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Abstract 

In this paper we extend the Propositional Logic of 
Context, (Buvac & Mason 1993; BuvaE, BuvaE, & Ma- 
son 1995), to the quantificational (predicate calculus) 
case. This extension is important in the declarative 
representation of knowledge for two reasons. Firstly, 
since contexts are objects in the semantics which can 
be denoted by terms in the language and which can 
be quantified over, the extension enables us to express 
arbitrary first-order properties of contexts. Secondly, 
since the extended language is no longer only proposi- 
tional, we can express that an arbitrary predicate cal- 
culus formula is true in a context. The paper describes 
the syntax and the semantics of a quantificational lan- 
guage of context, gives a Hilbert style formal system, 
and outlines a proof of the system’s completeness. 

Introduction 
Contexts first appeared in declarative AI when they 
were presented as a possible solution to the problem of 
generality in McCarthy’s Turing Award Paper, (Mc- 
Carthy 1987). Since then, contexts have found uses in 
various AI applications, including: 

managing large knowledge bases (Guha 1991)) 

translating knowledge (BuvaE & Fikes 1995), 

modeling knowledge and belief (Giunchiglia 1993)) 

integrating data bases (Farquhar et al. 1995), 

planning (BuvaE & McCarthy 1996), 

qualitative reasoning (Nayak 1994), and 

common sense reasoning (McCarthy & BuvaE 1994). 

These applications require the expressive power of first- 
order logics. However, till now no formal logical inves- 
tigations of quantificational theories of context have 
been done. The aim of this paper is to rectify this de- 
ficiency by extending the Propositional Logic of Con- 
text, (Buvac & Mason 1993; BuvaE, BuvaE, & Ma- 
son 1995), to the quantificational (predicate calculus) 

case. This extension is important in the declarative 
representation of knowledge for two reasons. Firstly, 
since contexts are objects in the semantics which can 
be denoted by terms in the language and which can 
be quantified over, the extension enables us to express 
arbitrary first-order properties of contexts. Secondly, 
since the extended language is no longer only proposi- 
tional, we can express that an arbitrary predicate cal- 
culus formula is true in a context. This paper describes 
the syntax and the semantics of a quantificational lan- 
guage of context, gives a Hilbert style formal system, 
and outlines a proof of the system’s completeness. 

The Logic 
We extend classical 2-sorted predicate calculus with 
identity to enable representing facts about contexts 
and reasoning with contexts. Our logic has the fol- 
lowing four basic features. 

Contexts are treated as formal objects, i.e. objects 
in the semantics which can be denoted by terms in 
the language and which we can quantify over. Con- 
sequently, we can state first-order properties of con- 
texts in the same way we state properties of any 
other objects. 

The language is extended with a new modality, 
ist(J&4), (ist is pronounced “is true”). It is used 
to express that the predicate calculus formula, 4, is 
true in the context denoted by the term Ic. 

Rather than being given in isolation, all formulas 
are stated in some context. We write Ic : 4 when 
formula 4 is given in the context denoted by the term 
lc. 

The formal system contains rules for entering and 
exiting a context; the proofs which use these rules 
mirror the intuitive patterns of contextual reasoning. 

Semantically, a context is modeled by a set of truth 
assignments that describe the possible states of affairs 
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of that context. Thus a model will associate a set of 
first-order structures with every context. These first- 
order structures reflect the states of affairs which are 
possible in that context. For an atom to be true in a 
context, it has to be satisfied by all the structures as- 
sociated with that context. Therefore, the ist modal- 
ity is interpreted as validity: ist(k,p) is true iff the 
atom p is true in all the first-order structures associ- 
ated with context Ic. Treatment of ist as validity also 
corresponds to Guha’s proposal for context semantics, 
which was motivated by the Cyc knowledge base. 

