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Abstract 

It is well known that the minimal change principle 
was widely used in knowledge base updates. However, 
recent research has shown that conventional minimal 
change methods, eg. the PMA (Winslett 1988), are 
generally problematic for updating knowledge bases 
with disjunctive information. In this paper, we pro- 
pose two different approaches to deal with this prob- 
lem - one is called the nae’pzirnal charage with excep- 
qons (MCE), the other is called the miraimal charage 
with maximal disjunctive inclusions (MCD). The first 
method is syntax-based, while the second is model- 
theoretic. We show that these two approaches are 
equivalent for propositional knowledge base updates, 
and the second method is also appropriate for first 
order knowledge base updates. We then prove that 
our new update approaches still satisfy the standard 
Katsuno and Mendelzon’s update postulates. 

Introduction 
The knowledge base update problem has been widely 
studied in AI. It generally addresses the following ques- 
tion: given a knowledge base (i.e. a set of logical for- 
mulas as a description of the world), what changes 
may be caused by an occurrence of new knowledge 
and how to specify the new knowledge base when 
the old one has changed ? It is well known that the 
minimal change principle was employed in most for- 
malizations of knowledge base updates (Baral 1994; 
Dalal 1988; Friedman & Halpern 1994; Katsuno & 
Mendelzon 1991a; Winslett 1988). 

However, recent research has revealed that such 
minimal change is usually inappropriate for repre- 
senting knowledge change with disjunctive information 
(Brewka & Hertzberg 1993; Kartha & Lifschitz 1994; 
Zhang & Foo 1995). This paper is concerned with the 
problem of updating knowledge bases with disjunctive 
information. In particular, we propose two different 
approaches to solve this problem - one is called the 
minimal change with exceptions, the other is called 
the minimal change with maximal disjunctive inclu- 
sions. The first method is syntax-dependent, while 
the second is model-based. We show that these two 
approaches are equivalent for propositional knowledge 
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base updates, and the second method is also appro- 
priate for first order knowledge base update. We then 
prove that our new approaches still satisfy the stan- 
dard Katsuno-Mendelzon update postulates. 

The paper is organized as follows. The next section 
first reviews the PMA - the classical minimal change 
approach for knowledge base updates, and shows how 
the PMA fails to deal with the update with disjunc- 
tive information. Section 3 proposes a new method 
called minimal change with exceptions, which over- 
comes the problem of the PMA but is syntax-based. 
Section 4 proposes an alternative method called min- 
imal change with maximal disjunctive inclusions that 
is model-theoretic. It is observed that this approach is 
also suitable for the first order knowledge base updates. 
It is also shown that these two approaches are equiva- 
lent for propositional knowledge base updates. Section 
5 investigates the relationship between our approaches 
and the standard Katsuno-Mendelzon update theory. 
Finally, section 6 discusses related work and concludes 
the paper. 

The inimal Change Approach: A 
Review 

In this section we first introduce some preliminary con- 
cepts and review the PMA (possible models approach 
(Winslett 1988)) - a c assical minimal change approach 1 
for update. Consider a finite propositional language 
Lc’. We represent a knowledge base by a propositional 
formula +. A propositional formula 4 is complete if 4 is 
consistent and for any propositional formula ,Y, 4 /= p 
or 4 b T/-L. Models(@) d enotes the set of all models of 
$J, i.e. all interpretations of L in which G is true. We 
also consider state constraints about the world. Let C 
be a satisfiable propositional formula that represents 
all state constraints about the world”. Thus, for any 

1 Note that the PMA was originally based on a first order 
language. Here we first consider propositional knowledge 
base update and will discuss the first order case in section 
4. 

2Usually, we us e a set of formulas to represent state 
1 *I T 11. 

- , . , 
. -1. const zants . In tn= 

of all such formulas 
case, c/ can De vie !wea as a conJuncLlon 
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knowledge base $, we require $ t= C. Let I be an 
interpretation of Lc. We say that I is a state of the 
world if I b C. For simplicity, we fix the universe 
of interpretations in language c. That is, we restrict 
1111 = 112 1 for any two interpretations 11 and 12 of L. 
A knowledge base II, can be treated as a description of 
the world, where Models($) is the set of all possible 
states of the world with respect to $. 

