
Alon u. Levy
AI Principles Research Department

AT&T Research

levyQresearch.att.com

Abstract

Building complex knowledge based applica-
tions requires encoding large amounts of do-
main knowledge. After acquiring knowledge
from domain experts, much of the effort in
building a knowledge base goes into verify-
ing that the knowledge is encoded correctly.
We consider the problem of verifying hybrid
knowledge bases that contain both Horn rules
and a terminology in a description logic. Our
approach to the verification problem is based
on showing a close relationship to the prob-
lem of query containment. Our first contri-
bution, based on this relationship, is present-
ing a thorough analysis of the decidability
and complexity of the verification problem,
for knowledge bases containing recursive rules
and the interpreted predicates =, 5, < and f.
Second, we show that important new classes
of constraints on correct inputs and outputs
can be expressed in a hybrid setting, in which
a description logic class hierarchy is also con-
sidered, and we present the first complete al-
gorithm for verifying such hybrid knowledge
bases.

Introduction
Building complex knowledge based applications re-
quires encoding large amounts of domain knowledge.
After acquiring this knowledge from domain experts,
much of the effort in building a knowledge base goes
into verifying that the knowledge is encoded correctly.
A knowledge base is verified if, for any cowect set of
inputs, the knowledge base will entail a correct set
of outputs. Verifying a knowledge base manually is
both unwieldy and unlikely to find all the possible er-
rors in the knowledge base. Therefore, several authors
have considered the problem of building tools to assist
knowledge base verification. The space of verification
problems varies depending on the representation lan-
guage used for the knowledge base, and the way we
specify constraints defining correct inputs and outputs.

Marie-Christine Rousset
L.R.I. U.R.A C.N.R.S

University of Paris-Sud, France

mcrWri.lri.fr

This paper considers the verification problem for
knowledge bases containing Horn rules and hybrid
knowledge bases containing terminologies in a KL-
ONE style language [Brachman and Schmolze, 19851 in
addition to Horn rules. We describe novel algorithms
for verifying such knowledge bases, and obtain new
results concerning the complexity and decidability of
the verification problem. Our algorithms also handle
a wider class of input and output constraints.

We begin by showing that the verification problem
is closely related to the problem of query containment,
that has been studied in the database literature. As
a result, we obtain algorithms for deciding the verifi-
cation problem for knowledge bases containing Horn
rules, and tight complexity bounds on the problem.
Our results consider the cases of function-free Horn
rules that may be recursive and contain the inter-
preted predicates =, 5, < and #. In contrast, previ-
ous work has only considered non recursive Horn rule
knowledge bases, and has not given any complexity or
decidability results about the problem. Next, we de-
scribe the first complete algorithm for verifying hybrid
knowledge bases that contain a terminology in the de-
scription logic &XAfR [Baader and Hollunder, 1991;
Buchheit et al., 19931 in addition to Horn rules.

In most works, the constraints defining correct in-
puts and outputs are specified also using Horn rules
whose consequent is a bad predicate. An input (or
output) is considered to be correct if the bad predi-
cate is not entailed. In many domains Horn rules are
not sufficient for describing correct inputs and outputs.
In particular, it is often natural to express constraints
usin

‘i
tuple generating dependencies (tgd’s,) [Ullman,

1989 . In such constraints, the right hand side of the
implications may also be a conjunction in which some
of the variables are existentially quantified. The con-
nection between the query containment and the veri-
fication problem also shows that verifying knowledge
bases is undecidable when input or output constraints
are specified using tuple generating dependencies. This
is because the problem of entailment between tgd’s is
undecidable.

We identify a novel class of separable tuple gener-

Description Logics 585

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

ating dependencies. We show that in the context of of a KB A contains a non-empty domain 0’. It as-
our hybrid knowledge representation language we can signs a n-ary relation P’ over the domain 0’ to every
translate separable tgd’s into Horn rules. In conjunc- n-ary predicate P E A, and an element a’ E 0’ to
tion with our algorithm for verifying hybrid knowledge every constant a E A. An interpretation I is a model
bases, we obtain a method for handling verification of a Horn rule T if, whenever CY is a mapping from the
problems in which the input and output constraints are variables of 7‘ to the domain O’, such that a(Xi> E pi’
specified using separable tgd’s. This result also entails
an algorithm for query containment in the presence of

for every-atom of the antecedent of r, then a(Y) E ql,
where q(Y) is the consequent of T. Finally, I is a model

separable tgd’s. A if it is a model of every rule in A.