The formal system captures some intuitive patterns 
of contextual reasoning. Intuitively, to prove that a for- 
mula is true in some context, we want to first enter that 
context, perform some inferences with the assumptions 
made in that context to derive our goal formula, and fi- 
nally exit the context. When sub-formulas of a formula 
we want to prove pertain to different contexts, we de- 
rive the sub-formulas in their corresponding contexts, 
and then put them together in the original context to 
obtain the desired formula. To capture this style of 
reasoning, we define derivability as a relation on a for- 
mula 4 given in a context k, and write l-k : 4. We 
also introduce the inference rules (Enter) and (Exit) 
which enable the reasoning system to enter and exit 
a context. In (McCarthy 1993), McCarthy illustrates 
how such rules can be used to generate the desired 
pattern of reasoning. 

We proceed to present some technical details of the 
logic and a brief sketch the aspects of the completeness 
proof which are new to the quantificational case. We 
use standard mathematical notation; we use P(X) to 
refer to the set of subsets of X. To simplify the for- 
mulas we will distinguish between context objects and 
non-context objects by assuming two disjoint sorts: the 
context sort and the non-context sort. The latter is re- 
ferred to as the discourse sort, reflecting the intuition 
that the non-context objects will be the topic of dis- 
course. 

Syntax 

A language L of our logic is any language of classi- 
cal 2-sorted predicate calculus with identity. Formally, 
language L is a collection of the constants and the pred- 
icates of all arities. We call the sorts the context sort 
and the discourse sort. 

We now fix some language LG. The set of all terms in 
our logic, T, is identical to the set of terms of classical 
2-sorted predicate calculus with identity over the same 
language L. Formally, ‘ll? is the set of variables and 
constants (of both sorts) of the language L. We use lK 
to refer to the set of terms of the context sort, and V to 
refer to the set of variables of both sorts. Note that for 

simplicity of presentation, our logic has no functions. 
The set of atomic formulas, VQ, is the set of atomic 

formulas of classical 2-sorted predicate calculus with 
identity: non-logical predicates and the identity predi- 
cate applied to an appropriate number of arguments of 
appropriate sorts. The set VV, of well-formed formulas 
(wffs) of our logic, is defined as the least set satisfying 

W := Wo U (1W) U (W -+ W) U (VV)W U ist(I&W) 

The operations A, V, t), and quantifier 3 are assumed 
to be defined as abbreviations in the usual way. We will 
use Wpc to refer to the set of well-formed formulas of 
classical predicate calculus with identity, i.e. formulas 
which do not contain the ist modality. To simplify 
presentation, we assume that the set of bound variables 
is disjoint from the set of free variables. 

We adopt the following notational conventions: 
a,al,... range over constants; v, VI, . . . range over vari- 
ables; t, tl, . . . range over terms; Ic, ICI, . . . range over 
terms of only the context sort; and p, pl, . . . range over 
predicates. Lower case Greek letters range over W. 
The letter T ranges over (possibly infinite, possibly 
empty) sets of wffs. Note that since all the formulas 
we will be concerned with are well-formed, the sorts of 
terms will often be obvious, and will thus not need to 
be stated explicitly. Similarly, we often do not explic- 
itly list all the arguments of predicates. 

Semantics 
We begin by fixing some language l, and defining 
STR(IS) to be the collection of classical 2-sorted first- 
order structures CCC’, D>,Z>, i.e. C and D are non 
empty sets, and Z is standard two-sorted interpreta- 
tion function for the language ,!Z. Intuitively, the set C 
should be interpreted as the set of context objects, and 
the set D should be interpreted as the set of discourse 
objects of the particular structure. 

By convention, gothic letters will range over ele- 
ments of STR(L). If 24 = <CC’, D>,Z>, then we use 
Z(U) to refer to Z, the interpretation function of the 
first-order structure Q; we use I%[” to refer to C, the 
set of context objects in the domain of the first-order 
structure rU; we use l%ld to refer to D, the set of dis- 
course objects in the domain of the first-order structure 
rU; and we use I%[ to refer to CUD, the set of all objects 
in the domain of the first-order structure !&. 