Let 1c) be the current knowledge base and 1-1 a propo- 
sitional formula which is regarded as new knowledge 
(information) about the world. Then, informally, the 
general question of updating 1c) with /I is how to spec- 
ify the new knowledge base after combining the new 
knowledge (information) p into the current knowledge 
base @ (we also call p update effect). In the PMA, the 
knowledge base update is achieved by updating every 
possible state of the world with respect to II) with IL, and 
such state update is constructed based on the principle 
of minimal change on models. 

Formally, let 11 and 12 be two interpretations of C. 
We say that 11 and 12 differs on a propositional letter 
I if 1 appears in exactly one of 11 and 12. oif f (II ,12) 
denotes the set of all different propositional letters be- 
tween 11 and 12. Let I be an interpretation and Z a 
set\of interpretations. We define the set of all mini- 
mal different interpretations of Z with respect to I as 
follows: 

Min(I, Z) = {I’ 1 I’ E Z, and there does not 
exist other I” E Z such that 
Diff(I, I”) c Diff(I, I’)). 

Then we can present the formal definition of the state 
update in the PMA as follows. 
Definition 1 Let C be the state constraint, S a state 
of the world, i.e. S b C, and ~1 a propositional for- 
mula. Then the set of all possible states of the world 
resulting from updating S with p by the PMA, denoted 
as Res(S, II), is defined as follows: 

Res(S, p) = Min(S, Models(C A p)). (1) 

Based on the definition of state update, we can then 
define the PMA update operator opma for knowledge 
bases. 

Definition 2 Let 1c, be a knowledge base and p a 
propositional formula. $ opma 11 denotes the update of 
1c( with p by the PMA3, where 

In the above definition, condition 1 says that if 1c, 
entails II, then nothing is changed since the knowl- 
edge I-L has been represented by knowledge base +; 
or if II) is inconsistent, then any update can not 
change it into a consistent knowledge base (Katsuno 

3Here we only consider the well-defined update, 
p is consistent with the state constraint C. 

that is, 

& Mendelzon 1991a). Condition 2 says that if 1c, is 
consistent and does not entail p, then + should be 
changed, and this change is made by updating every 
model of $ with p as defined in Definition 1. It has 
been shown that under many circumstances, the PMA 
is powerful and effective for representing knowledge 
updates and reasoning about action (Winslett 1988; 
Katsuno & Mendelzon 1991a). However, recent re- 
search reveals that the PMA is problematic for update 
with disjunctive information. The following example 
illustrates such difficulty of the PMA. 

Example 1. The dropping-box problem4. Suppose a 
table is painted with one part white and one part black. 
Therefore, a box on the table implies that it may be 
entirely within the white region, or within the black 
region, or touching the both regions. This constraint 
can be expressed by the following formula: 

Ontable(Box) 3 Inwhite(Box) V Inblack(Box). (2) 

Now suppose the current knowledge base is 
$ - lOntable( Box) A +nwhite(Box)A 

+nblack(Box) A (2) 

to express the fact that the box is not on the table. 
Consider the update of II) with p G Ontable(Box) (i.e. 
the box is dropped on the table). Using the PMA, we 
have the result: 

$ opma P z Ontable(Box)A 
(Inwhite( Box) V lInblack( Box))A 
(+nwhite(Box)VInblack(Box))A(2), 

which says that the box must be only within one of 
white or black region. Obviously, this result is not 
quite plausible from our intuition. 0 

In the above example, although the update has a 
simple effect OntabZe(Box), together with the con- 
straint (2), it implies an indirect disjunctive effect 
Inwhite( Box) V InbZack( Box). Therefore, according 
to the minimal change principle of the PMA, only 
Inwhite(Box) or Inblack(Box) should be true after 
this update, but not both, and this leads to an unin- 
tuitive solution. 

: A Syntax-based Approach 
To overcome the problem with the PMA, in this sec- 
tion we propose an approach for update based on the 
principle of Minimal Change with Exceptions, which we 
abbreviate as the MCE. In fact, our approach is based 
on the PMA but with some modifications. The idea 
is described as follows. Consider the state update5. 
Generally, during the update, the truth value of any 
literal in the state changes minimally by default. But 

4This example was suggested by Ray Reiter and dis- 
cussed in (Kartha & Lifschitz 1994). 

