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Abstract 

One of the main challenges in the formal modeling of 
common-sense reasoning is the ability to cope with the 
dynamic nature of the world. Among the approaches 
put forward to address this problem are belief revisioPz 
and update. Given a knowledge base T, representing 
our knowledge of the “state of affairs” of the world of 
interest, it is possible that we are lead to trust another 
piece of information P, possibly inconsistent with the 
old one 7’. The aim of revision and update operators is 
to characterize the revised knowledge base T’ that in- 
corporates the new formula P into the old one T while 
preserving consistency and, at the same time, avoid- 
ing the loss of too much information in this process. 
In this paper we study the computational complexity 
of one of the main computational problems of belief 
revision and update: deciding if an interpretation M 
is a model of the revised knowledge base. 

Introduction 
During the last years, many formalisms have been pro- 
posed in the AI literature to model common-sense rea- 
soning. Particular emphasis has been put in the for- 
mal modeling of a distinct feature of common-sense 
reasoning, that is, its dynamic nature. The AI goal of 
providing a logic model of human agents’ capability of 
reasoning in the presence of incomplete and changing 
information has proven to be a very hard one. Nev- 
ertheless, many important formalisms have been put 
forward in the literature. 

Given a knowledge base T, representing our knowl- 
edge of the “state of affairs” of the world of interest, 
it is possible that we are lead to trust another piece 
of information P, possibly inconsistent with the old 
one T. The aim of revision operators is to incorporate 
the new formula P into the old one while preserving 
consistency and, at the same time, avoiding the loss of 
too much information in this process. This process has 
been called belief revision and the result of revising T 
with P is denoted as T * P. 

This “minimal change assumption” was followed by 
the introduction of a large set of specific revision op- 
erators. Among the others, we mention Fagin, Ull- 
man and Vardi (Fagin, Ullman, & Vardi 1983), Gins- 
berg (Ginsberg 1986) and Dalal (Dalal 1988). A gen- 
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era1 framework for belief revision has been proposed 
by Alchourron, Gardenfors and Makinson (Alchourron, 
Gardenfors, & Makinson 1985; Gardenfors 1988). A 
close variant of revision is update. The general frame- 
work for update has been studied by Katsuno and 
Mendelzon (Katsuno & Mendelzon 1989; 1991) and 
specific operators have been proposed, among the oth- 
ers, by Winslett (Winslett 1990) and Forbus (Forbus 
1989). 

While most of the early work aimed at defining the 
appropriate semantics for revision and update, more 
recently some researchers investigated the computa- 
tional complexity of reasoning with the operators in- 
troduced in the literature. The most complete com- 
plexity analysis has been done by Eiter and Gottlob in 
(Eiter & Gottlob 1992). More precisely, in the paper 
the authors address the problem of characterizing the 
complexity, in a finite propositional language, of the 
following problem: 

Given a knowledge base T, a new formula P and a 
query Q, decide whether Q is a logical consequence 
of T * P, the revised knowledge base. 

In this paper we consider a distinct computational 
problem of belief revision and update. Consider a 
knowledge base represented by a set of propositional 
formulae T. Any such knowledge base can be equiv- 
alently represented by the set of its models, denoted 
as m(T) = {Ml,..., M,). We say that a model 
M is supported by a knowledge base T if and only if 
M E M(T), or equivalently A4 b T. 

The problem we address in this paper is to decide if 
a model is supported by a revised knowledge base: 

Given a knowledge base T, a new piece of informa- 
tion P and a model M, decide if M e M(T * P). 

This problem is better known as model checking. 
There are several reasons why model checking is of in- 
terest in AI. First of all, as convincingly advocated by 
Halpern and Vardi in (Halpern & Vardi 1991) model- 
based representations are considered a viable alterna- 
tive to the standard approach of representing knowl- 
edge in terms of formulae. In model-based representa- 
tions the basic computational task is model checking, 
not inference. In this setting it is also very impor- 
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tant to study the computational complexity of model 
checking. 

The computational complexity of model checking 
is also strictly related to another computational as- 
pect of knowledge representation formalisms: their 
representational succinctness. Some recent papers 
(Cadoli, Donini, & Schaerf 1995; Gogic et al. 1995; 
Cadoli et al. 1995) have shown that the succinctness 
of a knowledge representation formalism is strictly re- 
lated to the complexity of model checking. 

