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Abstract 

Building complex knowledge based applica- 
tions requires encoding large amounts of do- 
main knowledge. After acquiring knowledge 
from domain experts, much of the effort in 
building a knowledge base goes into verify- 
ing that the knowledge is encoded correctly. 
We consider the problem of verifying hybrid 
knowledge bases that contain both Horn rules 
and a terminology in a description logic. Our 
approach to the verification problem is based 
on showing a close relationship to the prob- 
lem of query containment. Our first contri- 
bution, based on this relationship, is present- 
ing a thorough analysis of the decidability 
and complexity of the verification problem, 
for knowledge bases containing recursive rules 
and the interpreted predicates =, 5, < and f. 
Second, we show that important new classes 
of constraints on correct inputs and outputs 
can be expressed in a hybrid setting, in which 
a description logic class hierarchy is also con- 
sidered, and we present the first complete al- 
gorithm for verifying such hybrid knowledge 
bases. 

Introduction 
Building complex knowledge based applications re- 
quires encoding large amounts of domain knowledge. 
After acquiring this knowledge from domain experts, 
much of the effort in building a knowledge base goes 
into verifying that the knowledge is encoded correctly. 
A knowledge base is verified if, for any cowect set of 
inputs, the knowledge base will entail a correct set 
of outputs. Verifying a knowledge base manually is 
both unwieldy and unlikely to find all the possible er- 
rors in the knowledge base. Therefore, several authors 
have considered the problem of building tools to assist 
knowledge base verification. The space of verification 
problems varies depending on the representation lan- 
guage used for the knowledge base, and the way we 
specify constraints defining correct inputs and outputs. 
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This paper considers the verification problem for 
knowledge bases containing Horn rules and hybrid 
knowledge bases containing terminologies in a KL- 
ONE style language [Brachman and Schmolze, 19851 in 
addition to Horn rules. We describe novel algorithms 
for verifying such knowledge bases, and obtain new 
results concerning the complexity and decidability of 
the verification problem. Our algorithms also handle 
a wider class of input and output constraints. 

We begin by showing that the verification problem 
is closely related to the problem of query containment, 
that has been studied in the database literature. As 
a result, we obtain algorithms for deciding the verifi- 
cation problem for knowledge bases containing Horn 
rules, and tight complexity bounds on the problem. 
Our results consider the cases of function-free Horn 
rules that may be recursive and contain the inter- 
preted predicates =, 5, < and #. In contrast, previ- 
ous work has only considered non recursive Horn rule 
knowledge bases, and has not given any complexity or 
decidability results about the problem. Next, we de- 
scribe the first complete algorithm for verifying hybrid 
knowledge bases that contain a terminology in the de- 
scription logic &XAfR [Baader and Hollunder, 1991; 
Buchheit et al., 19931 in addition to Horn rules. 

In most works, the constraints defining correct in- 
puts and outputs are specified also using Horn rules 
whose consequent is a bad predicate. An input (or 
output) is considered to be correct if the bad predi- 
cate is not entailed. In many domains Horn rules are 
not sufficient for describing correct inputs and outputs. 
In particular, it is often natural to express constraints 
usin 

‘i 
tuple generating dependencies (tgd’s,) [Ullman, 

1989 . In such constraints, the right hand side of the 
implications may also be a conjunction in which some 
of the variables are existentially quantified. The con- 
nection between the query containment and the veri- 
fication problem also shows that verifying knowledge 
bases is undecidable when input or output constraints 
are specified using tuple generating dependencies. This 
is because the problem of entailment between tgd’s is 
undecidable. 

We identify a novel class of separable tuple gener- 
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ating dependencies. We show that in the context of of a KB A contains a non-empty domain 0’. It as- 
our hybrid knowledge representation language we can signs a n-ary relation P’ over the domain 0’ to every 
translate separable tgd’s into Horn rules. In conjunc- n-ary predicate P E A, and an element a’ E 0’ to 
tion with our algorithm for verifying hybrid knowledge every constant a E A. An interpretation I is a model 
bases, we obtain a method for handling verification of a Horn rule T if, whenever CY is a mapping from the 
problems in which the input and output constraints are variables of 7‘ to the domain O’, such that a( Xi> E pi’ 
specified using separable tgd’s. This result also entails 
an algorithm for query containment in the presence of 

for every-atom of the antecedent of r, then a(Y) E ql, 
where q(Y) is the consequent of T. Finally, I is a model 

separable tgd’s. A if it is a model of every rule in A. 

