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Abstract 

Graph-based algorithms convert a knowledge base 
with a graph structure into one with a tree structure 
(a join-tree) and then apply tree-inference on the re- 
sult. Nodes in the join-tree are cliques of variables 
and tree-inference is exponential in w*, the size of 
the maximal clique in the join-tree. A central prop- 
erty of join-trees that validates tree-inference is the 
running-intersection property: the intersection of any 
two cliques must belong to every clique on the path 
between them. We present two key results in con- 
nection to graph-based algorithms. First, we show 
that the running-intersection property, although suf- 
ficient, is not necessary for validating tree-inference. 
We present a weaker property for this purpose, called 
running-interaction, that depends on non-structural 
(semantical) properties of a knowledge base. We also 
present a linear algorithm that may reduce w* of a 
join-tree, possibly destroying its running-intersection 
property, while maintaining its running-interaction 
property and, hence, its validity for tree-inference. 
Second, we develop a simple algorithm for generating 
trees satisfying the running-interaction property. The 
algorithm bypasses triangulation (the standard tech- 
nique for constructing join-trees) and does not con- 
struct a join-tree first. We show that the proposed 
algorithm may in some cases generate trees that are 
more efficient than those generated by modifying a 
join-tree. 

Introduction 
Graph-based algorithms have become the standard 
approach for reasoning in a number of fields, in- 
cluding constraint satisfaction and probabilistic rea- 
soning (Dechter 1992; Mackworth & Freuder 1985; 
Jensen, Lauritzen, & Olesen 1990; Pearl 1988), and 
have been introduced to other fields such as truth 
maintenance and diagnosis (Geffner & Pearl 1987; 
Dechter & Dechter 1994; Darwiche 1995; Darwiche & 
Pearl 1994). In graph-based algorithms, a knowledge 
base has two parts: (a) pieces of information about 
domain atoms/variables, such as conditional probabil- 
ities, clauses, constraints, component descriptions, and 
operators; and (b) a graphical depiction of the struc- 
ture of these pieces of information, that is, the way 

they relate variables. The graphical structure may be 
provided by the user (as in probabilistic networks) or 
constructed by the reasoner (as in constraint satisfac- 
tion) . 

In either case, state-of-the-art graph-based algo- 
rithms use the following technique (Jensen, Lauritzen, 
& Olesen 1990; Pearl 1988; Dechter 1992; Dechter & 
Pearl 1989; Jensen & Jensen 1994). First, they con- 
vert a knowledge base with a graph structure into an 
equivalent knowledge base with a tree structure. Sec- 
ond, they perform linear inference on the tree struc- 
ture. The tree structure is typically called a join-tree. 
Each of its nodes represents a set of variables (a clus- 
ter) in the original graph. The size of the maximal 
cluster in the join-tree is called the tree-width and is 
denoted by w*. Inference on a join-tree is known to be 
exponential in w*. 

Inference on a join-tree is simple conceptually. 
When looked at procedurally, each cluster in the tree 
performs a local inference involving the set of variables 
it contains, and the results of these local inferences 
are combined to reach a result for the global infer- 
ence involving all variables. The combination of local 
inferences is typically implemented using a message 
passing mechanism where messages are exchanged be- 
tween clusters to communicate local results. The dif- 
ference between various versions of graph-based algo- 
rithms seems to be (a) the type of local inferences per- 
formed at each cluster (examples are deciding entail- 
ment, computing partial diagnoses, and solving con- 
straints); and (b) the operators used to combine lo- 
cal results into global ones (examples are addition and 
multiplication in probability, conjoin and disjoin in de- 
ciding entailment). For simplicity of exposition, we 
shall focus in this paper on graph-based algorithms for 
deciding entailment. The results will extend easily to 
other logic-based reasoning tasks. 

A key property of join-trees that validates tree- 
inference - in particular, the ability to compose a 
global result by combining local results - is the 
running-intersection property: The intersection of any 
two clusters must be contained in all clusters on the 
path between them. This property is characteristic of 
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join-trees and delimits the space of trees that are used An entailment test of the form Qi b o, where CK is a 
by graph-based algorithms. Our key result in this pa- clause that mentions only atoms in cluster Ci, is called 
per is that this property is too strong in certain cases, a local test. If A is the union of all local databases 
if one is allowed to examine the logical content (seman- in a join-tree, then an entailment test wrt A can be 
tics) of a knowledge base in addition to its structure. composed from local entailment tests wrt databases 
We also provide a number of companion results that i&i. In fact, tree-inference, the name we use to refer to 
capitalize on this observation for improving the com- the join-tree algorithm, can be viewed as a recipe for 
plexity of graph-based inference. this composition. 