5Similar to the PMA, in our approach, updating a 
knowledge base is achieved by updating every possible 
model of the knowledge base. 
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if the truth value of a literal is logically indefinite with 
respect to the update, then this literal is treated as 
an exception to the minimal change principle. In this 
case, the change of this literal’s truth value will not 
obey the rule of minimal change. 

Informally, we say that the truth value of a lit- 
eral is logically indefinite with respect to an update, 
if this literal occurs in a disjunction which is entailed 
by the constraint and the update effect and not sat- 
isfied in the initial knowledge base (or state). Con- 
sider the dropping-box example presented in last sec- 
tion where the constraint is (2) and the update ef- 
fect is Ontable( Box). As both Inwhite(Box) and 
Inblack(Box) are not true in the initial knowledge 
base but the disjunction Inwhite(Box)VInblack(Box) 
is entailed by (2) and OntabZe(Box), we know that 
Inwhite(Box)VInblack(Box) should be true in the re- 
sulting knowledge base but we can not determine the 
truth values of Inwhite(Box) and Inblack( Box) ex- 
actly. In this case, we say literals Inwhite(Box) and 
Inblack(Box) are logically indefinite with respect to 
the update. According to our idea described above, 
Inwhite( Box) and InblacE( Box) should be regarded 
as exceptions to the minimal change principle. Thus, 
In?bhite(Box) and InbZacE(Box) are not forced to 
change minimally during the update, from which we 
get the desired solution including the case that both 
1nzohite( Box) and InbZack( Box) may be true after up- 
dating the knowledge base with Ontable(Box). 

Formally, let EXC be a set of propositional let- 
ters that we represent to be exceptional to the 
minimal than e, 

E B 
11 and 12 two interpretations. 

Wf(h ,122) ’ denotes the set of all different propo- 
sitional letters, which are not in EXC, between 11 and 
I2. That is, 1 E Dif f(Il , 12)EXC iff L-31 # II n I2 
and 1 4 EXC, where notation [l] means that the 
negation sign 1 may or may not occur. For exam- 
ple, let 11 = (a, b, lc, ld}, 12 = 

i 
la, b, c, ld} and 

EXC = {a, b}. Then Diff(Il, 12) xc = {c}. Let 
I be an interpretation and Z a set of interpretations. 
We define the set of all minimal different interpreta- 
tions of Z with respect to I with the exception EXC as 
follows: 

Min( I, Z)EXC = {I’ ] I’ E Z, and there does not 
exist other I” E Z such that 
Diff(I, I”)EXC c Diff(I, I’)EXC}. 

Let C be a propositional formula used to represent 
the state constraint and p a propositional formula. We 
say a disjunction V& [1]1i (1 < n) satisfying C A /-1 b 
Vy=i[-]Zi, where Zi is a propositional letter (1 2 i 5 
n), is a non-trivial disjunction entailed by C A p if for 
any A4 C {l,.+.,n}, CAP k VjEM[l]Zj. We denote 
the set of all non-trivial disjunctions entailed by CA p 
;, Dt). If d z Vy=i[-]ri in D(p), then we denote 

= - - -,ln). 
In td’ dropping-box example presented previously, 

as we have (2) A Ontable(Box) k Inwhite(Box) V 
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Inblack(Box), (2) A Ontable(Box) k Inwhite(Box), 
and (2) A Ontable(Box) k Inblack(Box), we then 
get D(OntabZe(Box)) = {d} = {Inwhite(Box) 
V Inblack(Box)}, and ldJ = {Inwhite(Box), 
Inblack( Box)}. N ow we give the definition of state 
update in the MCE as follows. 
Definition 3 Let C be the state constraint, S a state 
of the world, i.e. S b C, p a propositional formula, 
and D(p) the set of non-tm’vial disjunctions entailed by 
C A p. We define the exceptional letters with respect 
to S and /I as follows: 

EXC(S, /J) = u I4 (3) 
dEWP),SW 

Then the set of possible states resulting from ydating 
S with p by the MCE, denoted as Res(S,p)E ‘(‘*p), 
is defined as 