Definition of the verification problem 
Informally, a knowledge base is intended to model a 
space of problems. Given a problem instance, the so- 
lution to the problem will be some set of facts that 
are entailed by the union of the knowledge base and 
the problem instance. We say that the knowledge base 
is verified if, for any set of correct input problem in- 
stances, we will only entail correct outputs. 

In our discussion we consider knowledge bases that 
include a set of function-free Horn rules, i.e., logical 
sentence? of the-form: pl(X1) A . . . A pn(..%&) 3 q(p) 
where X1, a . . , Xn, Y are tuples of variables or con- 
stants. We require that the rules are sa;f_e, i.e., a vari- 
able that appears in Y appears also in X1 U . . . U xno 
We distinguish the set of base predicates as those pred- 
icates that do not appear in the consequents of the 
Horn rules. The problem instances will be specified as 
ground atomic facts for some of the base predicates. 
We also allow the interpreted predicates 5, <, = and 
# to appear in the antecedents of the rules. Note that 
a ground atomic fact of the form p(5) is also a (trivial) 
instance of a Horn rule. 

Given a set of rules 7Z and a predicate P appearing 
in 7Z, we define the set of rules relevant to P in ‘R, 
denoted by Rules(P) as the minimal subset of 7E that 
satisfy the following conditions: 

1. If P is the predicate in the consequent of the rule r, 
then T E Rzlles( P), and 

2. If the predicate Q appears in a rule r E Rules(P), 
then any rule whose consequent has Q is also in 
Rules(P). 
Given a set of rules, we can define a dependency 

graph, whose nodes are the predicates appearing in 
the rules. There is an arc from the node of predicate 
Q to the node of predicate P if Q appears in the an- 
tecedent of a rule whose consequent predicate is P. 
The rules are said to be recursive if there is a cycle in 
the dependency graph. 

When the rules are not recursive, we can unfold 
them. That is, obtain a logically equivalent set of 
rules such that the only predicates appearing in the 
antecedents of the rules are base predicates. It should 
be noted that the process of unfolding can result in an 
exponential number of rules. However, the exponent is 
only in the depth of the set of rules. 

The semantics of our knowledge bases is the stan- 
dard first-order logic semantics. An interpretation I 

Correct problem instances 
A problem instance G is a set of ground atomic facts 
for the base predicates. Given a problem instance G, 
the solution to the problem is the set of ground atomic 
facts entailed from A U G. The goal of verifying a 
knowledge base is to make sure that the knowledge 
base does not enable entailing facts that contradict in- 
tegrity constraints that are known to hold in the do- 
main. We express such output constraints by a set 
of Horn rules defining a special predicate of arity 0, 
P at. We say that the output of A U G is correct if 
Au G k Pmt. Similarly, we do not want to con- 
sider that all sets of ground facts are valid inputs (i.e., 
problem instances). Therefore, we assume that A also 
contains a set of rules defining input constraints by a 
special predicate of arity 0, Pi,. A set of ground atomic 
facts G is a valid input if A U G k Pi,,. 

We can now formally define the knowledge base ver- 
ification problem: 

Definition 1: Let A be a knowledge base containing 
the predicates Pin and Pmt describing valid inputs and 
correct outputs. The knowledge base A is said to be 
verified if) for any set of ground atomic facts G, for 
which AUG k Pin) then AUG k Pmt. cl 

It should be noted that the verification problem is 
not equivalent to the unsatisfiability of the formula AA 
Pat A IPi,. 1 In cases where all the rules are non 
recursive and unfolded, the verification problem can 
be formulated as a problem of logical entailment. In 
fact, the results we present in the subsequent sections 
can also be viewed as providing the complexity of these 
specialized forms of entailment. 

Our definition of the verification problem differs 
slightly from previous definitions that were proposed 
in the literature (e.g., [Rousset, 1988; Ginsberg, 1988; 
Ginsberg and Williamson, 1993; Loiseau and Rousset, 
P993]). The definition in those works did not distin- 
guish between the predicates Pi, and Pmt, and used 
a single false predicate for defining incorrect inputs 
and outputs. Neither formulation of the verification 
problem is more expressive than the other. As we see 

‘The formula A A Pout A -I’;, is satisfiable if there is 
some model of the predicates that satisfies each rule in 
A and Pout and -Pi,. However, the knowledge base is 
not verified only if there is a least fized point model of the 
formula that is obtained by applying the rules to an initia2 
set of ground facts for the base predicates. 
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shortly, our formulation makes the connection 
query containment problem more explicit. 