Definition of the verification problem
Informally, a knowledge base is intended to model a
space of problems. Given a problem instance, the so-
lution to the problem will be some set of facts that
are entailed by the union of the knowledge base and
the problem instance. We say that the knowledge base
is verified if, for any set of correct input problem in-
stances, we will only entail correct outputs.

In our discussion we consider knowledge bases that
include a set of function-free Horn rules, i.e., logical
sentence? of the-form: pl(X1) A . . . A pn(..%&) 3 q(p)
where X1, a . . , Xn, Y are tuples of variables or con-
stants. We require that the rules are sa;f_e, i.e., a vari-
able that appears in Y appears also in X1 U . . . U xno
We distinguish the set of base predicates as those pred-
icates that do not appear in the consequents of the
Horn rules. The problem instances will be specified as
ground atomic facts for some of the base predicates.
We also allow the interpreted predicates 5, <, = and
to appear in the antecedents of the rules. Note that
a ground atomic fact of the form p(5) is also a (trivial)
instance of a Horn rule.

Given a set of rules 7Z and a predicate P appearing
in 7Z, we define the set of rules relevant to P in ‘R,
denoted by Rules(P) as the minimal subset of 7E that
satisfy the following conditions:

1. If P is the predicate in the consequent of the rule r,
then T E Rzlles(P), and

2. If the predicate Q appears in a rule r E Rules(P),
then any rule whose consequent has Q is also in
Rules(P).
Given a set of rules, we can define a dependency

graph, whose nodes are the predicates appearing in
the rules. There is an arc from the node of predicate
Q to the node of predicate P if Q appears in the an-
tecedent of a rule whose consequent predicate is P.
The rules are said to be recursive if there is a cycle in
the dependency graph.

When the rules are not recursive, we can unfold
them. That is, obtain a logically equivalent set of
rules such that the only predicates appearing in the
antecedents of the rules are base predicates. It should
be noted that the process of unfolding can result in an
exponential number of rules. However, the exponent is
only in the depth of the set of rules.

The semantics of our knowledge bases is the stan-
dard first-order logic semantics. An interpretation I

Correct problem instances
A problem instance G is a set of ground atomic facts
for the base predicates. Given a problem instance G,
the solution to the problem is the set of ground atomic
facts entailed from A U G. The goal of verifying a
knowledge base is to make sure that the knowledge
base does not enable entailing facts that contradict in-
tegrity constraints that are known to hold in the do-
main. We express such output constraints by a set
of Horn rules defining a special predicate of arity 0,
P at. We say that the output of A U G is correct if
Au G k Pmt. Similarly, we do not want to con-
sider that all sets of ground facts are valid inputs (i.e.,
problem instances). Therefore, we assume that A also
contains a set of rules defining input constraints by a
special predicate of arity 0, Pi,. A set of ground atomic
facts G is a valid input if A U G k Pi,,.

We can now formally define the knowledge base ver-
ification problem:

Definition 1: Let A be a knowledge base containing
the predicates Pin and Pmt describing valid inputs and
correct outputs. The knowledge base A is said to be
verified if) for any set of ground atomic facts G, for
which AUG k Pin) then AUG k Pmt. cl

It should be noted that the verification problem is
not equivalent to the unsatisfiability of the formula AA
Pat A IPi,. 1 In cases where all the rules are non
recursive and unfolded, the verification problem can
be formulated as a problem of logical entailment. In
fact, the results we present in the subsequent sections
can also be viewed as providing the complexity of these
specialized forms of entailment.

Our definition of the verification problem differs
slightly from previous definitions that were proposed
in the literature (e.g., [Rousset, 1988; Ginsberg, 1988;
Ginsberg and Williamson, 1993; Loiseau and Rousset,
P993]). The definition in those works did not distin-
guish between the predicates Pi, and Pmt, and used
a single false predicate for defining incorrect inputs
and outputs. Neither formulation of the verification
problem is more expressive than the other. As we see

‘The formula A A Pout A -I’;, is satisfiable if there is
some model of the predicates that satisfies each rule in
A and Pout and -Pi,. However, the knowledge base is
not verified only if there is a least fized point model of the
formula that is obtained by applying the rules to an initia2
set of ground facts for the base predicates.