Res(S, p)EXC(SJ‘) = Min(S, Models(CAp))EXC(S*H). 
(4 

Let us examine Definition 3 in detail. Firstly, (3) 
defines a set of propositional letters that should be 
viewed as exceptions to the minimal change principle 
during the state update. If d E D(p) is already sat- 
isfied in S, then any letters which or whose negations 
occur in d will not be specified in EXC(S, p), other- 
wise the letters should be in EXC(S, p). For instance, 
suppose S = {la, lb, c, ld) and D(p) = {a V b, b V c}, 
then EXC(S, /J) = (a, b} while c is not in EXC(S, p) 
asSbbvc. Secondly, (4) defines the set of pos- 
sible resulting states after updating S with p. Note 
that any literals in S whose corresponding letters are 
in EXC( S, p) will not obey the minimal change prin- 
ciple during the update. In the above example, if 
C - (d > a V b) A (d > b V c) and p E d6, then we 
get 

Res(S, p)Exc(s*p) = {Sl,S2,&}, where 
Sl = (a, lb, c, d}, 
S2 = {la, b, c, d}, and 
5’3 = (a, b, c, d}. 

Based on Definition 3, we define the knowledge base 
update in the MCE as follows. 
Definition 4 Let $ be a knowledge base, p a proposi- 
tional formula. $ onace p denotes the update of $J with 
/I 

1. 

2. 

by the MCE, where 

If $ entails p or 1c, is inconsistent, then @on.,,,11 z II,, 
otherwise 
Models(lC, o,,, p) = 

Us~Mode~s(+)Res(S, ~~~~~~~~~~~ 
Comparing with Definition 1 and 2, it is easy 

to see that the MCE is defined based on the 
PMA but with exception EXC(S,p). Clearly, 
if EXC(S,p) = 0 for any S E Models($), 

‘This implies that D(p) = {a V b, b V c}. 



n I Now suppose the current knowledge base is 

v E lOntable( Box) A lInred( Box)A 
lInwhite( Box)A lInblack( Box) A (5). 

which corresponds to a unique state: 
S = {lOntable( Box), +nred( Box), 

lInwhite( Box), +nblack( Box)}. 

Consider updating state S with p E Ontable(Box) 
(i.e. the box is dropped on the table). The question is: 
how can we get the desired possible states? Our idea 
is described as follows. Firstly, using the PMA we get 
the set of possible resulting states: 

fis(S,p) = {SI, &,&}, where 
S1 = { Ontable( Box), Inred( Box), 

lInwhite( Box), +nbZack( Box)}, 
Sz = { Ontable( Box), lInred( Box), 

Inwhite(Box), ~Inblack(Box)}, 
S3 = (Ontable( Box), lInred( Box), 

lInwhite( Box), Inblack( Box)}. 

Obviously, Si , S2 and S3 are the desired possible re- 
sulting states. But, we know that the following states 
are also our desired resulting states: 

S4 = {Ontable(Box), Inred( Box), 
Znwhite(Box), 4nblack( Box)}, 

Ss = (Ontable( Box), Inred( Box), 
lInwhite( Box), Inblack( Box)), 

Se = {Ontable(Box), +nred(Box), 
Inwhite(Box), InbZack( Box)), 

Sr = (Ontable(Box), Inred(Box), 
Inwhite( Box), Inblack( Box)}. 

In fact, states &, Sg , Sc and Sr can be generated 
from Res(S, p). Let Sp be any non-empty subset of 
Res(S, p). Then, there always exists a model S’ in 
Models(Ontable(Box) A (5))7, such that S’ satisfies: 

(i) for each Si E Sp, Diff(S,Si) C Diff(S,S’), 
and 

Figure 1: The extended dropping-box domain. 

then the MCE reduces to the PMA. Consider the 
dropping-box example once again. As the knowl- 
edge base 1c, corresponds to a unique state S = 
(lOntable( Box), +nwhite( Box), lInblack( Box)}, 
we have EXC( S, Ontable( Box)) = (Inwhite( Box), 
InbZack( Box)}, then from Definition 3 and 4, we get 
the desired result: 

t! omee p f Ontable(Box)A 
(Inwhite(Box)VInblack(Box))A(2). 