Definition (9Jl) : A model, tm, is a function which 
maps each context object to a (possibly empty) set of 
2-sorted first-order structures of the language ,C, 

%V : Dom(mZ) -+ P(STR(L)), 

provided the following conditions hold: 
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1 The domains of all first-order structures of all con- 
texts are the same. Formally, for any two context 
objects cl and ~2, for any first-order structures !Z E 
!?X(ci) and 93 E 9X(c2), ]rU(” = 1931’ and I%] d = pqd. 
We use ]5Z(c to refer to the set of context objects 
I%]‘, we use ]!JXld to refer to the set of discourse ob- 
jects IaId, and we use ]rnZ] to refer to the set of all 
objects ]U). By convention, c,cl,. . . range over 19X]‘; 
d,dl,. . . range over ]!?JZld; and e,ei,. . . range over 19X]. 

The set of context objects, [9X]“, is disjoint from the 
set of discourse objects, ]%R(d. 

The domain of the model, Dom(!JX), is identified 
with the set of context objects, ]9.X]“. 

We require that all interpretation functions map a 
constant to the same object; we say that all con- 
stants are rigid designators. Formally, for any U E 
rSn(cr) and 93 E 9X(c2), and for any constant a, we 
have X(%)(a) = Z(%)(a). 

Definition (variable assignment): A variable as- 
signment is a function from the set of variables, V, to 
the set of all objects, ]Z?X], providing variables are as- 
signed objects of appropriate sorts. We extend the 
variable assignment to constants; this is trivial since 
all the constants are rigid designators. 
By convention, the Greek letters CJ and 7 will range 
over variable assignments. Instead of writing O(V), we 
will use the common notation and write v[o]. 

We introduce b=, which is a relation on a model, a 
first-order structure, a context, a formula and a vari- 
able assignment. The relation I=, which is written 
9X, U + k : 4 [a], should be interpreted as a satisfuc- 
tion relation: we say that the model 9X, the first-order 
structure U, and the variable assignment o satisfy the 
formula 4 in context k[a]. 

Fexfip;ltio? (b) : If rz1 E 9X(k[a]) then !3X,a k 
. is 

x,’ as ;iollows: 
defined by induction on the structure on 

m,su + Ii :p(h,. . . , ti) [a] if < X(rU)(t,[a]), . . . , 
ww (t&3> ’ E ww cd 

Em, !-a b k : t1 = t2 [u] if z(U>(tl[a]> = 37%>(t2[4) 

?lX,!i?i~k:+[a] if not %R%~k:q5[la] 

9X, U b k : 4 + QJ [a] if 9X, ‘u + k : f$ [a] implies 
~,w==:2cIbl 

m, % b k : (‘t/v)4 [a] if for all e E (U( of the same 
sort as 21 9X, Iu + k : q5 [a(~ := e)] 

9X, U + k : ist(k’, $) [a] if for all 93 E ?JX(k’[a]) 
m, 23 /= k’ : q5 [a] 

We write j= k : 4 iff (V9JZ)(V% E 9X(k)) (Vu) 
9X, 5% b k : C#J [a]. We call this relation validity. 

Note that in the clause for universal quantification, 
the term k can not be the variable v since we have 
assumed that the set of bound variables is disjoint from 
the set of free variables. 

Formal System 
Since all formulas in our logic are given in some context 
(rather than being given in isolation) derivability is a 
relation on a formula and a context. We write I- k : 4 
and say that formula q5 is derivable in context k. We 
define derivability in a Hilbert style. 

Definition (derivability) : t--k:4 iffk:#isan 
instance of an axiom schema or follows from provable 
formulas by one of the inference rules. Formally, I- k : 
4 iff there is a sequence [kl : &, . . . , km : $“] such 
that km = k and 4” = 4 and for each i 5 m either 
ki : C@ (1) is an instance of one of the axiom schemas, 
or (2) follows from earlier elements in the sequence via 
one of the inference rules. 
The axiom schemas and inference rules naturally divide 
into three groups. 

1. Classical Predicate Calculus. 

(PL) k : 4 provided 4 is a propositional tautology. 

WI) k : W+#J(V) + $0) 

(t =) k : t = t 

(p =) k : (ti = t!,) + (p(tl, . . . , tieI, ti, ti+l,. . . , tn) 

-+p(t1,..., ti4,t:,ti+1,..., tn)) 

k:$ k:&--+~ 
cMP) k $, . . 

UJG) 
k : 4 + Tw 

k : q5 -+ (Vv’)$(v’) 
provided u is not free in 4. 