This paper is structured as follows. First, we briefly 
introduce graph-based reasoning for propositional en- 
tailment and explain why the running-intersection 
property is sufficient to validate tree-inference. Sec- 
ond, we show that although the running-intersection 
property is sufficient for this validation, it is not nec- 
essary. We state a weaker property, called running- 
interaction, that is sufficient for this validity. We also 
present a simple algorithm that modifies a join-tree 
for the purpose of reducing its zu*, possibly destroying 
its running-intersection property, while maintaining its 
running-interaction property. Third, we define the 
class of I-trees which satisfy the running-interaction 
property and show that some I-trees can never be gen- 
erated by modifying a join-tree. We then present an 
algorithm for generating I-trees that does not require 
triangulation, which is the standard technique for con- 
structing join-trees. We finally close with some con- 
cluding remarks on the presented results. 

Before we present tree-inference, show why it works, 
and why it could still work under weaker conditions, 
we need a couple of theorems about logical entail- 
ment. These theorems are called decomposition and 
case analysis and they represent the basis of tree- 
inference. 

Theorem 1 (Decomposition) Let A and I? be two 
sets of propositional sentences (databases) and let S be 
all atomic propositions that are common to both A and 
I’. Let CY be a clause over S, that is, CY contains one 
literal for each atom in S. Then: 

AuI’+ovP ;fi A/=&VP(A) orrj==v@(l?). 

Here, ,B is a clause, p(A) is the subset clause of /3 with 
atoms occurring in A, and p(r) is the subset clause of 
,O with atoms occurring in r. 

Inference using a Join-Wee 
The inference problem we focus on in this paper is 
propositional entailment. A graph-based algorithm for 
entailment takes the following input: (1) a structured 
set of propositional sentences (structured database) 
and (2) a clause. The algorithm decides whether the 
database entails the clause. Figure l(a) depicts a 
structured database, which has two parts: a directed 
graph 6 with atomic propositions as its nodes, and a 
set of propositional sentences A that are distributed 
among the nodes of G. The sentences associated with 
a node can only mention that node and its parents in 
the graph G.l 

Since AU l? b cv V ,8 is equivalent to A U I’ U (TX} f= ,8, 
the theorem is intuitively saying that we can decom- 
pose an entailment test involving two databases A and 
I’ into two simpler tests, one involving A and the other 
involving l?, as long as the truth of atoms that are com- 
mon to A and r is fixed (by lo). The Decomposition 
theorem is most valuable when used with case analysis: 

Theorem 2 (Case-Analysis) Let A be a data base 
and let S be a set of atomic propositions. If al, . . . , cy, 
are all possible clauses over S, then 

Ab/3 ifl Aj=a!lVPand . . . andAbcxa,vp. 

State-of-the-art graph-based algorithms convert a 
structured database into a join-tree. Figure l(b) con- 
tains an example join-tree for the structured database 
in Figure l(a). The details of constructing a join-tree 
are not important in this section. What is important, 
however, are the following properties of a join-tree: 

Case analysis is typically used to set the stage for using 
Decomposition. That is, if we want to decompose a 
test A U I’ /= y and the clause y does not mention 
all atoms that are common to A and I’, then we can 
perform a case analysis on these atoms: 
Corollary I (Intersection) Let A and I? be two 
databases and /et S be abd atomic propositions that are 
common to both A and I’. If cq, . . . , CY~ are all possible 
clauses over S, then A U I’ b p ifl 

1. 

2. 

Each node in a join-tree represents a cluster of 
atomic propositions; 

A 1 cq V@(A) or r b cul V p(r) and . . . and 
A I= Q, WA> or r I= a, WV). 

The sentences in a structured database (Figure l(a)) 
are distributed among the clusters of a join-tree 
(Figure l(b)) so that atoms appearing in a sentence 
also appear in the cluster it is associated with. 
We use $l!i to denote the sentences associated with 

This corollary is the basis of tree-inference, which is 
stated next. First, the following notation. For a join- 
tree 7 and arc Ci-Cj, we use %j to denote the subtree 
that continues to include cluster Ci after deleting arc 
CaXj. For example, in Figure l(b), the subtree Tr2 
contains one cluster Cl, while the subtree T& contains 
two clusters Cz and Cs. We also Xl!ij to denote all sen- 
tences that appear in the subtree xj. For example, 

cluster Ci and refer to XPi as the local database of Ci. 