From the above discussion, we can see that the MCE 
overcomes the problem with the PMA of updating 
knowledge bases with disjunctive information. How- 
ever, to specify the exceptional letters EXC(S, p), we 
need to derive every non-trivial disjunction d from the 
constraint C and update effect p, and then verify if 
S + d for each S E Models(+). Obviously, the first 
step is a syntactic procedure. Hence, we say that the 
MCE is syntax- based. 

MCD: A Model-theoretic Approach 
In this section, we propose an alternative method 
which solves the problem of updating knowledge bases 
with disjunctive information and is model-based. 

The Approach 
Our approach is based on the idea of the Minimal 
Change with maxamal Disjunctive inclusions, that we 
call the MCD for short. To illustrate this idea simply, 
we first consider the following example. 

Example 2. The extended dropping-box problem. 
Suppose a round table is painted with three equal parts 
of red color, white color and black color respectively. 
Intuitively, a box on the table implies that it may be 
entirely within one of these three regions, or touching 
any two of these three regions, or touching all of these 
three regions. This situation can be described by Fig- 
ure 1. Also, a constraint to formalize this domain is 
specified as: 

Ontable( Box) > 

Inred(Box) V Inwhite( Box) V Inblack( Box). (5) 

(ii) there does not exist another S” in 
Models( Ontable( Box) A (5)) satisfying con- 
dition (i) but Dif f (S, S”) c Dif f (S, S’). 

Now we claim that S’ is also a desired resulting state. 
For instance, let Sp be { Si}. Then from conditions (i) 
and (ii), the corresponding S’ is S1 itself. On the other 
hand, if Sp = {Sr, Sz}, we get 

S’ = { Ontable( Box), Inred( Box), 
Inwhite( Box), lInblack( Box)} = S4. 

Similarly, we can get Ss, Ss, and ST from (S1 , Sa}, 
{ Sz, Sa) and { S1, S2, Sz} respectively. Therefore, ev- 
ery desired resulting state can be generated from the 
corresponding subset of Res(S,p) by using the above 
procedure. 0 

Before we explain the above procedure in detail, we 
first introduce a useful concept. Let I1 and Z? be two 
interpretations. and al V e . + V ak a disjunction that is 

‘Clearly. ModeZs(OntabZe(B0~) A (5)) is the set of all 
possible states of the world in which Oniablc(Roz) is true. 
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satisfied in 11 and 12. We say that II includes 12’s 
interpretation for this disjunction iff for any disjunct 
ai, 1z /= cli implies 11 + a;. 

In the above example, as the disjunction 
Inred(Boz)Vlnzohite(~~~)V~~~~~c~( Boz) is a logical 
consequence of the update effect Ontable(Boz) and the 
constraint (5), different states in Res(S, p) also repre- 
sent different interpretations for this disjunction. But, 
because of the minimal change principle, Res(S, 11) 
may only include partial interpretations for the dis- 
junction. For instance, using the PMA, we get the 
possible resulting states Si, S:! and Ss which only rep- 
resent three possible interpretations for this disjunc- 
tion. To describe the update with disjunctive effect 
properly, as we have observed previously, we need to 
represent every possible interpretation of the disjunc- 
tion but without losing the minimal change criterion 
for other information. 

It is not hard to see that conditions (i) and (ii) above 
achieve this purpose. In particular, given a subset Sp 
of Res(S, p), condition (i) states that for every state Si 
in Sp, S’ is the state which includes Si’s interpretation 
for the disjunction, while condition (ii) restricts this S’ 
to minimal change on other literals with respect to S. 
Fobevery subset Sp of Res( S, p), we can get the corre- 
sponding S’. So, we take all such S’s to be the possible 
resulting states that include maximal possible interpre- 
tations of the disjunction without losing the minimal 
change criterion on other information. Therefore, this 
approach is so called the minimal change with maximal 
disjunctive inclusions. 