586 Knowledge Representation

shortly, our formulation makes the connection
query containment problem more explicit.

with the

Example 1: We use the following illustrative ex-
ample throughout the paper. Consider a domain of
approving curricula for college students. The univer-
sity has two disjoint types of students, engineering and
humanities students, whose instances are described
by the unary predicates EngStud and HumStud.
Courses are either basic or advanced, described by the
predicates Basic and Adv, and they are either engi-
neering courses or humanities courses, described by
EngCourse and HumCourse. Inputs describe which
courses the student wants to take, and which courses
the student has already taken. The atom Want(s, c)
denotes that student s wants to take course c during
the current year, and Prev(s, c) denotes that s has al-
ready taken c in a previous year. The output is the
set of courses that the student will take. The atom
Take(s, c) denotes that s will take course c. The fol-
lowing rules describe our domain.
~1 : Want(s, c) A Qualifies(s, c) 3 Take(s, c)
r2 : PrereqOf(cl, cg) A Prev(s, ~2) 3 Qualifies(s, cl)
rg : Year(s, n) A Mandatory(c, n) 3 Take(s, c)

Rule ~1 says that students can take a course they want
if they are qualified for it. Rule 73 says that students
are qualified for a course if they took one of its prereq-
uisite courses. Finally, rule rz guarantees that students
will take the courses that are mandatory for their year.

The following is the output constraint rule stating
that humanities students cannot take advanced engi-
neering courses:

~4 : HumStud A Adv(c) A EngCourse(c)A
Take(3, c) * P,t.

The following two rules describe the input con-
straints specifying that engineering students are dis-
joint from humanities students, and that students do
not want to take courses they have already taken.
~5 : EngStud(s) A HumStud 3 Pi,
~6 : Want(s, c) A Prev(s, C) 3 Pin

Our knowledge base is not verified, because we can
have a valid input for which we can derive a incorrect
output. Specifically, consider the following valid input:
(Want(Sl, Cz), HumStud(Adv(Ca), Prev(S1, Cl),

PrereqOf(C2, Cl), EngCourse(C2))

The student S’1 wants to take the advanced engineering
course C2. S’1 qualifies for the course by having taken
the prerequisite Cl. In this case, the knowledge base
would entail Take(S1, Cz), which entails PWt, i.e., the
output is incorrect.

The knowledge base designer can correct the prob-
lem by either modifying the knowledge base (e.g., refin-
ing the rule TZ), or by adding the (possibly very likely)
input constraint that states that humanities students
are never interested in advanced engineering courses.

Vesification and the containment problem
Our approach to solving the verification problem is
based on showing a close connection to the problem
of query containment, that has been considered in the
database literature. In the next section, we show that
the relationship between these two problems yields sev-
eral new results about verifying Horn rule knowledge
bases. In particular, it provides a set of core results
about the complexity and decidability of the problem.

The query containment problem is to decide whether
in any minimal fixed-point model of the knowledge
base, the extension of one predicate contains the ex-
tension of another. Formally, given a knowledge base
A and a set of ground facts G, we can entail a (finite)
set of ground atomic facts for every predicate P E A.
We denote by PA(G) th e set of tuples 5, such that
A U G b P(6). If P is a proposition, i.e., a predicate
of arity 0, then Pa(G) is the the set containing the
empty list if AU G b P, and the empty set otherwise.
Definition 2: Let PI and P2 be two predicates of the
same arity in the knowledge base A. The predicate PI
is contained in P2, denoted by PI C P2, if for any set
of ground atomic facts G, P:(G) c Pk(G).

Note that when PI and P2 are propositions, the defi-
nition says that whenever PI is entailed by AUG, then
so is P2.

The following theorem formalizes the connection be-
tween the verification and containment problems:

Theorem 1: Let A be a knowledge base with predi-
cates Bin and P,t describing correct inputs and out-
puts. The knowledge base A is verified if and only if
Pout C Pin-

The complexity of verification
Previous work on the verification of knowledge bases
did not consider the fundamental decidability and com-
plexity of the problem. In contrast, the connection be-
tween the verification and containment problems yields
several core decidability and complexity results. This
section describes these results.