2. Propositional Properties of Contexts. 

(K) k : ist(k’, 4 --+ $) -+ (ist(k’, 4) + ist(k’, $)) 

(A) k : ist(kl, ist(ka,+)) V ist(ki,list(kz, 4)) 

(Flat) k : ist(k1, ist(kz,$)) t) ist(k2, $) 

k’ : ist(k, 4) 
(Enter) k 4 (Exit) k ’ ’ . . k’ : ist(k, 4) 

3. Quantificational Properties of Contexts. 

(BF) k : (Vv)ist(k’,4) + ist(k’, (VV)~) 

(ist =) k : (tl = t2) f) ist(k’, tl = t2) 
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We briefly comment on the axioms and inference rules. 
The first set of axioms and rules guarantees that all 
valid formulas of classical predicate calculus with iden- 
tity hold in every context, and every context is closed 
with respect to the classical rules of inference. The 
second set of axioms and rules captures the proposi- 
tional modal properties of contextual reasoning. The 
axiom schema (K) guarantees that every context is 
closed with respect to logical consequence. A prop- 
erty we call contextual omniscience is captured by the 
(A) axiom. Intuitively, every context “knows” what 
is true in every other context. Thus, although a con- 
text need not have complete information about what 
is true in the world, it will have complete information 
about other contexts’ views of the world. If we inter- 
pret contexts as knowledge bases, then contextual om- 
niscience states that every knowledge base “can see” 
into any other knowledge base. The axiom schema 
(Flat) tells us that every context looks the same re- 
gardless of which context it is being viewed from. Rules 
(Enter) and (Exit) allow the formal system to respec- 
tively enter and exit a context. Note that the (Enter) 
rule is the converse of the (Exit) rule. The third set of 
axioms and rules captures the quantificational proper- 
ties of contexts. The Barcan formula (BE’) is needed 
to make the domains of all the first-order structures in 
all of the contexts be the same. The (ist =) tells us 
that all terms are treated as rigid designators. 

Completeness 
In this section we state the completeness of the sys- 
tem and outline the proof. The general structure of 
the completeness proof and a number of lemmas are 
similar to those of the propositional system presented 
in (Buvac, BuvaE, & Mason 1995). We will demon- 
strate the aspects of the proof which are novel to the 
quantificational case. 

Theorem (completeness) : l-k:@ iff kk:+. 

The (+) direction is the soundness lemma. It is sim- 
ple to verify that the axioms are sound and that the 
rules preserve soundness. We proceed by introducing 
some concepts which will be needed to outline the (+) 
direction of the completeness proof. 

Definition (satisfiability): A set of formulas T is 
satisfiable in Ic iff there exists a model 9X, first-order 
structure 24, and a variable assignment B such that for 
all 4 E T ‘3X,% + Ic :$[a]. 

Definition (consistency): A formula 4 is consis- 
tent in Ic iff not I- !C : 14. A finite set of formulas T 
is consistent in Ic iff /X\T, the conjunction of all the 

formulas in T, is consistent in k. An infinite set T is 
consistent in Ic iff every finite subset of T is consistent 
in k. A set T is inconsistent in ir, iff the set T is not 
consistent in Ic. A set T is maximally consistent in k 
iff T is consistent in k and for all 4 if 4 $ T, then 
T U {4} is inconsistent in k. 

Definition (w-completeness): A set of sentences 
T is w-complete iff for any formula 4 we have 
(V’V)~(ZJ) 4 T implies -q!(t) E T for some term t. 

Given a set of formulas T in /CO, we will define the 
set Tk to be those formulas from T which “talk only 
about” the particular context Ic, (in the sense that they 
are true in that context and they contain no ist modal- 
ities). The set of formulas TI,, will be used to define 
the part of the model of T which describes the state of 
affairs in the context k. 

Definition (Tk): If T is a set of formulas given in 
ke, then TI, := (41 ist(fc,+) E T and 4 E V&c}. 
We say that TI, is defined from T in ke. 