Formal Descriptions 
Based on the above discussion, we now develop our 
method formally. Similar to the previous presentation, 
we first define the state update in the MCI). 
Definition 5 Let C be th.e state constraint, S a state 
of the world, i.e., S /= C, and p a propositional for- 
mula. Then the set of all possible stutes of the world 
resulting from updating S with TV by the MCD, denoted 
us Res(S, p)mcd, is defined us follows: 

Res(S, p)mcd = U Dis(S, spp, (6) 
&tp(z2R4S.P) 

where 

Dis(S, Sp) = {S’ 1 S’ E Models(C A 11) such that 
(i) for each Si in Sp, Dif f (S, Si) & 
Dif f(S, S), and (ii) there does not exist 
other St in Models(C AP) satisfying (i) 
but Dif f (S, S”) C Dif f (S, S’)}. 

Note that in Definition 5, we consider the power set 
of Res(S, 14, so that any element Sp of 2Re”(S+) is a 
subset of Res(S,p). Dis(S, Sp) represents the set of 
states that include the interpretations of the disjunc- 
tive information represented by all states of Sp without 

566 

‘Recall that Res(S, cl) is defined by (1) in section 2. 

Knowledge Representation 

losing the minimal change criterion on other informa- 
tion. Clearly, if there is only one element S’ in Sp, 
then Dis(S,Sp) = Sp = {S’}. 

After specifying the state update, we then define the 
MCD update operator om,d for knowledge bases as fol- 
lows. 

Definition 6 Let I,!J be a knowledge base and p a 
propositional formula. $ Om& TV denotes the updute of 
1c, with p by the MCD, where 

1. If $ entails p or $ is inconsistent, then I)Om&/d E I/J, 
otherwise 

2. Model@ Omcd p) = USEMod& Res(S, P)mcd - 

Example 3. Continue considering the extended 
dropping-box example. The initial knowledge base is 

l/E lOntable( Box) A lInred( Box)A 
llnwhite(Box) A llnblack(Box) A (5). 

Now, we update 1c, with p 5 Ontable(Box). From 
Definition 5, we have 

U S@fodels(+) Res(S, pJrnCd = 
{sl, s2, s39 s4, s5, s6,s7}, 

where Sit . . . , ST have been given in 4.1 previously. Fi- 
nally, from Definition 6, we get the desired resulting 
knowledge base 

$‘omcd p - Ontable( Box) A (Inred( Box)V 
Inwhite(Box) V Inblack( Box)) A (5). 

cl 

Existence as Disjunctive Information 
So far, we have only considered the propositional 
knowledge base update, while a disjunctive informa- 
tion related to the update is simply a propositional 
disjunction. If we consider the first order knowledge 
base update, on the other hand, disjunctive informa- 
tion may be also represented by a formula with an 
existential quantifier. For instance, a formula 

Occupied(Table) z 3x.On(x, Table), (7) 

represents a constraint that the table is occupied iff 
there exists (exist) some object (objects) on the table, 
but we can not determine how many objects there are 
and what the exact object (objects) is (are). A natural 
question is: can the MCD also deal with this kind of 
disjunctive information? 

Consider a first order language LF with equality. We 
can extend the MCD in the following way. A knowl- 
edge base $F is represented by a closed first order for- 
mula. Let CF and PF be two closed first order for- 
mulas, where CF represents the state constraints (CF 
can be viewed as the conjunction of a set of closed first 
order formulas)g, and /1F represents a new knowledge 
(information). Then the update of $F with PF is de- 
fined exactly the same as the propositional knowledge 

‘Note that +,F should satisfy the condition ?$F k CF. 



base update as defined in Definition 5 and 6, except 
that propositional formulas C, II, and p in Definition 5 
and 6 are replaced by formulas CF, +F and PF respec- 
tively. 

Suppose a knowledge base is 4~7 E 
lOccupied(Table)A(7). Then, updating $‘F with PF - 
Occupied(table) implies an effect 3x.On(x, Table), i.e. 
(7) A PF b Elx.On(x,Table). Using the extended 
MCD as described above, the resulting knowledge base 
$F Omcd fiF Will imply a consequence that there may 
be one or more objects on the table. That is, every 
possible interpretation of 3x.On(x, Table) will be rep- 
resented by $F Om,d PF. If we use the PMA, on the 
other hand, the solution implies that there is only one 
object on the table, which seems too restricted. 