with the 

Example 1: We use the following illustrative ex- 
ample throughout the paper. Consider a domain of 
approving curricula for college students. The univer- 
sity has two disjoint types of students, engineering and 
humanities students, whose instances are described 
by the unary predicates EngStud and HumStud. 
Courses are either basic or advanced, described by the 
predicates Basic and Adv, and they are either engi- 
neering courses or humanities courses, described by 
EngCourse and HumCourse. Inputs describe which 
courses the student wants to take, and which courses 
the student has already taken. The atom Want(s, c) 
denotes that student s wants to take course c during 
the current year, and Prev(s, c) denotes that s has al- 
ready taken c in a previous year. The output is the 
set of courses that the student will take. The atom 
Take(s, c) denotes that s will take course c. The fol- 
lowing rules describe our domain. 
~1 : Want(s, c) A Qualifies(s, c) 3 Take(s, c) 
r2 : PrereqOf( cl, cg) A Prev( s, ~2) 3 Qualifies( s, cl) 
rg : Year(s, n) A Mandatory(c, n) 3 Take(s, c) 

Rule ~1 says that students can take a course they want 
if they are qualified for it. Rule 73 says that students 
are qualified for a course if they took one of its prereq- 
uisite courses. Finally, rule rz guarantees that students 
will take the courses that are mandatory for their year. 

The following is the output constraint rule stating 
that humanities students cannot take advanced engi- 
neering courses: 

~4 : HumStud A Adv(c) A EngCourse(c)A 
Take(3, c) * P,t. 

The following two rules describe the input con- 
straints specifying that engineering students are dis- 
joint from humanities students, and that students do 
not want to take courses they have already taken. 
~5 : EngStud(s) A HumStud 3 Pi, 
~6 : Want(s, c) A Prev(s, C) 3 Pin 

Our knowledge base is not verified, because we can 
have a valid input for which we can derive a incorrect 
output. Specifically, consider the following valid input: 
(Want(Sl, Cz), HumStud( Adv(Ca), Prev(S1, Cl), 

PrereqOf(C2, Cl), EngCourse(C2)) 

The student S’1 wants to take the advanced engineering 
course C2. S’1 qualifies for the course by having taken 
the prerequisite Cl. In this case, the knowledge base 
would entail Take(S1, Cz), which entails PWt, i.e., the 
output is incorrect. 

The knowledge base designer can correct the prob- 
lem by either modifying the knowledge base (e.g., refin- 
ing the rule TZ), or by adding the (possibly very likely) 
input constraint that states that humanities students 
are never interested in advanced engineering courses. 

Vesification and the containment problem 
Our approach to solving the verification problem is 
based on showing a close connection to the problem 
of query containment, that has been considered in the 
database literature. In the next section, we show that 
the relationship between these two problems yields sev- 
eral new results about verifying Horn rule knowledge 
bases. In particular, it provides a set of core results 
about the complexity and decidability of the problem. 

The query containment problem is to decide whether 
in any minimal fixed-point model of the knowledge 
base, the extension of one predicate contains the ex- 
tension of another. Formally, given a knowledge base 
A and a set of ground facts G, we can entail a (finite) 
set of ground atomic facts for every predicate P E A. 
We denote by PA(G) th e set of tuples 5, such that 
A U G b P(6). If P is a proposition, i.e., a predicate 
of arity 0, then Pa(G) is the the set containing the 
empty list if AU G b P, and the empty set otherwise. 
Definition 2: Let PI and P2 be two predicates of the 
same arity in the knowledge base A. The predicate PI 
is contained in P2, denoted by PI C P2, if for any set 
of ground atomic facts G, P:(G) c Pk(G). 

Note that when PI and P2 are propositions, the defi- 
nition says that whenever PI is entailed by AUG, then 
so is P2. 

The following theorem formalizes the connection be- 
tween the verification and containment problems: 

Theorem 1: Let A be a knowledge base with predi- 
cates Bin and P,t describing correct inputs and out- 
puts. The knowledge base A is verified if and only if 
Pout C Pin- 

The complexity of verification 
Previous work on the verification of knowledge bases 
did not consider the fundamental decidability and com- 
plexity of the problem. In contrast, the connection be- 
tween the verification and containment problems yields 
several core decidability and complexity results. This 
section describes these results. 