While the computational complexity of inference and 
model checking are related, there is no way to automat- 
ically derive the results for model checking from those 
already known for inference. In fact, as our results 
show, there are operators that have the same complex- 
ity w.r.t. query inference but with different complexity 
w.r.t. model checking. 

reliminaries 
In this section we (very briefly) present the background 
and terminology needed to understand the results pre- 
sented later in the paper. For the sake of simplicity, 
throughout this paper we restrict our attention to a 
(finite) propositional language. 

The alphabet of a propositional formula is the set 
of a.11 propositional atoms occurring in it. Formulae 
are built over a finite alphabet of propositional letters 
using the usual connectives 1 (not), V (or) and A (and). 
Additional connectives are used as shorthands, o -+ 0 
denotes T(Y V p, a = p is a shorthand for (o A ,0) V 
(T(Y A l/3) and Q # @ denotes ~(cr = p). 

An interpretation of a formula is a truth assignment 
to the atoms of its alphabet. A model A4 of a for- 
mula F is an interpretation that satisfies F (written 
A4 j= F). Interpretations and models of propositional 
formulae will be denoted as sets of atoms (those which 
are mapped into 1). A theory T is a set of formulae. 
An interpretation is a model of a theory if it is a model 
of every formula of the theory. Given a theory T and 
a formula F we say that T entails F, written T b F, 
if F is true in every model of T. Given a propositional 
formulaor a theory T, we denote with M(T) the set of 
its models. We say that a knowledge base T supports 
a model M if M E M(T), or equivalently M j= T. 
A knowledge base T is consistent, written T k 1, if 
M(T) is non-empty. 

Let F be the inverse operator of M, that is, given 
a set of models A, F(A) denotes one of the formulae 
that have exactly A as set of models. 

Belief Revision and Update 
Belief revision is concerned with the modeling of ac- 
commodating a new piece of information (the revis- 
ing formula) into an existing body of knowledge (the 
knowledge base), where the two might contradict each 
other. A slightly different perspective is taken by 
knowledge update. An analysis of the relative mer- 
its of revision and update is out of the scope of this 

paper, for an interesting discussion on the differences 
between belief revision and update we refer the reader 
to the work of Katsuno and Mendelzon (Katsuno & 
Mendelzon 1991). We assume that both the revising 
formula and the knowledge base can be either a single 
formula or a theory. 

We now recall the different approaches to revision 
and update, classifying them into formula-based and 
model-based ones. A more thorough exposition can be 
found in (Eiter & Gottlob 1992). We use the following 
conventions: the expression curd(S) denotes the car- 
dinality of a set S, and symmetric difference between 
two sets Sr , Sz is denoted by S1 ASZ. If S is a set 
of sets, nS denotes the set formed intersecting all sets 
of S, and analogously US for union; mincS denotes 
the subset of S containing only the minim4 (w.r.t. set 
inclusion) sets in S. 

Formula-bused approaches operate on the formulae 
syntactically appearing in the knowledge base T. Let 
W(T, P) be the set of maximal subsets of T which are 
consistent with the revising formula P: 

W(T, P) = (T’ C T 1 T’ U {P} &t 1, 
-XJ:T’cU~T,Uu{P}&tI} 

The set W(T, P) contains all the plausible subsets of 
T that we may retain when inserting P. 

Ginsberg. Fagin, Ullman and Vardi in (Fagin, Ull- 
man, & Vardi 1983) and, independently, Ginsberg in 
(Ginsberg 1986) d fi e ne the revised knowledge base as 
a set of theories: T *G P + {T’ U {P} 1 T’ E W(T, P)}. 
That is, the result of revising T is the set of all maximal 
subsets of T consistent with P, plus P. Logical conse- 
quence in the revised knowledge base is defined as logi- 
cal consequence in each of the theories, i.e., T*G P b Q 
iff for all T’ E W(T, P), T’U{P} j= Q. In other words, 
Ginsberg considers all sets in W(T, P) equally plausi- 
ble and inference is defined skeptically, i.e., Q must be 
a consequence of each set. 

A more general framework has been defined by Nebel 
in (Nebel 1991). We do not analyze its definitions. 

WIDTIO. Since there may be exponentially many 
new theories in T *G P, a simpler (but somewhat dras- 
tical) approach is the so-called WIDTIO (When In 
Doubt Throw It Out), which is defined as ? *did P + 
VW, P), u {PI: see (Winslett 1989). 