Equivalence between MCE and MCD 
Restricting the MCD to propositional case, we can 
show that the MCD and MCE are equivalent for propo- 
sitional knowledge base updates. 

Theorem 1 Let 1c) be a propositional knowledge buse 
und p u propositionul formula. Then for any proposi- 
tional formula 4, ti Omce P t= 4 $T 1c, omcd P b 4. 

Since the MCD is model-theoretic while the MCE is 
syntax-based, the MCD in fact provides a semantics 
for the MCE. The following result further shows the 
relationship between the MCD (MCE) and the PMA. 

Theorem 2 Let $ be a propositional knowledge base 
und p a propositionul formnlu. Then for any propo- 
sitional formula 4, 1c, Omcd I-1 k 9 (of 4 Omce p k 4) 
implies 1c( Opma /I + 4. 

elationship with KM. Update 
Postulates 

In this section, we discuss how our update approaches 
relate to Katsuno and Mendelzon’s update theory 
(Katsuno & Mendelzon 1991a; 1991b). As Theorem 
1 states that the MCE and MCD are equivalent for 
propositional knowledge base updates, we need only 
address the relationship between the MCD and the 
Katsuno and Mendelzon’s update theory. 

The motivation of Katsuno and Mendelzon’s pro- 
posal for update is an observation on the difference 
between revision and update. Basically, revision is 
intended to represent changes of an agent’s belief 
state reflecting new information about the static world, 
while update is intended to represent changes of agent’s 
belief in response to a dynamic world. Based on this 
observation, differently from the AGM postulates for 
revision (Gardenfors 1988), Katsuno and Mendelzon 
proposed the following alternative postulates for any 
update operator o (Katsuno & Mendelzon 1991a). 

(Ul) II) 0 p implies p. 
(U2) If 1c( implies ~1 then 1c, o p q  $. 
(U3) If both 1c( and /I are satisfiable 

then 1c, o p is also satisfiable. 

If $1 z $2 and ~1 =, ~2 
then $~iopi f $20~2. 
($0 p) A 4 implies $ o (p. A 4). 
If II, o ~1 implies ~2 and +!J o ~2 implies ~1 
then $0~1 f $0~2. 
If 1c) is complete then ($J o ~1) A ($ o ~2) 
implies 1c) 0 (~1 V ~2). 
($1 v+z)oIL= ($vp)v(9hop). 

In fact, the KatsunoMendelzon’s update postulates 
characterize the update semantics for a class of update 
operators that are based on the principle of minimal 
change. For instance, the PMA update operator opma 
satisfies all postulates (Ul) - (U8). 

In order to investigate the relationship between the 
MCD and Katsuno-Mendelzon’s update postulates, we 
first introduce the following useful notations and con- 
cepts. Let Z be the set of all interpretations of the 
propositional language Lc. A preordering _< over Z is 
reflexive and transitive relation on Z. 5 is called a 
partial ordering if it is an antisymmetric preordering. 
Let M & 2. We denote min(M, 5) to be the set of all 
interpretations in M that are minimal with respect to 
L- 

efinition 7 Let Z be the set of all interpretations of 
C, Z1 E Z, and S un interpretation of L. We define 
un orden‘ng over Z with respect to 551 and S as follows. 
For any two &, S:! E Z, S1 5~~;s S2 iJgpS1 = S2; or 
(i) For la11 Si E X1, Diff(S,Si) C Diff(S,S,)? and 
(ii) If for ull Si E L Diff(S, Si) C Diff(S, SZ), 

then Diff(S, SI) C Diff(S, 5’2). 

Lemma 1 51~;s is a partiul ordering. 

Intuitively, <zl;s represents a measure on 
Dif f (S, S’) f or any state S’ in Z with respect to Zi. In 
particular, if S1 5~~;s Sz, it means that (i) Dif f (S, Si) 
is an upper bond for the set {Dif f(S, Si) 1 Si E 1,) 
with respect to set inclusion C, while Dif f (S, 5’2 ) is 
not an upper bond for this set; or (ii) both Di f f (S, 5’1) 
and Dif f (S, S 2 ) are upper bonds for set { Di f f (S, Si ) 1 
Si E Zi }, but Dif f(S, 5’1) is a smaller one than 
Diff(S, S2) ( is i.e. Diff(S,Sl) C Diff(S,&)). We 
can extend the ordering 5~~;s to the general case. 