Most previous work on verification considered algo-
rithms for verifying non recursive Horn rule knowl-
edge bases without interpreted predicates. The fol-
lowing theorem establishes results about the inherent
complexity of the problem. Furthermore, the theo-
rem provides the first results concerning the verifica-
tion problem for recursive Horn rules. We assume in
our discussion that given a knowledge base A, when
the rules Rules(Pi,) and Rules(P,t) are not recur-
sive then they are unfolded.

Theorem 2: Let A be a Horn-rule knowledge base
without interpreted predicates. Let Pin and P,t be
predicates in A describing correct inputs and outputs,
respectively.

1. If both Rules(Pi,) and Rules(P,t) are not recur-
sive, then the verification problem is NP-Complete in

Description Lo&s 587

2.

3.

the size of the rules in Rules(Pi,) and Rules(PWt)
and polynomial in the number of rules Rules(Pi,)
and Rules(Pat).

If one of Rules(Pi,) or Rules(P,t) are recursive,
but not both of them, then the verification problem
is complete for doubly exponential time in the size of
the rules in Rules(Pi,) and Rules(PWt) and poly-
nomial in the number of rules in Rules(P;,) and
Rules(Pmt).

If both Rules(P;,) and Rules(Pat) are recursive,
then the verification problem is undecidable.

The algorithm and complexity results for the first
case of the theorem follow from [Sagiv and Yan-
nakakis, 19811. The results of the second case follow
from [Chaudhuri and Vardi, 19921. The undecidability
result follows from [Shmueli, 19871.

The connection between the verification and contain-
ment also provides core complexity results for verifying
Horn rule knowledge bases that include the interpreted
order predicates 5, <, = and # in the antecedents of
the rules. The following theorem provides a precise
characterization of the complexity of the verification
problem in this case.

Theorem 3: Let A be a Horn-rule knowledge base,
possibly with the interpreted predicates 5, <, = and #
in the antecedents of the rules. Let P;, and Pout be
predicates in A describing correct inputs and outputs
respectively.

1.

2.

3.

If both Rules(Pi,) and Rules(Pat) are not recur-
sive, then the verification problem is nr - Complete in
the size of the rules in Rules(Pi,) and Rules(Pa,)
and the number of constants appearing in the
rules. It is polynomial time in the number of rules
Rules(Pi,) and Rules(PWt).

If the rules in Rules(Pi=) are recursive and
Rules(Pat) are not recursive, then the verification
problem is decidable and it is complete for n[in the
size of the rules in Rules(Pi,,) and Rules(P,t) and
the number of constants appearing in them, and it
is polynomial in the number of rules in Rules(Pi,)
and Rules(P,t).

If the rules in Rules(Pat) are recursive, then the
verification problem is undecidable.

Note that in the above theorem there is an asymme-
try between the rules defining Pin and those defining
P ollt. An algorithm and the upper complexity bound
for the first part of the theorem follow from [Klug,
19881. The lower bound for the first part of the the-
orem and the undecidability result follow from [van
der Meyden, 19921. Finally, if the rules in Rules(Pi,)
do not contain interpreted predicates, but the rules in
Pat do contain interpreted predicates, then it follows
from [Levy and Sagiv, 19951 that the verification prob-
lem is decidable also in the third case of the theorem.

Specifying input and output constraints
An important aspect of the knowledge base verifica-
tion problem is how input and output constraints are
described. In our problem definition and in most previ-
ous work in the field the constraints were specified by
Horn rules defining the bad predicates Pin and Pat.
However, Horn rules are not always expressive enough
for describing constraints that arise in applications.
Example 2: Suppose we want to express the con-
straint on the domain of our example stating that
engineering students who want to take an advanced
humanities course must have previously taken a basic
humanities course. Formally, we could state the con-
straint with the following formula which is not a Horn
rule:
EngStud(s) A Want(s, c) A Adv(c) A HumCourse

* (32,) Prev(s, cl) A Rasic(cl) A fIumCourse(cl).

The above example is an instance of a tuple gener-
ating dependency constraint (tgd) [Fagin, 1982; Beeri
and Vardi, 1984; Yannakakis and Papadimitriou, 19801.
A tuple generating dependency constraint is a formula
of the form

PI(%) A . . . A p,&) =2 (3p)ql(Fi) A.. . A q,(y,).

