
Adnan Darwiche
Rockwell Science Center
1049 Camino DOS Rios

Thousand Oaks, Ca 91362
darwiche@risc. rockwell. corn

Abstract

Graph-based algorithms convert a knowledge base
with a graph structure into one with a tree structure
(a join-tree) and then apply tree-inference on the re-
sult. Nodes in the join-tree are cliques of variables
and tree-inference is exponential in w*, the size of
the maximal clique in the join-tree. A central prop-
erty of join-trees that validates tree-inference is the
running-intersection property: the intersection of any
two cliques must belong to every clique on the path
between them. We present two key results in con-
nection to graph-based algorithms. First, we show
that the running-intersection property, although suf-
ficient, is not necessary for validating tree-inference.
We present a weaker property for this purpose, called
running-interaction, that depends on non-structural
(semantical) properties of a knowledge base. We also
present a linear algorithm that may reduce w* of a
join-tree, possibly destroying its running-intersection
property, while maintaining its running-interaction
property and, hence, its validity for tree-inference.
Second, we develop a simple algorithm for generating
trees satisfying the running-interaction property. The
algorithm bypasses triangulation (the standard tech-
nique for constructing join-trees) and does not con-
struct a join-tree first. We show that the proposed
algorithm may in some cases generate trees that are
more efficient than those generated by modifying a
join-tree.

Introduction
Graph-based algorithms have become the standard
approach for reasoning in a number of fields, in-
cluding constraint satisfaction and probabilistic rea-
soning (Dechter 1992; Mackworth & Freuder 1985;
Jensen, Lauritzen, & Olesen 1990; Pearl 1988), and
have been introduced to other fields such as truth
maintenance and diagnosis (Geffner & Pearl 1987;
Dechter & Dechter 1994; Darwiche 1995; Darwiche &
Pearl 1994). In graph-based algorithms, a knowledge
base has two parts: (a) pieces of information about
domain atoms/variables, such as conditional probabil-
ities, clauses, constraints, component descriptions, and
operators; and (b) a graphical depiction of the struc-
ture of these pieces of information, that is, the way

they relate variables. The graphical structure may be
provided by the user (as in probabilistic networks) or
constructed by the reasoner (as in constraint satisfac-
tion) .

In either case, state-of-the-art graph-based algo-
rithms use the following technique (Jensen, Lauritzen,
& Olesen 1990; Pearl 1988; Dechter 1992; Dechter &
Pearl 1989; Jensen & Jensen 1994). First, they con-
vert a knowledge base with a graph structure into an
equivalent knowledge base with a tree structure. Sec-
ond, they perform linear inference on the tree struc-
ture. The tree structure is typically called a join-tree.
Each of its nodes represents a set of variables (a clus-
ter) in the original graph. The size of the maximal
cluster in the join-tree is called the tree-width and is
denoted by w*. Inference on a join-tree is known to be
exponential in w*.

Inference on a join-tree is simple conceptually.
When looked at procedurally, each cluster in the tree
performs a local inference involving the set of variables
it contains, and the results of these local inferences
are combined to reach a result for the global infer-
ence involving all variables. The combination of local
inferences is typically implemented using a message
passing mechanism where messages are exchanged be-
tween clusters to communicate local results. The dif-
ference between various versions of graph-based algo-
rithms seems to be (a) the type of local inferences per-
formed at each cluster (examples are deciding entail-
ment, computing partial diagnoses, and solving con-
straints); and (b) the operators used to combine lo-
cal results into global ones (examples are addition and
multiplication in probability, conjoin and disjoin in de-
ciding entailment). For simplicity of exposition, we
shall focus in this paper on graph-based algorithms for
deciding entailment. The results will extend easily to
other logic-based reasoning tasks.

A key property of join-trees that validates tree-
inference - in particular, the ability to compose a
global result by combining local results - is the
running-intersection property: The intersection of any
two clusters must be contained in all clusters on the
path between them. This property is characteristic of

Knowledge Bases & Context 607

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

join-trees and delimits the space of trees that are used An entailment test of the form Qi b o, where CK is a
by graph-based algorithms. Our key result in this pa- clause that mentions only atoms in cluster Ci, is called
per is that this property is too strong in certain cases, a local test. If A is the union of all local databases
if one is allowed to examine the logical content (seman- in a join-tree, then an entailment test wrt A can be
tics) of a knowledge base in addition to its structure. composed from local entailment tests wrt databases
We also provide a number of companion results that i&i. In fact, tree-inference, the name we use to refer to
capitalize on this observation for improving the com- the join-tree algorithm, can be viewed as a recipe for
plexity of graph-based inference. this composition.