As is usual, an important part of the completeness 
proof is the Lindenbaum lemma, allowing any consis- 
tent set of wffs to be extended to a maximally con- 
sistent set. Our completeness proof will be based on 
a Henkin construction, which means that in parallel 
to the process which makes the set maximally consis- 
tent, we will also provide witnesses for all previously 
un-witnessed existential formulas. In a Henkin con- 
struction, it is standard to expand the language of the 
original theory with some infinite set of new constants 
and use these as witnesses. Our method is similar: 
previously unused variables will be witnesses. The ad- 
vantages of using variables for witnesses is that we do 
not need to change the language of the original set of 
sentences. We simply need an infinite supply of unused 
variables. 

Notational convention (unused variables) : As- 
sume a set of formulas T is given in some context Ice. 
We use p to denote an infinite set of new context vari- 
ables, and 9’ an infinite set of new discourse variables. 
We use 6,&,... to range over @ U P. 

Lemma (Lindenbaum) : Assume the set of formu- 
las Te is given in Lo, and that the variables in @ and 
vid are not used in Te or in ke. If To is consistent in 
Ice, then Te can be extended to a maximally consistent 
set T in Ice, such that every non-empty set TI, (defined 
from T in Ice) is w-complete. 

We proceed to outline the proof that any set of for- 
mulas To which is consistent in /CO must be satisfiable 
in Ice . It is simple to show that this is equivalent to the 
(-+) of the completeness theorem. 
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Proof (completeness) : Assume To is consistent The proof of the truth lemma is similar to its propo- 
in ko. We extend the set of variables V used in To and sitional counterpart. The only new case, that for uni- 
k0 with an infinite set of new context variables ‘@ and versal quantifiers, follows simply since having both di- 
an infinite set of new discourse variables vd which do rections of the Barcan formula enables us to “pull out” 
not occur in To or in ko. all the quantifiers from within an ist. 

By the (Lindenbaum lemma) we can extend To 
to a maximally consistent set T in ko. Using T we will 
construct the model !JX from terms of the language L. 
We identify the sets of objects with the sets of terms: 
I9JZl” is defined to be the set of all context terms and 
bWd is defined to be the set of all discourse terms. 
From the maximally consistent set T, for every c, we 
read off the set T,. Note that since we identified ob- 
jects in the model with terms, we are able to inter- 
changeably use terms and objects. Thus we will talk 
about T, rather than Tk. 

To construct a model the standard Henkin construc- 
tion needs a number of interesting modifications. We 
illustrate these by outlining the proof of the Linden- 
baum lemma. But first we need to state some simple 
properties of consistency. 

Lemma (consistency) : If T is consistent in ko, 
then for any wff 4 

1. at least one of: T U { +}, T U { 74) is consistent in 
ko; 

Now we define the set of first order structures asso- 
ciated with a context c. The set of sentences T, can be 
thought of as describing the state of affairs which hold 
at c. We will define the model 9X so that associates 
the context c with the first-order structures which cor- 
respond to this state of affairs. In order to read off 
these first-order structures we first use T, to construct 
?c, the set of all maximally consistent extensions of 
T,. For every set T, we define ?‘, := {T I T is a maxi- 
mally consistent extension of T,}. Every T’ E ?!‘c will 
be w-complete since T’ C T. Now every T’ E ?, is 
used to read off a first-order structure U; since T’ is 
maximally consistent and w-complete this can be done 
in the usual way. All the first-order structures ‘5% ob- 
tained in this way are put together to define %8(c), the 
set which the model 9X will associate to the context c. 

2. if T U {list(k, (Vu)+(v))} is consistent in ko, then 
T U Wk +h>>l is also consistent in ko, provided 
~1 does not occur free in T, k, or $. 

Proof (Lindenbaum) : Our proof of the Lin- 
denbaum lemma is based on a Henkin construction. 
We enumerate all the sentences in the language C: 
bo,h,- and construct an increasing sequence of con- 
sistent sets To c T1 C T2 c . . . of sentences of L such 
that: 

1. Each Ti is consistent. 

This completes the construction of ?JJ?.. By (9X 
lemma) we are guaranteed that the model we have 
constructed is indeed a model. 