Note that formula-based approaches are sensitive to 
the syntactic form of the theory. That is, the revision 
with the same formula P of two logically equivalent, 
theories Tl and T2, may yield different results, depend- 
ing on the syntactic form of Tl and T2. We illustrate 
this fact through an example. 

Example. Consider Tl = {a, b} , Tz = {a, a - b} 
and P = lb. Clearly, Tl is equivalent to Tz. The only 
maximal subset of Ti consistent with P is {a}, while 
there are two maximal consistent subsets of T,, that 
are {a} and {a -+ b}. 

Thus, Tl *G P = {a, lb} while T2 *G P = {a V (a ---+ 
b), lb) = {lb}. The WIDTIO revision gives the same 
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results. 
Model- bused 

the models of 
npproaches instead operate by selecting 
P on the basis of some notion of prox- 

imity to the models of T. Model-based approaches 
assume T to be a single formula, if T is a set of for- 
mu1a.e it is implicitly interpreted as the conjunction of 
all the elements. Many notions of proximity have been 
defined in the literature. We distinguish them between 
pointwise proximity and global proximity. 

We first recall approaches in which proximity be- 
tween models of P and models of T is computed point- 
wise w.r.t. each model of T. That is, they select mod- 
els of T one-by-one and for each one choose the closest 
model of P. These approaches are considered as more 
suitable for knowledge update (Katsuno & Mendelzon 
1991). Let A4 be a model, we define p(M, P) as the 
set containing the minimal differences (w.r.t. set inclu- 
sion) between each model of P and the given M; more 
formally, /.4(M, P) t minc(MAN 1 N E M(P)}. 

Winslett. In (Winslett 1990) Winslett defines the 
models of the updated knowledge base as M(T*wP) 2 
{N 6 M(P) 1 3M E M(T) : MAN E p(M,P)). In 
other words, for each model of T it chooses the closest 
(w.r.t. set-containment) model of P. 

Borgida. Borgida’s operator *B (Borgida 1985) co- 
incides with Winslett’s one, except in the case when P 
is consistent with T, in which case Borgida’s revised 
theory is simply T A P. 

Forbus. This approach (Forbus 1989) takes into 
account cardinality: Let kM,p be the minimum car- 
dinality of sets in p(M, P). The models of Forbus’ 
updated theory are M(T*F P) G {N E M(P) 1 3M E 
M(T) : card(MAN) = kM.p). Note that by means of 
cardinality, Porbus can compare (and discard) models 
which are incomparable in Winslett’s approach. 

We now recall approaches where proximity between 
models of P and models of T is defined considering 
globally all models of T. In other words, these ap- 
proaches consider at the same time all pairs of models 
A4 E M(T) and N E M(P) and find all the closest 
pairs. Let S(T, P) 5 mint /JmEMCTj p(A.4, P). 

Satoh. In (Satoh 1988), the models of the revised 
knowledge base are defined as M(T *S P) h {N E 
M(P) 1 34 E M(T) : NAM E a(T,p)). That is, 
Satoh selects all closest pairs (by set-containment of 
the difference set) and then projects on the models of 
P. 

Dalal. This approach is similar to Forbus’, but 
globa.1. Let k ~,p be the minimum cardinality of sets 
in S(T, P); in (Dalal 1988), Dalal defines the models of 
a revised theory as M (T *I> P) 2 {N E M(P) 1 3M E 
M(K) : card(NAM) = kT,p}. That is, Dalal selects 
all closets pairs (by cardinality of the difference set) 
and then projects on the models of P. 

Wrong Variables Revisions 
These two revision operators are model based and 

are based upon the hypothesis that the interpretation 
of a subset of the variables, denoted with S2, was wrong 
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in the old knowledge base T. The difference between 
them is based on a different definition of 52. In Hegner’s 
revision, R is set to the variables of P. The underlying 
idea is that the original knowledge base T was com- 
pletely inaccurate w.r.t. everything mentioned in P. 

Megner. Let !2 be the variables of P. The models of 
Hegner’s revised theory are defined as M(T *H P) A 
{N E M(P) I 3M E M(T) : NAIi4 C 52). For 
further details see (Winslett 1989). 