This paper is structured as follows. First, we briefly
introduce graph-based reasoning for propositional en-
tailment and explain why the running-intersection
property is sufficient to validate tree-inference. Sec-
ond, we show that although the running-intersection
property is sufficient for this validation, it is not nec-
essary. We state a weaker property, called running-
interaction, that is sufficient for this validity. We also
present a simple algorithm that modifies a join-tree
for the purpose of reducing its zu*, possibly destroying
its running-intersection property, while maintaining its
running-interaction property. Third, we define the
class of I-trees which satisfy the running-interaction
property and show that some I-trees can never be gen-
erated by modifying a join-tree. We then present an
algorithm for generating I-trees that does not require
triangulation, which is the standard technique for con-
structing join-trees. We finally close with some con-
cluding remarks on the presented results.

Before we present tree-inference, show why it works,
and why it could still work under weaker conditions,
we need a couple of theorems about logical entail-
ment. These theorems are called decomposition and
case analysis and they represent the basis of tree-
inference.

Theorem 1 (Decomposition) Let A and I? be two
sets of propositional sentences (databases) and let S be
all atomic propositions that are common to both A and
I’. Let CY be a clause over S, that is, CY contains one
literal for each atom in S. Then:

AuI’+ovP ;fi A/=&VP(A) orrj==v@(l?).

Here, ,B is a clause, p(A) is the subset clause of /3 with
atoms occurring in A, and p(r) is the subset clause of
,O with atoms occurring in r.

Inference using a Join-Wee
The inference problem we focus on in this paper is
propositional entailment. A graph-based algorithm for
entailment takes the following input: (1) a structured
set of propositional sentences (structured database)
and (2) a clause. The algorithm decides whether the
database entails the clause. Figure l(a) depicts a
structured database, which has two parts: a directed
graph 6 with atomic propositions as its nodes, and a
set of propositional sentences A that are distributed
among the nodes of G. The sentences associated with
a node can only mention that node and its parents in
the graph G.l

Since AU l? b cv V ,8 is equivalent to A U I’ U (TX} f= ,8,
the theorem is intuitively saying that we can decom-
pose an entailment test involving two databases A and
I’ into two simpler tests, one involving A and the other
involving l?, as long as the truth of atoms that are com-
mon to A and r is fixed (by lo). The Decomposition
theorem is most valuable when used with case analysis:

Theorem 2 (Case-Analysis) Let A be a data base
and let S be a set of atomic propositions. If al, . . . , cy,
are all possible clauses over S, then

Ab/3 ifl Aj=a!lVPand . . . andAbcxa,vp.

State-of-the-art graph-based algorithms convert a
structured database into a join-tree. Figure l(b) con-
tains an example join-tree for the structured database
in Figure l(a). The details of constructing a join-tree
are not important in this section. What is important,
however, are the following properties of a join-tree:

Case analysis is typically used to set the stage for using
Decomposition. That is, if we want to decompose a
test A U I’ /= y and the clause y does not mention
all atoms that are common to A and I’, then we can
perform a case analysis on these atoms:
Corollary I (Intersection) Let A and I? be two
databases and /et S be abd atomic propositions that are
common to both A and I’. If cq, . . . , CY~ are all possible
clauses over S, then A U I’ b p ifl

1.

2.

Each node in a join-tree represents a cluster of
atomic propositions;

A 1 cq V@(A) or r b cul V p(r) and . . . and
A I= Q, WA> or r I= a, WV).

The sentences in a structured database (Figure l(a))
are distributed among the clusters of a join-tree
(Figure l(b)) so that atoms appearing in a sentence
also appear in the cluster it is associated with.
We use $l!i to denote the sentences associated with

This corollary is the basis of tree-inference, which is
stated next. First, the following notation. For a join-
tree 7 and arc Ci-Cj, we use %j to denote the subtree
that continues to include cluster Ci after deleting arc
CaXj. For example, in Figure l(b), the subtree Tr2
contains one cluster Cl, while the subtree T& contains
two clusters Cz and Cs. We also Xl!ij to denote all sen-
tences that appear in the subtree xj. For example,

cluster Ci and refer to XPi as the local database of Ci.