The tuple r includes the variables that appear in the
right hand side and not on the left hand side. All other
variables are universally quantified. Such a formula
states that whenever there are facts in the knowledge
base such that the conjunction on the left hand side
is satisfied, then the knowledge base must also in&de
facts such that the conjunction on the right hand side
is satisfied.

An example of the usage of such constraints is to
express constraints that describe test cases, which are
often a natural way for an expert to describe domain
constraints. That is, the expert can specify what needs
to hold on the output (the right hand side of a tgd)
given a certain input (the left hand side).

In [Vardi, 1984; Gurevich and Lewis, 19821 it is
shown that the problem of deciding whether one tgd
entails another is undecidable. Consequently, it follows
that the verification problem is undecidable if we were
able to express input and output constraints using ar-
bitrary tgds.

In the next section we show how to verify hybrid
knowledge bases that contain a set of extended Horn
rules. Extended Horn rules contain predicates that are
defined in a description logic terminology in addition
to ordinary predicates. In this section we identify the
class of separable tgd’s, and show they can be trans-
lated to extended Horn rules whose consequents are
the predicates Pi, and Pat. As a result, the algo-
rithm presented in the next section provides a method
for handling verification problems in which the input
and output constraints are specified by separable tgd’s.
Example 3: We first illustrate how separable tgd’s
are translated to extended Horn rules using Example 2.

588 Knowledge Representation

I
Informally, description logics will enable us to define
the class of students that 20 not satisfy the right hand
side of the tgd. We begin by considering the predicates
Basic and HumCourse as primitive classes, and the
predicate Prev as a property of objects. In a descrip-
tion logic we can define complex classes. The descrip-
tion Basic n HumCourse denotes the class of objects
that are basic humanities courses. We define the class
C&d by the description VPrev.~(BasicnHumCourse)
which denotes precisely the class of objects, such that
fillers of the property Prev do not belong to the class
Basic 17 HumCourse. We now use the class C&d as a
predicate in an extended Horn rule. Specifically, the
tgd can be translated into the following rule:

EngStud(s) A Want(s, c) A Adv(c)A
HumCourse A &d(s) 3 Pi,.

We begin by formally defining description logic ter-
minologies and extended rules. We then describe the
algorithm for translating separable tgd’s to extended
Horn rules.

Hybrid knowledge bases
A description logic is a subset of first order logic,
which is especially designed to describe rich hierarchi-
cal structures. A description logic contains unary re-
lations (called concepts) which represent classes of ob-
jects in the domain and binary relations (called roles)
which describe relationships between objects. A de-
scription logic uses a set of constructors to build com-
plex concept and role descriptions. The set of con-
structors varies from one language to another. In our
discussion we consider the rather expressive descrip-
tion logic /UCAf7Z (which has formed the basis for the
KRIS system [Baader and Hollunder, 1991]), in which
descriptions can be built using the following grammar
(A denotes a concept name, Pi’s denote role names, C
and D represent concept descriptions and R denotes a
role description):

C,D+A)
--vu
C-ID/CUD
--c I
QR.C 1
3R.C I

R-, $?$I& n
1 . . . n Pm

A terminology T is

(primitive concept)
(top, bottom)
(conjunction, disjunction)
(complement)
(universal quantification)
(existential quantification)

R) (number restrictions)
(role conjunction)

a set of inclusion statements,
which are of the form C E D, where C and D are con-
cept descriptions. Intuitively, an inclusion states that
every instance of the concept C must be an instance of
D. Formally, the semantics of a terminology is given
via interpretations, that assign a unary relation C’ to
every concept name in T and a binary relation RI over
O1 x 0’ to every role name in 7. The extensions of
concept and role descriptions are given by the follow-
ing equations: (g(S) d enotes the cardinality of a set
S):

TI = u’, 1’ = &(CnD)‘=C%D$
(C u D)I = C1 U D’, (-C)’ = O* \ C’,
(‘v’R.C)I = (d E U1 I Ve : (d, e) E RI --+ e E C1)
(3R.C)I = (d E U1 I 3e : (d, e) E R’ A e E 6’)
(2 nR)‘=(dEO’ItfCeI(d,e)ER’)Ln)
(5 nR)‘=(dEO’(tt(eI(d,e)ER’)<_n)
(Pl n . . . n P,)I = P{ n . . . n P,‘,

An interpretation I is a model of T if C’ C D1 for
every inclusion C L D in 7.
Example 4: In Example 3 our terminology would
contain the following two inclusion statements that de-
fine precisely the concept named Ctgd.
C tgd & VPrev.l(Basic ll HumCourse)
VPrev.l(Basic ll HumCourse) C Ctgd
Traditionally, terminologies are given as part of the
knowledge base. In our case we will automatically
construct part of the terminology in our algorithm for
translating separable tgd constraints to extended Horn
rules.