‘The graph 9 need not be directed in general. 
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Figure 1: (a) A structured database: a set of propositional sentences that are structured using a directed graph of 
propositional atoms; (b) a join-tree; (c) the sepsets of the join-tree - intersections of adjacent clusters; (d) reducing 
sepsets in a join-tree - we cannot remove atom A from any of the clusters, because it appears in the sentences 
associated with the clusters. 

in Figure l(b), Q 12 = {A > B, B 1 C}, while XP2i = 
(A/X > D,AkC > 7D,D > E,AAyD > 1E). 
Theorem 3 below shows how the result of a global en- 
tailment test (wrt a join-tree) can be composed from 
local entailment tests (wrt its clusters). 

Theorem 3 (Tree-Inference) Let 7 be a join-tree, 
A be the set of sentences associated with clusters in 7, 
and let /3 be a clause. The entailment test A + ,8 is 
equivalent to Test [I, /3], where Test[T, /3] ifl Qi b /3 
when 7 contains only one cluster Ci; and Test[l, ,B] ifl 

AND, Test[zj, a V /3ij] OR Test[Tj;, a~ V /3ji], 

otherwise. Here, a ranges over all clauses of atoms 
Ci n Cj for some adjacent clusters Ci and Cj in 7; and 
Pij is the subset clause of /3 with atoms occurring in 
subtree 7ij. 

Algorithms for deciding entailment using a join-tree 
can be viewed as implementations of the recursion in 
Theorem 3. When looked at procedurally, the the- 
orem suggests that we can decompose an entailment 
test wrt to a join-tree 7 into a set of entailment tests 
wrt subtrees 7ij and 7ji by performing a case analy- 
sis on the set of atoms Ci n Cj. This set is denoted 
by Sij and is known as the sepset of arc Ci-Cj. This 
process can then be applied recursively on each of the 
resulting subtrees, until we reach boundary conditions. 
A boundary condition is a join-tree that has a single 
cluster. An entailment test wrt such a tree is local by 
definition. 

Clearly, this process will terminate since the number 
of clusters in each subtree is getting smaller each time 
we decompose across an arc. The recursion, however, 
does not provide a control strategy for choosing an 
arc to decompose a join-tree across. Moreover, many 
of the recursive calls will be redundant. Implemen- 
tations of join-tree inference take care of this by (a) 
implementing the recursion bottom-up starting from 

clusters with a single neighbor and (b) keeping tables 
with clusters and sepsets to record intermediate re- 
sults. These details, however, are not relevant to our 
current discussion. Suffice it to say that these imple- 
mentations are linear in the size of the constructed 
tables, and the tables are exponential in the size of 
their corresponding clusters and sepsets.2 

he Interaction Theorem 
Tree-inference is a simple, recursive application of the 
Intersection Corollary. The specific connection is as 
follows. In this corollary: set S to the sepset Sij of 
some arc Ci-Cj in the join-tree 7; set A to the database 
@ij; and set I’ to the database JPji. If we make these 
settings, we can use the Intersection Corollary to de- 
compose a computation wrt a join-tree 7 into a set of 
computations wrt the subtrees ?;j and 7ji. For this 
decomposition to be valid, however, S must contain 
all atoms that are common to both A and I. This is 
exactly what the running-intersection property of tree 
7 guarantees. 

Specifically, the running-intersection property guar- 
antees that the sepset Sij contains all atoms that are 
common to databases XPij and \-lji. For example, in 
Figure l(b), the atoms in @i2 are {A, B, C} and the 
atoms in 421 are {A, C, D, E}. The intersection be- 
tween the two sets is {A, C}, which is also the sepset 
Sr2 shown in Figure l(c). 

In other words, tree-inference is valid because the 
join-tree satisfies the running-intersection property, 
which in turn guarantees the condition of the Inter- 
section Corollary (the Decomposition Theorem, to be 
more specific). As we show next, the condition of this 
corollary (Theorem) is not necessary for validating the 
corollary (Theorem). This means that the running- 

2Applying the recursion without caching results in ta- 
bles will not lead to this linear complexity. 
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intersection property is also not necessary for validat- 
ing tree-inference. 

Definition 1 An atom is positive (negative) in a 
database A if all its literals in the clausal form of A 
are positive (negative). 