‘The graph 9 need not be directed in general.

608 Knowledge Representation

DSE
A&-D--E

d

Figure 1: (a) A structured database: a set of propositional sentences that are structured using a directed graph of
propositional atoms; (b) a join-tree; (c) the sepsets of the join-tree - intersections of adjacent clusters; (d) reducing
sepsets in a join-tree - we cannot remove atom A from any of the clusters, because it appears in the sentences
associated with the clusters.

in Figure l(b), Q 12 = {A > B, B 1 C}, while XP2i =
(A/X > D,AkC > 7D,D > E,AAyD > 1E).
Theorem 3 below shows how the result of a global en-
tailment test (wrt a join-tree) can be composed from
local entailment tests (wrt its clusters).

Theorem 3 (Tree-Inference) Let 7 be a join-tree,
A be the set of sentences associated with clusters in 7,
and let /3 be a clause. The entailment test A + ,8 is
equivalent to Test [I, /3], where Test[T, /3] ifl Qi b /3
when 7 contains only one cluster Ci; and Test[l, ,B] ifl

AND, Test[zj, a V /3ij] OR Test[Tj;, a~ V /3ji],

otherwise. Here, a ranges over all clauses of atoms
Ci n Cj for some adjacent clusters Ci and Cj in 7; and
Pij is the subset clause of /3 with atoms occurring in
subtree 7ij.

Algorithms for deciding entailment using a join-tree
can be viewed as implementations of the recursion in
Theorem 3. When looked at procedurally, the the-
orem suggests that we can decompose an entailment
test wrt to a join-tree 7 into a set of entailment tests
wrt subtrees 7ij and 7ji by performing a case analy-
sis on the set of atoms Ci n Cj. This set is denoted
by Sij and is known as the sepset of arc Ci-Cj. This
process can then be applied recursively on each of the
resulting subtrees, until we reach boundary conditions.
A boundary condition is a join-tree that has a single
cluster. An entailment test wrt such a tree is local by
definition.

Clearly, this process will terminate since the number
of clusters in each subtree is getting smaller each time
we decompose across an arc. The recursion, however,
does not provide a control strategy for choosing an
arc to decompose a join-tree across. Moreover, many
of the recursive calls will be redundant. Implemen-
tations of join-tree inference take care of this by (a)
implementing the recursion bottom-up starting from

clusters with a single neighbor and (b) keeping tables
with clusters and sepsets to record intermediate re-
sults. These details, however, are not relevant to our
current discussion. Suffice it to say that these imple-
mentations are linear in the size of the constructed
tables, and the tables are exponential in the size of
their corresponding clusters and sepsets.2

he Interaction Theorem
Tree-inference is a simple, recursive application of the
Intersection Corollary. The specific connection is as
follows. In this corollary: set S to the sepset Sij of
some arc Ci-Cj in the join-tree 7; set A to the database
@ij; and set I’ to the database JPji. If we make these
settings, we can use the Intersection Corollary to de-
compose a computation wrt a join-tree 7 into a set of
computations wrt the subtrees ?;j and 7ji. For this
decomposition to be valid, however, S must contain
all atoms that are common to both A and I. This is
exactly what the running-intersection property of tree
7 guarantees.

Specifically, the running-intersection property guar-
antees that the sepset Sij contains all atoms that are
common to databases XPij and \-lji. For example, in
Figure l(b), the atoms in @i2 are {A, B, C} and the
atoms in 421 are {A, C, D, E}. The intersection be-
tween the two sets is {A, C}, which is also the sepset
Sr2 shown in Figure l(c).

In other words, tree-inference is valid because the
join-tree satisfies the running-intersection property,
which in turn guarantees the condition of the Inter-
section Corollary (the Decomposition Theorem, to be
more specific). As we show next, the condition of this
corollary (Theorem) is not necessary for validating the
corollary (Theorem). This means that the running-

2Applying the recursion without caching results in ta-
bles will not lead to this linear complexity.

Knowledge Bases & Context 609

intersection property is also not necessary for validat-
ing tree-inference.

Definition 1 An atom is positive (negative) in a
database A if all its literals in the clausal form of A
are positive (negative).