We consider hybrid knowledge bases that contain a
terminology and a set of extended Horn rules [Levy
and Rousset, 1996a]. An extended Horn rule can
contain in its antecedent unary and binary predi-
cates which are concepts and roles defined in the ter-
minology. An interpretation I is a model of A if
it is a model of both the terminology and the ex-
tended Horn rules. Algorithms for reasoning in this
language are described in [Levy and Rousset, 1996a;
Levy and Rousset, 1996b].

Translating separable tgd’s
Informally, the class of separable tgd’s can be trans-
lated into a conjunction of concepts in +4CCh/?E. For-
mally, let T be a tgd of the form $ 3 4. Given such
a conjunction 4, we can define a graph g+ as follows.
The nodes in the graph are the variables of 4 and there
is an arc from a variable X to a variable Y if there is an
atom of the form R(X, Y), where R is a binary predi-
cate. A maximal path in g4 is a path Xi, . . . , Xn, such
that there is no arc emanating from X, and no arcs
coming into X1. A prefix pl of a path p is a subpath
of p that has the same initial point.
Definition 3: Let T be a tgd of the form $J =+ 4. T
is a separable tgd if:

1. 4 involves only unary and binary predicates,
2. g# is acyclic,
3. a variable that appears in $ can only appear in the

beginning of a maximal path in g,+, and
4. if two maximal paths share a variable X, then X

appears only in their common prefix path.
The algorithm shown in Figure 1 creates extended

Horn rules and an JUZCN’R terminology that are
equivalent to a separable tgd. If the given tgd describes
input constraints, then the predicate in the consequent
of the rules will be P;,, and otherwise, it will be Pat.

Description Lo&s 589

procedure tgd-to-horn(T, P)
/* 2’ is a separable tgd of the form + 3 4. */
/* P is either P;, or Pout */

for every variable X E r$ define a concept Cx as follows:
Let Cl,. . . , Cl be the literals appearing in unary

atoms in 4 containing X.
if X appears only in the end of maximal paths then

cx = Cl l-i . ..ncr (orTifZ=O).
else
Let Yl , . . . , Yk be the variables in (Y 1 R(X, Y) E 4).
for every Y E (YI, . . . , Yk} do:

Let Rolex,y be the conjunction of the roles in the
set (R 1 R(X,Y) E #}.

Cx = (3 RoZex,y,.Cy,) n . . . n (3 RoZ~X,Y,.C~,)~
Cl n...nc~.

return the terminology Di C lCxi, +7x, 5 Di,
and the rules $ A D;(X;) =p P,

for i = 1, . . . , n, where Xl,. . . , X, are the variables
that appear in the beginning of maximal paths in 4.

end tgd-to-horn.

Figure 1: Algorithm for translating tgd constraints
extended Horn rules with a terminology.

to

Example 5: Considering our example tgd

EngStud(s) A Want(s, c) A Adv(c) A HumCourse
=$ (3q)Prev(s, cl) A Basic(q) A HumCourse(

The right hand side of the tgd contains one max-
imal path s + cr. The algorithm will compute
cc, = Basic n HumCourse. The concept for s is
C, = 3 Prev.(Basic n HumCourse). Procedure tgd-
to-horn will return the terminology

D1 C 13 Prev.(Basic tl HumCourse)
13 Prev.(Basic ll HumCourse) & D1,

and the rule

EngStud(s) A Want(s, c) A Adv(c)A
HumCourse A 01(s) + Pi,.

The following theorem shows that the terminology
and the extended Horn rules returned by our algorithm
are equivalent for the purpose of verification.

Theorem 4: Let A be a hybrid knowledge base, and
let T be a separable tgd. Suppose that A1 is the set
of extended Horn rules and terminology returned by
procedure tgd-to-horn(T, P). Then, for any set of
inputsG,AUGj==TifandonlyifAUA~UG/=P.