Weber’s revision is slightly less drastic. It assumes 
that the letters whose interpretation was wrong are a 
subset of the letters of P, i.e., only those occurring in 
a minimal difference between models of T and P. 

Weber. Same definition with Sz 2 U6(‘11’, P). 

Computational Complexity 
We assume that the reader is familiar with the ba- 
sic concepts of computational complexity. We use the 
standard notation of complexity classes that can be 
found in (Johnson 1990). Namely, the class P denotes 
the set of problems whose solution can be found in 
polynomial time by a deierminisiic Turing machine, 
while NP denotes the class of problems that can be re- 
solved in polynomial time by a non-deterministic Tur- 
ing machine. The class coNP denotes the set of de- 
cision problems whose complement is in NP. We call 
NP-hard a problem G if any instance of a generic prob- 
lem NP can can reduced to an instance of G by means 
of a polynomial-time (many-one) transformation (the 
same for coNP hard). 

Clearly, P C NP and P & coNP. We assume, fol- 
lowing the m&stream of computational complexity, 
that these containments are strict, that is P # NP and 
P # coNP. Therefore, we call a problem that is in P 
tractable, and a problem that is NP-hard or coNP-hard 
intractable (in the sense that any algorithm resolving 
it would require a superpolynomial amount, of time in 
the worst case). 

We also use higher complexity classes defined using 
oracles. In particular PA (NPA) corresponds to the 
class of decision problems that are solved in polyno- 
mial time by deterministic (nondeterministic) Turing 
machines using an oracle for A in polynomial time (for 
a much more detailed presentation we refer the reader 
to (Johnson 1990)). All the problems we analyze reside 
in the polynomial hierarchy, introduced by Stockmeyer 
in (Stockmeyer 1976), that is the analog of the Kleene 
arithmetic hierarchy. The classes CI, II: and Ai of 
the polynomial hierarchy are defined by 

C; I I-J; = A: = P 

and for k 2 0, 

-%+1 = NP’:, HP,+, = COC;+~, Aflk+l = pcf:. 

Notice that A: = P, Cy = NP and II: = coNP. More- 
over, C;= NP NP, that is the class of problems solvable 
in nondeterministic polynomial time on a Turing ma- 
chine that uses for free an oracle for NP. The class 



pNW(hs ra)l, ft o en mentioned in the paper, is the class 
of problems solvable in polynomial time using a loga- 
rithmic number of calls to an NP oracle. 

The prototypical C;-complete problem is deciding 
the truth of the expression 3XVY.F, where F is a 
propositional formula using the letters of the two al- 
phabets X and Y. This expression is true if and only 
if there exists a truth assignment X1 to the letters of 
X such that for all truth assignments to the letters of 
Y the formula F is true. 

The complexity of deciding T * P k Q (where * is one 
of {*G, *w, *B, *F, *s, *D}, T, P and Q are the input) 
was studied by Eiter and Gottlob in (Eiter & Gottlob 
1992 . Very briefly, in Dalal’s approach, the problem 

J is A.Jlog n]-complete, while for all other operators it is 
II;-hard (I$-complete for most of them). 

A computational analisys has been done in (Grahne, 
Mendelzon, & Revesz 1992), for an extension of 
Winslett’s pointwise approach, showing both tractable 
and intractable cases. 

Overview and discussion of the results 
The results are presented in Figure 1. The table con- 
tains five columns. The second and third show the 
complexity of model checking when T is a general 
propositional formula, while the fourth and fifth show 
the Horn case. In the Horn case we assume that P and 
all formulae in T are conjunctions of Horn clauses. 

The first thing to notice is that the computational 
complexity of model checking for almost all operators 
is at the second level of the polynomial hierarchy. This 
means that model checking for belief revision is much 
harder than model checking 
sible in polynomial time). 

for propositional logic (fea- 

We now give an intuitive idea why these problems 
are all in Ct. For simplicity we only consider the 
model-based approaches but this applies to the other 
systems as well. In model-based approaches we have 
that M is a model of T * P if and only if: 

1. Mkpaand 

2. There exists a model N of T that is “close” to M. 

The first step is obviously feasible in polynomial 
time, while the second one requires a nondeterministic 
choice of N and for each choice checking the “close- 
ness” of M and N. This check can be performed with 
a new nondeterministic choice. 