Most previous work on verification considered algo- 
rithms for verifying non recursive Horn rule knowl- 
edge bases without interpreted predicates. The fol- 
lowing theorem establishes results about the inherent 
complexity of the problem. Furthermore, the theo- 
rem provides the first results concerning the verifica- 
tion problem for recursive Horn rules. We assume in 
our discussion that given a knowledge base A, when 
the rules Rules(Pi,) and Rules( P,t) are not recur- 
sive then they are unfolded. 

Theorem 2: Let A be a Horn-rule knowledge base 
without interpreted predicates. Let Pin and P,t be 
predicates in A describing correct inputs and outputs, 
respectively. 

1. If both Rules(Pi,) and Rules(P,t) are not recur- 
sive, then the verification problem is NP-Complete in 
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2. 

3. 

the size of the rules in Rules(Pi,) and Rules(PWt) 
and polynomial in the number of rules Rules(Pi,) 
and Rules( Pat). 

If one of Rules(Pi,) or Rules(P,t) are recursive, 
but not both of them, then the verification problem 
is complete for doubly exponential time in the size of 
the rules in Rules(Pi,) and Rules(PWt) and poly- 
nomial in the number of rules in Rules(P;,) and 
Rules( Pmt). 

If both Rules(P;,) and Rules(Pat) are recursive, 
then the verification problem is undecidable. 

The algorithm and complexity results for the first 
case of the theorem follow from [Sagiv and Yan- 
nakakis, 19811. The results of the second case follow 
from [Chaudhuri and Vardi, 19921. The undecidability 
result follows from [Shmueli, 19871. 

The connection between the verification and contain- 
ment also provides core complexity results for verifying 
Horn rule knowledge bases that include the interpreted 
order predicates 5, <, = and # in the antecedents of 
the rules. The following theorem provides a precise 
characterization of the complexity of the verification 
problem in this case. 

Theorem 3: Let A be a Horn-rule knowledge base, 
possibly with the interpreted predicates 5, <, = and # 
in the antecedents of the rules. Let P;, and Pout be 
predicates in A describing correct inputs and outputs 
respectively. 

1. 

2. 

3. 

If both Rules(Pi,) and Rules(Pat) are not recur- 
sive, then the verification problem is nr - Complete in 
the size of the rules in Rules(Pi,) and Rules( Pa,) 
and the number of constants appearing in the 
rules. It is polynomial time in the number of rules 
Rules( Pi,) and Rules( PWt). 

If the rules in Rules(Pi=) are recursive and 
Rules(Pat) are not recursive, then the verification 
problem is decidable and it is complete for n[ in the 
size of the rules in Rules(Pi,,) and Rules(P,t) and 
the number of constants appearing in them, and it 
is polynomial in the number of rules in Rules(Pi,) 
and Rules(P,t). 

If the rules in Rules(Pat) are recursive, then the 
verification problem is undecidable. 

Note that in the above theorem there is an asymme- 
try between the rules defining Pin and those defining 
P ollt. An algorithm and the upper complexity bound 
for the first part of the theorem follow from [Klug, 
19881. The lower bound for the first part of the the- 
orem and the undecidability result follow from [van 
der Meyden, 19921. Finally, if the rules in Rules(Pi,) 
do not contain interpreted predicates, but the rules in 
Pat do contain interpreted predicates, then it follows 
from [Levy and Sagiv, 19951 that the verification prob- 
lem is decidable also in the third case of the theorem. 

Specifying input and output constraints 
An important aspect of the knowledge base verifica- 
tion problem is how input and output constraints are 
described. In our problem definition and in most previ- 
ous work in the field the constraints were specified by 
Horn rules defining the bad predicates Pin and Pat. 
However, Horn rules are not always expressive enough 
for describing constraints that arise in applications. 
Example 2: Suppose we want to express the con- 
straint on the domain of our example stating that 
engineering students who want to take an advanced 
humanities course must have previously taken a basic 
humanities course. Formally, we could state the con- 
straint with the following formula which is not a Horn 
rule: 
EngStud(s) A Want(s, c) A Adv(c) A HumCourse 

* (32,) Prev( s, cl) A Rasic(cl) A fIumCourse(cl). 

The above example is an instance of a tuple gener- 
ating dependency constraint (tgd) [Fagin, 1982; Beeri 
and Vardi, 1984; Yannakakis and Papadimitriou, 19801. 
A tuple generating dependency constraint is a formula 
of the form 

PI(%) A . . . A p,&) =2 (3p)ql(Fi) A.. . A q,(y,). 