Theorem 4 (Interaction) Let A and r be two 
databases and let S be all atomic propositions p such 
that p is positive in one of A or I’ and negative in 
the other. If al, . . . , an, are all possible clauses over S, 
then A U I? b ,f3 iff 

[A I= ~1 v P(A) or I? /= cq V p(r)] and . . . and 

[A l= an VP(A) or r I= an VP(r)]. 

Let us consider an example. Let A =def {A > B) 
r =def {B 3 C}, 0 =def A 1 C. Then A U I b o 
cannot be decomposed into A + a or I b (Y simply 
because CK does not follow from either A or I alone, yet 
it follows from their combination. Now let us define A 
differently, A =d+ {A > lB}. Then the decomposi- 
tion is valid for Q! =&f A 3 C. That is, although atom 
B is common to databases A and I, and although atom 
B is not mentioned in clause (Y, the decomposition is 
valid because atom B has the same (negative) sign in 
both databases. In general, in the Intersection Corol- 
lary (and Decomposition Theorem), if some atom is 
only positive or only negative in both A and I?, the 
atom can be excluded from S while still maintaining 
the validity of the corollary. 

The implications of this on tree-inference is as fol- 
lows. If an atom appears in the sepset &j and has the 
same sign in both databases 9ij and Xl!ji, then it can 
be removed from the sepset without compromising the 
validity of tree-inference. Consider Figure 1 for an ex- 
ample. Atom A appears in the sepset &2. However, 
atom A has the same sign in databases Q12 and XP21. 
Therefore, the atom can be removed from the sepset 
while preserving the validity of tree-inference. Simi- 
larly, A appears in sepset &s and has the same sign 
in both databases Q23 and 932. Therefore, it can also 
be removed from this sepset. 

Therefore, if we have access to the local databases 
associated with clusters in a join-tree, we can possi- 
bly eliminate some of the atoms appearing in sepsets, 
which reduces the complexity of tree-inference, while 
still preserving its validity. This is not contradictory, 
however, with complexity results of graph-based algo- 
rithms which say that these algorithms are exponential 
in ZU*. These complexity results hold for all possible 
local databases that may be associated with clusters, 
therefore depending only on structural properties of 
a database. What the Interaction Theorem is saying, 
however, is that we can improve on the 20* bound if 
we are allowed to use the non-structural (semantical) 
properties of a database in addition to its structural 
ones. This improvement is implemented by the follow- 
ing algorithm: 
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Algorithm 1 (Modify-Join-Tree) Perform the fol- 
lowing steps in order before applying tree-inference to 
a join-tree: 

1. For each arc Ci-Cj in the join-tree, and each atom’ 
A in the sepset Sij, eliminate A from the sepset if 
A has the same sign in both 9ij and qji. 

2. For each cluster Ci in the join-tree, and each atom 
A in the cluster, eliminate A from the cluster if it 
does not appear in the local database X&i and does 
not belong to any of the sepsets Sij for all j. 

This procedure is clearly polynomial in all important 
parameters; atoms, clauses, and cluster sizes. More- 
over, it may lead to reducing w* of the given join-tree. 
When applying this procedure to the join-tree in Fig- 
ure l(c), we obtain the one in Figure l(d). Note that 
although both sepsets were reduced in size, the clusters 
were not affected. This should not be surprising, how- 
ever, since a cluster must include, at least, all atoms 
that appear in its associated sentences. The three clus- 
ters in Figure 1 include exactly those atoms. 

The tree resulting from Algorithm 1 is said to sat- 
isfy the running-interaction property because for each 
arc Ci-Cj in the tree, the reduced sepset of the arc 
summarizes the interaction between the sentences in 
databases 9ij and Qji. It should be clear, given the 
Interaction Theorem, that a tree satisfying this prop- 
erty will produce valid results under tree-inference. We 
stress, however, that although the running-interaction 
property is sufficient to validate tree-inference, it may 
also not be necessary. Therefore, it is possible that one 
can weaken this property even further while retaining 
the validity of tree-inference. But we do not pursue 
this issue in the paper. 

I-Trees 
In light of the Interaction Theorem, the running- 
intersection property and the notion of a join-tree are 
too strong. The goal of this section is to define a 
new class of trees that is characterized by the weaker 
running-interaction property. This class of trees is use- 
ful for developing algorithms that transform a graph- 
based database into a tree-based one. 