Verifying hybrid knowledge bases
We now describe an algorithm that checks whether a
hybrid knowledge base is verified. As described in the
previous section, one of the contributions of this algo-
rithm is that we obtain a method for verifying knowl-
edge bases when the input and output constraints are
described using separable tgd’s.

Given a knowledge base A that contains a terminol-
ogy AT, a set of extended Horn rules and the predi-
cates Pi, and Po,,t the algorithm considers each rule
r E Rules(P,t). For each rule T, we consider the
knowledge base A, that is formed as follows:

e A, includes AT and Rules(Pi,), and

e A, includes each of the conj uncts in the antecedent
of r as a ground fact, where the variables in the
conjunct are viewed as constants.

For each rule, we check whether A, k Pi,. The entail-
ment check is done using the existential entailment al-
gorithm described in [Levy and Rousset, 1996a], which
is guaranteed to be sound and complete. Note that
simple application of Horn rule reasoning techniques
(e.g., SLD resolution) is not complete for hybrid knowl-
edge bases.

The algorithm returns that the knowledge base A
is verified if and only if A, + Pi, for every rule r E
Rules(Pat). If there is some A7 for which A7 &t Pi,,
then the ground facts in A7 provide a counterexample
for the verification of the KB. That is, they provide an
example input that satisfies the input constraints, but
does not satisfy the output constraints.

The correctness of our algorithm is established by
the following theorem:

Theorem 5 : Let A be a knowledge base with an
AGCNR terminology AT. Assume that the Horn rules
do not have the interpreted predicates <, <, = and #.
Let Pi, and Pat be predicates in A describing correct
inputs and outputs, respectively.

If both Rules(Pi,) and Rules(Pat) are not recursive
then the verification problem is decidable in time that is
doubly exponential in the size of the rules in Rules(P;,)
and Rules(Pat) and the size of AT, and polynomial
in the number of rules in Rules(Pi,) and Rules(Pmt).

This verification method generalizes the one pro-
posed in [Rousset, 19941. In that work, hybrid knowl-
edge bases were also considered, but the rule and ter-
minology components were considered in isolation, and
therefore the algorithm was not guaranteed to be com-
plete.

Conclusions
We described several new results concerning the verifi-
cation problem for hybrid knowledge bases combining
logical Horn rules and class hierarchies in a KL-ONE
style terminology. We gained insight into the verifica-
tion problem by showing that it is closely related to
the problem of query containment. In particular we
established the first complexity results for the verifica-
tion problem of non recursive Horn rules, and we have
shown the exact points at which the problem becomes
undecidable when the rules are recursive. We have
also presented the first complete algorithm for verify-
ing hybrid knowledge bases. Finally, we have shown

590 Knowledge Representation

that with hybrid knowledge bases we are able to han-
dle verification problems in which the output and in-
put constraints are expressed via the class of separa-
ble tuple generating dependencies. Such dependencies
provide more expressive power than constraints that
have been declaratively specified in previous work on
verification.

It should be noted that our current work considers
only rules whose semantics are given within first order
logic. Several works have considered the verification of
OPS5-style production rules (e.g, [Schmolze and Sny-
der, 19951, [Ginsberg and Williamson, 19931). In such
rules, the right hand side of the rules is an &ion that
may delete facts from the knowledge base. Verification
of non-recursive logical rule knowledge bases has orig-
inally been considered by Rousset [Rousset, 19881 and
Ginsberg [Ginsberg, 19881, and has been extended to
handle interpreted constraints ([Loiseau and Rousset,
19931 [Williamson and Dahl, 19931).

The algorithms we presented are designed to answer
the question of whether the knowledge base is verified
or not. However, when the knowledge base is not veri-
fied, it is important to tell the user the possible causes
of the problem, and to suggest corrective actions. The
algorithms we described can be easily modified to re-
turn a counter example set of inputs in cases in which
the knowledge base is not verified. Finally, we are con-
sidering extending trace-based debug
described in [Rousset and Hors,

ing methods (as
1996 f for terminologi-

cal knowledge bases) to hybrid knowledge bases.