There are three exceptions to this rule, in fact 
Dalal’s operator is complete for PNPlo(logn)l, while 
Hegner’s approach is NP-complete and Ginsberg’s 
coNP-complete. The most surprising result is the com- 
plexity of model checking for Ginsberg’s operator. In 
fact, as shown in (Eiter & Gottlob 1992), inference for 
*G is as difficult as inference for *F, *w, *B and *s, 
while model checking turns out to be significantly sim- 

Restricting the size of the revising formula P has a 
dramatic effect on the complexity of model checking 
for *F and *w. In fact, the complexity decrease by 
two levels. This phenomenon does not arise for query 
inference. 

While restricting to Horn form generally reduces the 
complexity by one level there are two exceptions *D 
and *F. The intuitive explanation is that these two 
operators use a cardinality-based measure of minimal- 
ity that cannot be expressed as an Horn formula. On 
the other side, set-containment based minimality can 
be expressed with a Horn formula. 

General Case 
As said above, in this section we study the complexity 
of deciding whether M k T * P, given T, P and M 
as input. Due to the lack of space we cannot present 
complete proofs of all the results. 

We will show that operators that have the same com- 
putational complexity for the query answering prob- 
lem (i.e., deciding if T * P b Q) may have different 
complexity for the model checking problem (deciding 
ifM +T*P). 

For Ginsberg’s revision, model checking is easier 
than query answering. Namely, it is one level down 
in the polynomial hierarchy, The significance of this 
result is that Ginsberg’s operator is only a coNP prob- 
lem, despite its query answering problem has the same 
complexity of the others (II;-complete). 

Theorem I. Deciding whether M b T*G P is a coNP- 
complete problem. 

Proof (sketch). Given a model M, we first decide 
if M b P. This can be done in polynomial time, and 
if this is not the case, the model is not supported by 
T *G P. Now, we have that M k T *G P if and only if 
1M satisfies at least one element of W(K) P). Let T’ be 
set of the formulae in T that are satisfied by M. This 
is a consistent set, since it has at least one model (M). 
To show that T’ is in W(K, P) we have to prove that 
given any other formula f of T, the set T’ U {f} U {P} 
is inconsistent. Thus, we have the following algorithm 
to decide whether M k T *G P. 

1. Check if 1M + P (if not return false). 

2. Calculate T’ = {f E T I M b f} 
3. Decide, for any f E T - T’, if the set T’U {f} U {P) 

is inconsistent. 

The first two steps only require polynomial time, 
while the third one is a set of (at most n) unsatisfia- 
bility problems that can be resolved by a single call of 
a coNP algorithm. This proves that the problem is in 
coNP (proof of hardness in the full paper). cl 

Even though Ginsberg’s and WIDTIO revision are 
very similar, the complexity result we obtain is differ- 
ent. 

pler . Theorem 2 Deciding M b T *Wid P is C;-complete. 
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II General case 
II 

Horn case 

Ginsberg 
*G 

Forbus 

WiZlett 
*W 

Borgida 

Stzh 
*s 

Dalal 
*D 

Hegner 
*x7 

Weber 
*Web 

WIDTIO 
*Wid 

P generic P bounded P generic P bounded 

coNP complete CON P complete P P 
Th. 1 Th. 8 Th. 11 Th. 11 

Cz complete P Cz complete P 
Th. 3 Th. 7 Th. 10 Th. 15 

C$ complete P NP complete P 
Th. 3 Th. 7 Th. 12 Th. 15 

C; complete coNP complete NP complete P 
Th. 3 Th. 8 Th. 12 Th. 15 

Cg complete CON P complete NP complete P 
Th. 3 Th. 8 Th. 12 Th. 15 

PNPlo(log n)J complete coNP complete PNPlo(log n)l complete P 
Th. 4 Th. 8 Th. 10 Th. 15 

NP complete P P P 
Th. 5 Th. 7 Th. 11 Th. 11 

Ci complete coNP hard in PNPloC1)l NP hard in PNPlo(losn)l P 
Th. 6 Th. 8 Th. 13 Th. 15 

Cg complete Cc complete NP NP 
Th. 2 Th. 9 Th. 14 Th. 14 

Figure 1: The complexity of deciding whether M /= T * P 

We now turn our attention to the model-based opera- 
tors. All the model-based operators are based on the 
principle that a model M /= P satisfies the result of 
a revision it4 + T * P if and only if there is a model 
I + T such that I and M are sufficiently close each 
other. 

analysis of the proofs, it turns out that this behavior 
depends on the new formula P being very complex. 