Definition 2 (I-Tree) Let A be a set of propositional 
sentences. An I-tree for A is a tree 7 of clusters sat- 
isfying the following properties: 

associated with each cluster Ci in 7 is a local 
database ?Tri where 9i C A and A = Uj 9j; 
associated with each arc Ci-Cj in 7 is a set Zij 
(called an inset) containing all atoms that appear 
with diflerent signs in @ij and Qji; 
the atoms in a cluster Ci are those appearing in its 
local database XJ!i and insets Zij. 

It is important to note the following difference between 
I-trees and join-trees. First, local databases are part of 
the definition of an I-trees. Second, we cannot compute 



insets of an I-tree from the clusters although we can 
compute sepsets from clusters in a join-tree. 

There are two key reasons for defining the class of 
I-Trees explicitly: 
1. Some I-trees can never be generated by modifying a 

join-tree as suggested by Algorithm 1. 
2. There is a simple algorithm for generating I-trees 

that does not use triangulation, which is the stan- 
dard technique for computing join-trees. 
Join-trees are constructed through a set of graph 

operations, which include moralization, triangulation, 
clique identification, and clique ordering. These steps 
are meant to guarantee the running-intersection prop- 
erty. Since we may destroy this property later, one 
wonders whether it is necessary to guarantee it in the 
first place. In fact, the I-tree definition suggests that 
one may be able to construct I-trees directly, without 
having to construct join-trees first. This is indeed true 
as we show next. 

Without loss of generality, we shall assume that 
our database is structured around a directed graph as 
shown in Figure l(a). That is, we have a directed 
graph $? where each of its nodes is an atomic proposi- 
tion; we have a set of propositional sentences attached 
to each node; and these sentences mention only that 
node and its parents in S. We now show how to con- 
struct an I-tree for such a database: 

Algorithm 2 (I-Tree-Construction) To construct 
an I-tree for a structured database with graph S: 

1. eliminate enough arcs from the graph g to transform 
it into a connected tree 7; 

2. For each node Ni in tree 7, define Qi as the set of 
sentences associated with Ni in graph S; 

3. For each arc Ni--Nj in tree 7, define the inset Zij as 
the set of atoms having different signs in databases 
Pij and XPji; 

4. Convert each node Ni in tree 7 into a cluster Ci 
containing the atoms appearing in database Qi and 
insets Zij for all j; 

5. Eliminate clusters that are contained by their neigh- 
bors (transferring their associated sentences to the 
containing neighbor). 

Note that arc elimination is not deterministic. De- 
pending on which arcs are eliminated, a better or worse 
I-tree can be generated. Figure 2 depicts four possible 
I-trees for the same structured database. The I-trees 
in Figures (a) and (b) are more efficient than those in 
Figures (c) and (d), assuming that efficiency is mea- 
sured by the total size of tables that an implementation 
will construct. 

We now show a structured database with the follow- 
ing properties. First, a triangulation-based method 
would generate a unique join-tree for this database, 
with w* = 4. Second, when reducing the size of separa- 
tors and clusters of the resulting join-tree, as suggested 

Figure 2: Generating I-trees. Clusters that are con- 
tained by their neighbors have not been eliminated. 
The sign of each atom is also shown, which is useful 
for computing arc labels (insets). 

by Algorithm 1, only the sepset sizes are affected. The 
size of clusters remains the same. However, when con- 
structing an I-tree using Algorithm 2, we obtain a tree 
with w* = 3. The structured database is shown in Fig- 
ure 4(a). Its join-tree together with the reduction is 
shown in Figure 3. The constructed I-tree is shown in 
Figure 4. Note, however, that the tables constructed 
by an implementation for the I-tree in Figure 3 have 
a slightly smaller size than those constructed for the 
I-tree in Figure 4. 

One reason why some I-trees cannot be generated 
by modifying join-trees using Algorithm 1 is that the 
standard method for constructing join-trees does not 
generate all trees that satisfy the running-intersection 
property to start with. The standard method is based 
on the following steps: 
1. moralize a graph by (a) connecting every pair of par- 

ents for each node and (b) dropping the directional- 
ity of arcs; 

2. triangulate the graph by adding enough arcs so 
every cycle of length four or more has a chord; 

3. identify cliques of the resulting arc; and 

that 

4. connect the identified cliques into 
the running intersection property. 

a tree satisfying 

Figure 5(a) depicts a graph that has a unique join- 
tree, when using this standard method, which is shown 
in Figure 5(b). A standard implementation of tree- 
inference with respect to this join-tree would require 
four tables to be constructed: one table of size 2n+1 for 
each clique and two tables of size 2” for the sepset. The 
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Figure 3: A unique join-tree construction using the 
standard method. 

total size is then 2n+2 + 2n+1. However, Figure 5(c) 
shows another join-tree that is constructed by a proce- 
dure we shall give next. The tree consists of one cluster 
and, trivially, satisfies the running-intersection prop- 
erty. An implementation would construct only one ta- 
ble of size 2n+2 with respect to this tree. 