3. If $i = ist(k, (VV)$(V)) and +i E Ti+l, then 
ist(k, 4&J) E %+I, where fiP is the first variable 
from @ or qd (depending on its sort) not occurring 
in Ti, &, or k. 

Lemma (9X): The ?JX constructed in the (com- 
pleteness proof) is a model, i.e. it satisfies the addi- 
tional conditions imposed by the definition of a model. 

Finally, to establish completeness we need only show 
that the model 9X is in fact a model of the sentences 
To we had started off with. This will be guaranteed 
by the truth lemma. We define aid to be the identity 
function. 

Lemma (truth): 

ist(c, 4) E T iff V% E %X(c) 332, u i= c : 4 [tTid]. 

Clearly, if 4 E To, then also 4 E T. Since T was 
given in context ko, by (Exit) rule it follows that 
ist(ko,+) E T, and therefore by the (truth lemma) 
we get 9X, % k ko : 4 [a]. This completes the outline of 
the completeness proof. Qompleteness 

Now we will construct this sequence of sets of sen- 
tences, and prove that it has the above properties l-3. 
The construction proceeds in two stages. Assuming 
we already have the set Ti, we will first construct a 
temporary set Ti which will take care of condition 2. 
Then, in the second stage, using this temporary set Ti 
we construct Ti+l by adding witness axioms thus also 
satisfying condition 3. 

We elaborate the first stage. Let 

T’i = Ti u (4i) if Ti U (g&j is consistent in ko 
Ti U {l+i} if Ti U { $} is consistent in ko 

Note that from the fact that T is consistent in ko and 
the (consistency lemma 1) it follows that one of the 
two choices above has to be consistent. Therefore, this 
takes care of condition 2. above. Note that often it will 
be the case that more than one of the above choices 
is consistent. In this case we can arbitrarily choose 
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which sentence will be added to Ti. However different 
choices will lead to the construction of different maxi- 
mally consistent sets which gives us some control over 
the models we create. 

Now we elaborate the second stage of the con- 
struction. Let Ti+i be Ti U {ist(k, $(GP))} if & = 
ist(k, (VV)+(ZJ))&+ E Ti, and Tf otherwise, where 
$ is the first variable from @ or vd (depending on its 
sort) not occurring in Ti, &, or k. This clearly takes 
care of the conditions 3. above. All that remains to be 
shown is that condition 1. holds, i.e. that the set Ti+r 
is consistent. Clearly the set T: produced after the 
first stage of the construction is consistent. By (con- 
sistency lemma 2) the second stage also produces a 
consistent set. Therefore, condition 1. holds. Thus 
we have shown that the sequence of theories which we 
have constructed has properties l-3 given above. 

We define the set T := Ug,Ti. It is straight forward 
to show that it is maximally consistent. &,indenbaum 

A Simple Example 
We proceed to illustrate that the quantificational fea- 
tures introduced in this paper are necessary in order 
to represent real world knowledge in the framework of 
context logics. 

Assume the page for 06/23/96 in McCarthy’s diary 
contains the formula 

fZy( UA, 921, San-Francisco, 7:00, LA, 821) 

which is intended to mean that on 06/23/96 McCarthy 
is scheduled to fly to Los Angeles on flight 921, leav- 
ing San Francisco at 7:00 and arriving in LA at 821. 
Note that although the term McCarthy is not men- 
tioned in the above formula, the entry implicitly per- 
tains to McCarthy since the formula is given in Mc- 
Carthy’s diary. Similarly, although the term 06/23/96 
is not mentioned, the entry implicitly pertains to the 
date 06/23/96 since the formula is entered in the diary 
page associated with that particular date. 

One of the original motivations for context for- 
malisms was to aid in expressing such implicit as- 
sumptions without having to modify the formula itself 
(as is proposed in (McCarthy 1993)). Unfortunately, 
the propositional language of context is not expressive 
enough to handle even this simple example. 

The quantificational language of context is, however, 
useful in addressing this problem. Firstly, since con- 
texts are objects in the semantics which can be denoted 
by terms in the language and which can be quantified 
over, we can express arbitrary first-order properties of 
contexts. Secondly, since the extended language is no 
longer only propositional, we can express that an arbi- 
trary predicate calculus formula is true in a context. 