Definition 8 Let II be u class of sets of interpretu- 
tions. We define S1 5~;s S2 iff there exists some 
& E n such that S1 5 k z ;S S2 or there exists some 
S’ such that S1 L-I;S S Ln;s S2. 

Clearly, the ordering Ln;s is the union of 11, ;S for 
every XI, in r1. For instance, if II = (21, Z,}, then 
Sl $7;~ S2 if one of the following cases ho1 ds: (i) 
Si ST, ;S S2; (ii) Si 2~~;s S2; or (iii) there is S’ such 
that S1 51~;s S’ (or Si 5~~;s S’) and S’ 5~~;s Sz (or 
s Lz1;s S2). 

Lemma 2 5-1;s is a partial ordering. 

Theorem 3 Let 1c, be a propositional knowledge base, 
where C is the state constraint, und p a propositional 
formula. Then 
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Models(ll, Omcd p) = 
U sEModels(Q) min(Models(CAp), ~2~e~(%p);S)- 

The above theorem shows that our MCD (and the 
same as the MCE) can be characterized by an alter- 
native minimal change criterion. Therefore, it is not 
surprising that we have the following solution. 

Theorem 4 The MCD update operator O,,,& satisfies 
Katsuno-Mendelzon’s postulates (U1) - (U8). 

Theorem 4 reveals an important fact that Katsuno- 
Mendelzon’s postulates (Ul) - (U8) are not necessarily 
contradictious with the semantics of updating knowl- 
edge base with disjunctive information. 

Concluding Remarks 
In this paper, we proposed two different approaches, 
called the MCE and MCD respectively, to deal with the 
problem of updating knowledge bases with disjunctive 
information. 

In fact, the problem of dealing with the incomplete 
(disjunctive) information in dynamic systems has been 
studied by many researchers recently (eg. (Brewka & 
Hertzberg 1993; Kartha & Lifschitz 1994; Lin 1996; 
Zhang & Foo 1995)). H owever, most of their work 
concentrated on reasoning about action. Restricted by 
the formalizations, their methods, therefore, seemed 
not directly applicable for general knowledge base up- 
dates as we discussed in this paper. On the other hand, 
some of their approaches only dealt with the direct dis- 
junctive effect (Brewka & Hertzberg 1993). We did 
extend our previous work to deal with knowledge base 
updates (Zhang & Foo 1995). However, as our previous 
method is syntax-based, there is no proper semantics 
to support the theory. 

There are some features of our approaches repre- 
sented in this paper. First, our approaches can deal 
with both direct and indirect disjunctive effects of up- 
dates. For instance, in the dropping-box problem (i.e. 
Example l), the update effect p z Ontable(Boz) is 
definite. Together with the constraint (a), however, it 
implies an indirect disjunctive effect Inwhite(Box) V 
InbZack(Boz). In this case, our approaches produce 
the desired result. Second, due to the equivalence be- 
tween the MCE and MCD for propositional knowledge 
base updates, the MCD provides a proper semantics 
for the MCE. Moreover, the MCD is also suitable for 
first order knowledge base updates. Third, as the MCD 
and MCE satisfy Katsuno and Mendelzon’s postulates 
(Ul) - (U8), we can see that in general, the principle of 
minimal change can be independent from the update 
with disjunctive information. 

Many related problems remain open. One is the 
cdmputational tractability of our approaches. Another 
is the extension of our ideas to solve the problem of 
reasoning about actions with nondeterministic effects. 
An obvious difference between update and action is 
that the change caused by an action will not obey KM 

update postulate (U2) if the action implies a nonde- 
terministic effect. For instance, tossing a coin. In 
this case, our current approaches can not derive de- 
sired solutions. A third is the connection of the prin- 
ciples of minimal change with exceptions and minimal 
change with maximal disjunctive inclusions to other 
nonmonotonic mechanisms such as default logic and 
circumscription. These issues are being addressed in 
our current work. 
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