
given as an integrity constraint. 

Related work Estimating the change in another’s 
belief is more difficult than changing one’s own belief 
and has not been studied well. Katsuno and Mendel- 
zon proposed the semantic differences between revi- 
sions and updates (Katsuno & Mendelzon 1992). Re- 
vision incorporates newly obtained information about 
a static world into beliefs, while update conforms be- 
liefs to the most recent facts when the world changes. 
Definition 2 is a combination of revision and update. 
The first operation for E’(h, j) corresponds to update. 
The second operation for Nezo( h, j) corresponds to re- 
vision. 

Fagin et al. studied knowledge update of observing 
agents (a.k.a. communicating scientists) (Fagin et al. 
1995). Meyden applied labelled trees to analyze be- 
lief revision (van der Meyden 1994b). However, they 
ignored changes of the world. Meyden (van der Mey- 
den 1994a) analyzed knowledge update in the chang- 
ing world, but did not analyze belief change. Chou 
and Winslett proposed an interesting belief revision 
algorithm is proposed for first-order logic with equal- 
ity (Chou & Winslett 1994). However, they ignored 
nested beliefs. 

Perrault applied default logic to speech act theory 
to represent how speech influences one’s belief (Per- 
rault 1990). Appelt and Konolige employed hierarchic 
autoepistemic logic to control belief change (Appelt & 
Konolige 1988). However, these theories tell us not h- 
ing about how one’s beliefs about others’ beliefs change 
when the external world changes. 

Brafman and Tennenholtz proposed an interesting 
model of belief ascription. It employs a decision- 
theoretic utility function to ascribe beliefs to various 
objects (Brafman & Tennenholtz 1994). It might be 
possible to unify our algorithm with their model. 

Concluding remarks 

We have shown that our belief estimation algorithm 
correctly computes others’ beliefs according to non- 
standard valuation on a sequence of labelled trees. We 
also discussed restrictions and generalizations found in 
this approach. We hope the above results contribute to 
the development of intelligent agents. We are applying 
the algorithm to natural language processing (Isozaki 
1996). 

We would like to thank Ken’ichiro Ishii for support- 
ing this research and Akihiro Umemura for discussion. 
We also thank anonymous referees for their useful com- 
ments. 
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