These two features in place has allowed the 
quantificational language of context to describe the 
implicit assumptions of a formula without mod- 
ifying the formula itself. The first feature al- 
lows us to state properties of the context asso- 
ciated with a dated page in McCarthy’s diary: 
Xc.diary(c, McCarthy) A date(c, 06/23/96). The second 
feature allows us to state that McCarthy’s flight infor- 
mation is given in the context of that particular page: 
ist(c,fEy( UA, 921, San-Francisco, 7:00, LA, 8:21)). 
Putting these together, we get 

(Vc)( diary(c, McCarthy) A date(c, 06/23/96)) --+ 

ist(c,fZy( UA, 921, San-fiancisco, 7:00, LA, 8:21)). 

Related Wmk 
This line of research is primarily influenced by Mc- 
Carthy’s notions of context (McCarthy 1987; 1993). 
The key idea in McCarthy’s proposal is to treat con- 
texts as formal objects, which enables one to state 
properties of contexts and relations on contexts. Also 
due to McCarthy is the formula ist(c,+), which ex- 
presses that formula 4 is true in context c. The 
propositional logic of context, (BuvaE & Mason 1993; 
BuvaE, Buvac, & Mason 1995), provided the basic for- 
mal analysis which this paper extends to the quantifi- 
cational case. 

A comparison of the propositional logic of context 
to other formalizations of context in AI and to multi- 
modal logics is given in (Buvac, Buvac, & Mason 1995). 
The key points of the comparison to the formaliza- 
tions in AI (Lifschitz 1986; Guha 1991; Shoham 1991; 
Giunchiglia 1993; Nayak 1994; Attardi & Simi 1995) 
carry over to the quantificational logic of context. 
However, the comparison of the propositional logic of 
context to propositional multi-modal logics does not 
carry over to the quantificational case. Thus we pro- 
ceed to compare the quantificational logic of context 
to multi-modal logics. 

Comparison to Multi-Modal Eogies 
There is a clear parallel between the logic of context 
and the standard multi-modal logics, like the ones used 
for reasoning about knowledge and belief of multi- 
ple agents (Halpern & Moses 1992). In the propo- 
sitional case, given a context language containing a 
set of contexts K, we can define a modal language 
containing modalities Or, 02, . . ., one for each context 
from R = {kp)p<(y. By replacing each occurrence of 
ist(kp,+) with O&J), we can define a bijective trans- 
lation function which to each formula of the proposi- 
tional context logic assigns a well-formed modal for- 
mula. Based on this translation, (BuvaE, BuvaE, & 
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Mason 1995) shows a reduction of the propositional 
logic of context to a propositional multi-modal logic. 

However, these results do not carry over to the quan- 
tificational case. The quantificational logic of context, 
for example, enables us to state that the formula $ is 
true in contexts which satisfy some property p(x) as 
follows: 

This formula has no obvious translation into any stan- 
dard multi-modal logic. The meaning of such formulas 
which quantify over modalities is beyond the analysis 
commonly done in quantificational modal logic. 

Our derivability relation, t-k : 4, differs from the 
usual modal logic derivability relation, t-4. This choice 
was influenced by the intuition that every formula is 
given in some context and that the reasoning system 
can enter and exit a context. If we were willing to give 
up these features, we could define derivability in the 
style that is standard to modal logics. 

Conclusion 

Our main motivation for formalizing contexts is to 
solve the problem of generality in AI. We want to be 
able to make AI systems which are never permanently 
stuck with the concepts they use at a given time be- 
cause they can always transcend the context they are 
in. Such a capability would allow the designer of a 
reasoning system to include only such phenomena as 
are required for the system’s immediate purpose, while 
retaining the assurance that if a broader system is re- 
quired later, “lifting axioms” can be devised to restate 
the facts from the narrower context to the broader one, 
with qualifications added as necessary. Thus, a neces- 
sary step in the direction of addressing the problem of 
generality in AI is providing a language which enables 
representing and reasoning with multiple contexts and 
expressing lifting axioms. In this paper we provide 
such a language. 
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