The tuple r includes the variables that appear in the 
right hand side and not on the left hand side. All other 
variables are universally quantified. Such a formula 
states that whenever there are facts in the knowledge 
base such that the conjunction on the left hand side 
is satisfied, then the knowledge base must also in&de 
facts such that the conjunction on the right hand side 
is satisfied. 

An example of the usage of such constraints is to 
express constraints that describe test cases, which are 
often a natural way for an expert to describe domain 
constraints. That is, the expert can specify what needs 
to hold on the output (the right hand side of a tgd) 
given a certain input (the left hand side). 

In [Vardi, 1984; Gurevich and Lewis, 19821 it is 
shown that the problem of deciding whether one tgd 
entails another is undecidable. Consequently, it follows 
that the verification problem is undecidable if we were 
able to express input and output constraints using ar- 
bitrary tgds. 

In the next section we show how to verify hybrid 
knowledge bases that contain a set of extended Horn 
rules. Extended Horn rules contain predicates that are 
defined in a description logic terminology in addition 
to ordinary predicates. In this section we identify the 
class of separable tgd’s, and show they can be trans- 
lated to extended Horn rules whose consequents are 
the predicates Pi, and Pat. As a result, the algo- 
rithm presented in the next section provides a method 
for handling verification problems in which the input 
and output constraints are specified by separable tgd’s. 
Example 3: We first illustrate how separable tgd’s 
are translated to extended Horn rules using Example 2. 
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I 
Informally, description logics will enable us to define 
the class of students that 20 not satisfy the right hand 
side of the tgd. We begin by considering the predicates 
Basic and HumCourse as primitive classes, and the 
predicate Prev as a property of objects. In a descrip- 
tion logic we can define complex classes. The descrip- 
tion Basic n HumCourse denotes the class of objects 
that are basic humanities courses. We define the class 
C&d by the description VPrev.~(BasicnHumCourse) 
which denotes precisely the class of objects, such that 
fillers of the property Prev do not belong to the class 
Basic 17 HumCourse. We now use the class C&d as a 
predicate in an extended Horn rule. Specifically, the 
tgd can be translated into the following rule: 

EngStud(s) A Want(s, c) A Adv(c)A 
HumCourse A &d(s) 3 Pi,. 

We begin by formally defining description logic ter- 
minologies and extended rules. We then describe the 
algorithm for translating separable tgd’s to extended 
Horn rules. 

Hybrid knowledge bases 
A description logic is a subset of first order logic, 
which is especially designed to describe rich hierarchi- 
cal structures. A description logic contains unary re- 
lations (called concepts) which represent classes of ob- 
jects in the domain and binary relations (called roles) 
which describe relationships between objects. A de- 
scription logic uses a set of constructors to build com- 
plex concept and role descriptions. The set of con- 
structors varies from one language to another. In our 
discussion we consider the rather expressive descrip- 
tion logic /UCAf7Z (which has formed the basis for the 
KRIS system [Baader and Hollunder, 1991]), in which 
descriptions can be built using the following grammar 
(A denotes a concept name, Pi’s denote role names, C 
and D represent concept descriptions and R denotes a 
role description): 

C,D+A) 
--vu 
C-ID/CUD 
--c I 
QR.C 1 
3R.C I 

R-, $?$I& n 
1 . . . n Pm 

A terminology T is 

(primitive concept) 
(top, bottom) 
(conjunction, disjunction) 
(complement) 
(universal quantification) 
(existential quantification) 

R) (number restrictions) 
(role conjunction) 

a set of inclusion statements, 
which are of the form C E D, where C and D are con- 
cept descriptions. Intuitively, an inclusion states that 
every instance of the concept C must be an instance of 
D. Formally, the semantics of a terminology is given 
via interpretations, that assign a unary relation C’ to 
every concept name in T and a binary relation RI over 
O1 x 0’ to every role name in 7. The extensions of 
concept and role descriptions are given by the follow- 
ing equations: (g(S) d enotes the cardinality of a set 
S): 

TI = u’, 1’ = &(CnD)‘=C%D$ 
(C u D)I = C1 U D’, (-C)’ = O* \ C’, 
(‘v’R.C)I = (d E U1 I Ve : (d, e) E RI --+ e E C1) 
(3R.C)I = (d E U1 I 3e : (d, e) E R’ A e E 6’) 
(2 nR)‘=(dEO’ItfCeI(d,e)ER’)Ln) 
(5 nR)‘=(dEO’(tt(eI(d,e)ER’)<_n) 
(Pl n . . . n P,)I = P{ n . . . n P,‘, 

An interpretation I is a model of T if C’ C D1 for 
every inclusion C L D in 7. 
Example 4: In Example 3 our terminology would 
contain the following two inclusion statements that de- 
fine precisely the concept named Ctgd. 
C tgd & VPrev.l(Basic ll HumCourse) 
VPrev.l(Basic ll HumCourse) C Ctgd 
Traditionally, terminologies are given as part of the 
knowledge base. In our case we will automatically 
construct part of the terminology in our algorithm for 
translating separable tgd constraints to extended Horn 
rules. 