It is not surprising that these methods have almost 
the same complexity (exception made for Dalal’s that 
is a bit easier). However, although for query answering 
the complexity could be proved with a single proof, for 
the model checking problem each operator requires its 
own proof. 

However, in practical applications it is reasonable to 
assume that the size of the new formula is very small 
w.r.t. the size of the knowledge base. In this section 
we investigate the impact this assumption has on the 
existence of compact representations. In particular, 
throughout this section we assume that the size of the 
new formula P is bounded by a constant (/c in the 
sequel). 

Under this assumption, we have the following re- 
sults. 

Theorem 3 Deciding M j= T * P is C:-complete, 
where * E (*F, *w, *s, *B). 

Theorem 4 Deciding whether M + T *D P is 
pNPMlog41,c omplete. 

We now establish the complexity of the operator that 

Theorem 7 If IPI 5 k, the complexity of decid- 
ing whether M j= T * P is polynomial, where * E 
{*F, *W, *H). 

Theorem 8 If lPl 5 k, the complexity of M b T * P 
is coNP-complete, where * E (*G, *B, *s, *D, *web). 

use a set of variables R whose observation is considered On the other side, WIDTIO semantics is not affected 
wrong, that is, Weber’s and Hegner’s ones. by the bound imposed on the size of P. 

Theorem 5 Deciding whether M /= T *H P is NP- Theorem 9 Even if IPI 5 k, the complexity of decid- 
complete. ing whether M b T *W&j P is C;-complete. 

The more complex definition of Weber’s revision 
shows up in an higher complexity of model checking 
for his operator. 

Horn Case 

Theorem 6 Deciding whether M b T *web P is C;- 
complete. 

Bounded Case 
In the previous section we investigated the complexity 
of evaluating the revised knowledge bases. As it turned 
out, for most of the operators this complexity is at 
the second level of the polynomial hierarchy. From an 

So far, we have considered revision of arbitrary knowl- 
edge bases. However, it could be significant to con- 
sider the complexity for the case in which both the 
basis are in the Horn form (i.e., they are conjunctions 
of Horn clauses), since this is the more used limitation 
used to make the problems about propositional calcu- 
lus tractable. Furthermore, it is also interesting to find 
the complexity in the case in which both the Horn lim- 
itation and IPI 5 k hold. This leads to the tractable 
(polynomial) cases of belief revision. 
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First of all, the cardinality-based revisions have 
the same complexity of the general (non-Horn) case 
(this theorem uses an observation of (Eiter & Gottlob 
1992)). 

Theorem 10 If T and P are Horn formulae, the 
model checking problem for *F is C;-complete and for 
*D is pNP[o(logn)l-eOmplete. 

For Ginsberg’s and Hegner’s revisions, the 
ity decreases: they become tractable. 

complex- 

Theorem 11 If T and P are Horn formulae, the 
model checking problem for *G and *H is polynomial. 

Finally, for the revision operators of Satoh, Winslett 
and Borgida, the complexity decreases of one level. 

Theorem 12 If T and P are Horn formulae, the 
model checking problem for *s, *w and *B is NP- 
complete. 

Finally, for Weber’s revision 
creases “almost” one level. 

the complexity de- 

Theorem 13 If T and P are Horn formulae, the 
model checking problem for *Web is NP-hard and in 
pNPlO(l)l . 

Theorem 14 If T and P are Horn formulae, the 
model checking problem for *$J?id is in NP. 

If we also assume that the size of P is bonded by 
a constant Ic we obtain that model checking becomes 
tractable for all operators (except *Wid). 

Theorem 15 If T and P are Horn formulae 
and IPI 5 k, the model checking problem for 
*G, *F,*w,*B,*s,*D,*H and *web is polynomial. 

Conclusions 
In this paper we have investigated a key issue of be- 
lief revision systems: their computational feasibility. 
Namely, we have studied, in a propositional language, 
the problem of deciding whether a model is supported 
by a revised knowledge base. 

As it turns out, model checking for belief revision 
and update is far more complex than model checking 
for classic propositional logic. Furthermore, the com- 
plexity of model checking is not always related to the 
complexity of inference. 
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