References
Baader, F. and Hollunder, B. 1991. A terminological
knowledge representation system with complete inference
algorithm. In In Proceedings of the Workshop on Pro-
cessing Declarative Knowledge, PDK-91, Lecture Note8 in
Artificial Intelligence. Springer-Verlag. 67-86.

Beeri, Catriel and Vardi, Moshe 1984. A proof procedure
for data dependencies. Journal of the ACIM31(4):718-741.

Brat&man, Ronald J. and Schmolze, J. G. 1985. An
overview of the KL-ONE knowledge representation sys-
tem. Cognitive Science 9(2):171-216.

Buchheit, Martin; Donini, Francesco M.; and Schaerf, An-
drea 1993. Decidable reasoning in terminological knowl-
edge representation systems. Journal of Artificial Intelli-
gence Research 1:109-138.

Chaudhuri, Surajit and Vardi, Moshe 1992. On the equiv-
alence of recursive and nonrecursive datalog programs. In
Proceedings of PODS-92. 55-66.

Fagin, R. 1982. Horn clauses and database dependencies.
Journal of the A CM 29(4):952-983.

Ginsberg, Allen and Williamson, Keith 1993. Inconsis-
tency and redundancy checking for quasi-first-order-logic
knowledge bases. International Journal of Expert Sys-
tems: Research and Applications 6.

Ginsberg, Allen 1988. Knowledge base reduction: A new
approach to checking knowledge bases for inconsistency
and redundancy. In Proceedings of AAAI-88.

Gurevich, Y. and Lewis, H. R. 1982. The inference prob-
lem for template dependencies. In Proceeding8 of PODS-
82. 221-229.

Klug, A. 1988. On conjunctive queries containing inequal-
ities. Journal of the ACM 35(l): 146-160.

Levy, Alon Y. and Rousset, Marie-Christine 1996a.
CARIN: a representation language integrating rules and
description logics. In Proceedings of ECAI-96.

Levy, Alon Y. and Rousset, Marie-Christine 1996b. The
limits on combining recursive horn rules and description
logics. In Proceedings of AAAI-96.

Levy, Alon Y. and Sagiv, Yehoshua 1995. Semantic query
optimization in datalog programs. In Proceedings PODS-
95.

Loiseau, Stephane and Rousset, Marie-Christine 1993.
Formal verification of knowledge bases focused on con-
sistency: Two experiments based on ATMS techniques.
International Journal
Application8 6.

of Expert Sys terns: Reaearch- and

Rousset, Marie-Christine and Hors, Pascale 1996. Model-
ing and verifying complex objects: A declarative approach
based on description logics. In Proceeding8 of ECAI-96.

Rousset, Marie-Christine 1988. On the consistency of
knowledge bases: the COVADIS system. In Proceedings
ECAI-88.

Rousset, Marie-Christine 1994. Knowledge formal speci-
fications for formal verification: a proposal based on the
integration of different logical formalisms. In Proceedings
of ECAI-94.

Sagiv, Y. and Yannakakis, M. 1981. Equivalence among -
relational expressions with the union and difference oper-
ators. In J. ACM 27:4 pp. 633-655.

Schmolze, James G. and Snyder, Wayne 1995. A tool for
testing confluence of production rules. In Proceedinga of
the European Symposium on Validation and Verification
of KBS, E UROVAV-95.

Shmueli, Oded 1987. Decidability and expressiveness as-
pects of logic queries. In Proceedings of the 6th ACM
Symposium on Principle8 of Database Systems. X37-249.

Ullman, Jeffrey D. 1989. Principle8 of Database and
Knowledge-base Systems, Volumea I, II. Computer Sci-
ence Press, Rockville MD.

van der Meyden, Ron 1992. The Complexity of Query-
ing Indefinite Information: Defined Relations Recursion
and Linear Order. Ph.D. Dissertation, Rutgers Univer-
sity, New Brunswick, New Jersey.

Vardi, Moshe 1984. The implication and finite implication
problems for typed template dependencies. Journal of
Computer and System Sciences 28(1):3-28.

Williamson, Keith and Dahl, Mark 1993. Knowledge base
reduction for verifying rule bases containing equations. In
Proceedings of the AAAI-93 workshop on Validation and
Verification of KBS.

Yannakakis, M. and Papadimitriou, C. H. 1980. Algebric
dependencies. Journal of Computer and System Sciences
25(1):2-41.

Description Logics 591