The difference between the two methods shows up 
more dramatically when using them to construct an 
I-tree. If we apply Algorithm 1 to the join-tree in 
Figure 5(b), we obtain the same join-tree; no reduc- 
tion takes place. However, if we apply Algorithm 2 
to the the structured database in Figure 5(a), we ob- 
tain the the I-tree in Figure 5(d). An implementa- 
tion would construct one table of size Zn+’ for clus- 
ter {Bl,---,Bn,C}, one table of size 4 for each clus- 
ter {A, Bi}; and two tables of size 2 for each sepset 
{Bl}, therefore, totaling 2n+1 + 8n. This is better 
than 2n+2 + 2n+1 which is the total size when using 
Algorithm 1 on the join-tree in Figure 5(b). 

Algorithm 2 can be modified slightly to construct 
join-trees: 
Algorithm 3 (Join-Tree-Construction) To con- 
struct a join-tree for graph G: 

1. eliminate enough arcs from the graph s to transform 
it into a connected tree 7; 

2. for each arc Ni-Nj in tree 7, define sepset Sij as 
the intersection of (a) atoms in ?;j and their parents 
in G and (b) atoms in 7ji and their parents in s; 

3. convert each node Ni in 7 into a cluster Ci that 
includes Ni, its parents in 6, and the atoms in sepset 
Sij for all j; 

4. eliminate the clusters contained by their neighbors. 

An example of this procedure is shown in Figure 5(c) 
and another is shown in Figure 6. 
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Figure 4: Constructing an I-tree using Algorithm 2. 

What is interesting about join-trees is that al- 
though running-intersection is the property character- 
izes them, they are typically not defined using this 
property but by the way they are typically constructed: 
moralize, triangulate, etc. This is probably due to the 
dominance of this standard method of construction. 
But other methods exist for generating join-trees - 
see (Draper 1995) for example - which are based on 
applying transformations to a graph of clusters in order 
to generate a tree of clusters that satisfies the running- 
intersection property. Six transformation are defined 
for this purpose in (Draper 1995) and some constraints 
are formulated so algorithms using these transforma- 
tions can terminate. Algorithm 3 can be viewed as ap- 
plying transformations to the original directed graph, 
and is closely related to the Collapse transformation 
proposed in (Draper 1995). 

This paper makes several contributions to graph-based 
algorithms. Most importantly is the observation that 
knowledge base content (its non-structural properties) 
can be useful in reducing the complexity of graph- 
based algorithms. In fact, we argue that knowledge 
base structure alone, although very useful, cannot lead 
to completely satisfactory results. A Horn database, 
for example, may have a very complicated structure, 
yet it is computationally well behaved. Similarly, how- 
ever, looking at knowledge base content may not suf- 
fice in certain cases: a database may not be Horn and 
yet have a tree structure that permits linear-time in- 
ference. Therefore, neither structure, nor content are 
enough on their own and we need methods that uti- 
lize both. We have presented one such method in this 
paper. 



Figure 5: Constructing a join-tree using both the 
standard method and Algorithm 3: (a) a structured 
database; (b) a unique join-tree constructed using the 
standard method; (c) a join-tree constructed using Al- 
gorithm 3; (d) an I-tree constructed using Algorithm 2. 

We have also presented a number of results that 
help us in gaining more insights into graph-based al- 
gorithms for logical reasoning, such as the Intersec- 
tion Corollary and Interaction Theorem. Moreover, 
our proposed method for generating join-trees is also 
a contribution that seems to stand on its own, inde- 
pendently of the main theme of this paper. We did 
not, however, provide an analysis of the relative mer- 
its of this new method as compared to the standard 
one based on triangulation. But this is beyond the 
scope of this paper. 

We close by observing that although we have re- 
stricted our discussion to propositional entailment, the 
results we have presented can be extended easily to 
a number of logic-based inferences such as comput- 
ing diagnoses using graph-based methods (Geffner & 
Pearl 1987; Dechter & Dechter 1994; Darwiche 1995; 
Darwiche & Pearl 1994). 
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