We consider hybrid knowledge bases that contain a 
terminology and a set of extended Horn rules [Levy 
and Rousset, 1996a]. An extended Horn rule can 
contain in its antecedent unary and binary predi- 
cates which are concepts and roles defined in the ter- 
minology. An interpretation I is a model of A if 
it is a model of both the terminology and the ex- 
tended Horn rules. Algorithms for reasoning in this 
language are described in [Levy and Rousset, 1996a; 
Levy and Rousset, 1996b]. 

Translating separable tgd’s 
Informally, the class of separable tgd’s can be trans- 
lated into a conjunction of concepts in +4CCh/?E. For- 
mally, let T be a tgd of the form $ 3 4. Given such 
a conjunction 4, we can define a graph g+ as follows. 
The nodes in the graph are the variables of 4 and there 
is an arc from a variable X to a variable Y if there is an 
atom of the form R(X, Y), where R is a binary predi- 
cate. A maximal path in g4 is a path Xi, . . . , Xn, such 
that there is no arc emanating from X, and no arcs 
coming into X1. A prefix pl of a path p is a subpath 
of p that has the same initial point. 
Definition 3: Let T be a tgd of the form $J =+ 4. T 
is a separable tgd if: 

1. 4 involves only unary and binary predicates, 
2. g# is acyclic, 
3. a variable that appears in $ can only appear in the 

beginning of a maximal path in g,+, and 
4. if two maximal paths share a variable X, then X 

appears only in their common prefix path. 
The algorithm shown in Figure 1 creates extended 

Horn rules and an JUZCN’R terminology that are 
equivalent to a separable tgd. If the given tgd describes 
input constraints, then the predicate in the consequent 
of the rules will be P;,, and otherwise, it will be Pat. 
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procedure tgd-to-horn(T, P) 
/* 2’ is a separable tgd of the form + 3 4. */ 
/* P is either P;, or Pout */ 

for every variable X E r$ define a concept Cx as follows: 
Let Cl,. . . , Cl be the literals appearing in unary 

atoms in 4 containing X. 
if X appears only in the end of maximal paths then 

cx = Cl l-i . ..ncr (orTifZ=O). 
else 
Let Yl , . . . , Yk be the variables in (Y 1 R(X, Y) E 4). 
for every Y E (YI, . . . , Yk} do: 

Let Rolex,y be the conjunction of the roles in the 
set (R 1 R(X,Y) E #}. 

Cx = (3 RoZex,y,.Cy,) n . . . n (3 RoZ~X,Y,.C~,)~ 
Cl n...nc~. 

return the terminology Di C lCxi, +7x, 5 Di, 
and the rules $ A D;(X;) =p P, 

for i = 1, . . . , n, where Xl,. . . , X, are the variables 
that appear in the beginning of maximal paths in 4. 

end tgd-to-horn. 

Figure 1: Algorithm for translating tgd constraints 
extended Horn rules with a terminology. 

to 

Example 5: Considering our example tgd 

EngStud(s) A Want(s, c) A Adv(c) A HumCourse 
=$ (3q)Prev(s, cl) A Basic(q) A HumCourse( 

The right hand side of the tgd contains one max- 
imal path s + cr. The algorithm will compute 
cc, = Basic n HumCourse. The concept for s is 
C, = 3 Prev.(Basic n HumCourse). Procedure tgd- 
to-horn will return the terminology 

D1 C 13 Prev.(Basic tl HumCourse) 
13 Prev.(Basic ll HumCourse) & D1, 

and the rule 

EngStud(s) A Want(s, c) A Adv(c)A 
HumCourse A 01(s) + Pi,. 

The following theorem shows that the terminology 
and the extended Horn rules returned by our algorithm 
are equivalent for the purpose of verification. 

Theorem 4: Let A be a hybrid knowledge base, and 
let T be a separable tgd. Suppose that A1 is the set 
of extended Horn rules and terminology returned by 
procedure tgd-to-horn(T, P). Then, for any set of 
inputsG,AUGj==TifandonlyifAUA~UG/=P. 

Verifying hybrid knowledge bases 
We now describe an algorithm that checks whether a 
hybrid knowledge base is verified. As described in the 
previous section, one of the contributions of this algo- 
rithm is that we obtain a method for verifying knowl- 
edge bases when the input and output constraints are 
described using separable tgd’s. 

Given a knowledge base A that contains a terminol- 
ogy AT, a set of extended Horn rules and the predi- 
cates Pi, and Po,,t the algorithm considers each rule 
r E Rules(P,t). For each rule T, we consider the 
knowledge base A, that is formed as follows: 

e A, includes AT and Rules(Pi,), and 

e A, includes each of the conj uncts in the antecedent 
of r as a ground fact, where the variables in the 
conjunct are viewed as constants. 

For each rule, we check whether A, k Pi,. The entail- 
ment check is done using the existential entailment al- 
gorithm described in [Levy and Rousset, 1996a], which 
is guaranteed to be sound and complete. Note that 
simple application of Horn rule reasoning techniques 
(e.g., SLD resolution) is not complete for hybrid knowl- 
edge bases. 

The algorithm returns that the knowledge base A 
is verified if and only if A, + Pi, for every rule r E 
Rules(Pat). If there is some A7 for which A7 &t Pi,, 
then the ground facts in A7 provide a counterexample 
for the verification of the KB. That is, they provide an 
example input that satisfies the input constraints, but 
does not satisfy the output constraints. 

The correctness of our algorithm is established by 
the following theorem: 

Theorem 5 : Let A be a knowledge base with an 
AGCNR terminology AT. Assume that the Horn rules 
do not have the interpreted predicates <, <, = and #. 
Let Pi, and Pat be predicates in A describing correct 
inputs and outputs, respectively. 

If both Rules(Pi,) and Rules(Pat) are not recursive 
then the verification problem is decidable in time that is 
doubly exponential in the size of the rules in Rules(P;,) 
and Rules( Pat) and the size of AT, and polynomial 
in the number of rules in Rules(Pi,) and Rules(Pmt). 

This verification method generalizes the one pro- 
posed in [Rousset, 19941. In that work, hybrid knowl- 
edge bases were also considered, but the rule and ter- 
minology components were considered in isolation, and 
therefore the algorithm was not guaranteed to be com- 
plete. 

Conclusions 
We described several new results concerning the verifi- 
cation problem for hybrid knowledge bases combining 
logical Horn rules and class hierarchies in a KL-ONE 
style terminology. We gained insight into the verifica- 
tion problem by showing that it is closely related to 
the problem of query containment. In particular we 
established the first complexity results for the verifica- 
tion problem of non recursive Horn rules, and we have 
shown the exact points at which the problem becomes 
undecidable when the rules are recursive. We have 
also presented the first complete algorithm for verify- 
ing hybrid knowledge bases. Finally, we have shown 
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that with hybrid knowledge bases we are able to han- 
dle verification problems in which the output and in- 
put constraints are expressed via the class of separa- 
ble tuple generating dependencies. Such dependencies 
provide more expressive power than constraints that 
have been declaratively specified in previous work on 
verification. 

It should be noted that our current work considers 
only rules whose semantics are given within first order 
logic. Several works have considered the verification of 
OPS5-style production rules (e.g, [Schmolze and Sny- 
der, 19951, [Ginsberg and Williamson, 19931). In such 
rules, the right hand side of the rules is an &ion that 
may delete facts from the knowledge base. Verification 
of non-recursive logical rule knowledge bases has orig- 
inally been considered by Rousset [Rousset, 19881 and 
Ginsberg [Ginsberg, 19881, and has been extended to 
handle interpreted constraints ( [Loiseau and Rousset, 
19931 [Williamson and Dahl, 19931). 

The algorithms we presented are designed to answer 
the question of whether the knowledge base is verified 
or not. However, when the knowledge base is not veri- 
fied, it is important to tell the user the possible causes 
of the problem, and to suggest corrective actions. The 
algorithms we described can be easily modified to re- 
turn a counter example set of inputs in cases in which 
the knowledge base is not verified. Finally, we are con- 
sidering extending trace-based debug 
described in [Rousset and Hors, 

ing methods (as 
1996 f for terminologi- 

cal knowledge bases) to hybrid knowledge bases. 

References 
Baader, F. and Hollunder, B. 1991. A terminological 
knowledge representation system with complete inference 
algorithm. In In Proceedings of the Workshop on Pro- 
cessing Declarative Knowledge, PDK-91, Lecture Note8 in 
Artificial Intelligence. Springer-Verlag. 67-86. 

Beeri, Catriel and Vardi, Moshe 1984. A proof procedure 
for data dependencies. Journal of the ACIM31(4):718-741. 

Brat&man, Ronald J. and Schmolze, J. G. 1985. An 
overview of the KL-ONE knowledge representation sys- 
tem. Cognitive Science 9(2):171-216. 

Buchheit, Martin; Donini, Francesco M.; and Schaerf, An- 
drea 1993. Decidable reasoning in terminological knowl- 
edge representation systems. Journal of Artificial Intelli- 
gence Research 1:109-138. 

Chaudhuri, Surajit and Vardi, Moshe 1992. On the equiv- 
alence of recursive and nonrecursive datalog programs. In 
Proceedings of PODS-92. 55-66. 

Fagin, R. 1982. Horn clauses and database dependencies. 
Journal of the A CM 29(4):952-983. 

Ginsberg, Allen and Williamson, Keith 1993. Inconsis- 
tency and redundancy checking for quasi-first-order-logic 
knowledge bases. International Journal of Expert Sys- 
tems: Research and Applications 6. 

Ginsberg, Allen 1988. Knowledge base reduction: A new 
approach to checking knowledge bases for inconsistency 
and redundancy. In Proceedings of AAAI-88. 

Gurevich, Y. and Lewis, H. R. 1982. The inference prob- 
lem for template dependencies. In Proceeding8 of PODS- 
82. 221-229. 

Klug, A. 1988. On conjunctive queries containing inequal- 
ities. Journal of the ACM 35(l): 146-160. 

Levy, Alon Y. and Rousset, Marie-Christine 1996a. 
CARIN: a representation language integrating rules and 
description logics. In Proceedings of ECAI-96. 

Levy, Alon Y. and Rousset, Marie-Christine 1996b. The 
limits on combining recursive horn rules and description 
logics. In Proceedings of AAAI-96. 

Levy, Alon Y. and Sagiv, Yehoshua 1995. Semantic query 
optimization in datalog programs. In Proceedings PODS- 
95. 

Loiseau, Stephane and Rousset, Marie-Christine 1993. 
Formal verification of knowledge bases focused on con- 
sistency: Two experiments based on ATMS techniques. 
International Journal 
Application8 6. 

of Expert Sys terns: Reaearch- and 

Rousset, Marie-Christine and Hors, Pascale 1996. Model- 
ing and verifying complex objects: A declarative approach 
based on description logics. In Proceeding8 of ECAI-96. 

Rousset, Marie-Christine 1988. On the consistency of 
knowledge bases: the COVADIS system. In Proceedings 
ECAI-88. 

Rousset, Marie-Christine 1994. Knowledge formal speci- 
fications for formal verification: a proposal based on the 
integration of different logical formalisms. In Proceedings 
of ECAI-94. 

Sagiv, Y. and Yannakakis, M. 1981. Equivalence among - 
relational expressions with the union and difference oper- 
ators. In J. ACM 27:4 pp. 633-655. 

Schmolze, James G. and Snyder, Wayne 1995. A tool for 
testing confluence of production rules. In Proceedinga of 
the European Symposium on Validation and Verification 
of KBS, E UROVAV-95. 

Shmueli, Oded 1987. Decidability and expressiveness as- 
pects of logic queries. In Proceedings of the 6th ACM 
Symposium on Principle8 of Database Systems. X37-249. 

Ullman, Jeffrey D. 1989. Principle8 of Database and 
Knowledge-base Systems, Volumea I, II. Computer Sci- 
ence Press, Rockville MD. 

van der Meyden, Ron 1992. The Complexity of Query- 
ing Indefinite Information: Defined Relations Recursion 
and Linear Order. Ph.D. Dissertation, Rutgers Univer- 
sity, New Brunswick, New Jersey. 

Vardi, Moshe 1984. The implication and finite implication 
problems for typed template dependencies. Journal of 
Computer and System Sciences 28( 1):3-28. 

Williamson, Keith and Dahl, Mark 1993. Knowledge base 
reduction for verifying rule bases containing equations. In 
Proceedings of the AAAI-93 workshop on Validation and 
Verification of KBS. 

Yannakakis, M. and Papadimitriou, C. H. 1980. Algebric 
dependencies. Journal of Computer and System Sciences 
25(1):2-41. 

Description Logics 591 