Theorem 4 (Interaction) Let A and r be two
databases and let S be all atomic propositions p such
that p is positive in one of A or I’ and negative in
the other. If al, . . . , an, are all possible clauses over S,
then A U I? b ,f3 iff

[A I= ~1 v P(A) or I? /= cq V p(r)] and . . . and

[A l= an VP(A) or r I= an VP(r)].

Let us consider an example. Let A =def {A > B)
r =def {B 3 C}, 0 =def A 1 C. Then A U I b o
cannot be decomposed into A + a or I b (Y simply
because CK does not follow from either A or I alone, yet
it follows from their combination. Now let us define A
differently, A =d+ {A > lB}. Then the decomposi-
tion is valid for Q! =&f A 3 C. That is, although atom
B is common to databases A and I, and although atom
B is not mentioned in clause (Y, the decomposition is
valid because atom B has the same (negative) sign in
both databases. In general, in the Intersection Corol-
lary (and Decomposition Theorem), if some atom is
only positive or only negative in both A and I?, the
atom can be excluded from S while still maintaining
the validity of the corollary.

The implications of this on tree-inference is as fol-
lows. If an atom appears in the sepset &j and has the
same sign in both databases 9ij and Xl!ji, then it can
be removed from the sepset without compromising the
validity of tree-inference. Consider Figure 1 for an ex-
ample. Atom A appears in the sepset &2. However,
atom A has the same sign in databases Q12 and XP21.
Therefore, the atom can be removed from the sepset
while preserving the validity of tree-inference. Simi-
larly, A appears in sepset &s and has the same sign
in both databases Q23 and 932. Therefore, it can also
be removed from this sepset.

Therefore, if we have access to the local databases
associated with clusters in a join-tree, we can possi-
bly eliminate some of the atoms appearing in sepsets,
which reduces the complexity of tree-inference, while
still preserving its validity. This is not contradictory,
however, with complexity results of graph-based algo-
rithms which say that these algorithms are exponential
in ZU*. These complexity results hold for all possible
local databases that may be associated with clusters,
therefore depending only on structural properties of
a database. What the Interaction Theorem is saying,
however, is that we can improve on the 20* bound if
we are allowed to use the non-structural (semantical)
properties of a database in addition to its structural
ones. This improvement is implemented by the follow-
ing algorithm:

610 Knowledge Representation

Algorithm 1 (Modify-Join-Tree) Perform the fol-
lowing steps in order before applying tree-inference to
a join-tree:

1. For each arc Ci-Cj in the join-tree, and each atom’
A in the sepset Sij, eliminate A from the sepset if
A has the same sign in both 9ij and qji.

2. For each cluster Ci in the join-tree, and each atom
A in the cluster, eliminate A from the cluster if it
does not appear in the local database X&i and does
not belong to any of the sepsets Sij for all j.

This procedure is clearly polynomial in all important
parameters; atoms, clauses, and cluster sizes. More-
over, it may lead to reducing w* of the given join-tree.
When applying this procedure to the join-tree in Fig-
ure l(c), we obtain the one in Figure l(d). Note that
although both sepsets were reduced in size, the clusters
were not affected. This should not be surprising, how-
ever, since a cluster must include, at least, all atoms
that appear in its associated sentences. The three clus-
ters in Figure 1 include exactly those atoms.

The tree resulting from Algorithm 1 is said to sat-
isfy the running-interaction property because for each
arc Ci-Cj in the tree, the reduced sepset of the arc
summarizes the interaction between the sentences in
databases 9ij and Qji. It should be clear, given the
Interaction Theorem, that a tree satisfying this prop-
erty will produce valid results under tree-inference. We
stress, however, that although the running-interaction
property is sufficient to validate tree-inference, it may
also not be necessary. Therefore, it is possible that one
can weaken this property even further while retaining
the validity of tree-inference. But we do not pursue
this issue in the paper.

I-Trees
In light of the Interaction Theorem, the running-
intersection property and the notion of a join-tree are
too strong. The goal of this section is to define a
new class of trees that is characterized by the weaker
running-interaction property. This class of trees is use-
ful for developing algorithms that transform a graph-
based database into a tree-based one.

Definition 2 (I-Tree) Let A be a set of propositional
sentences. An I-tree for A is a tree 7 of clusters sat-
isfying the following properties:

associated with each cluster Ci in 7 is a local
database ?Tri where 9i C A and A = Uj 9j;
associated with each arc Ci-Cj in 7 is a set Zij
(called an inset) containing all atoms that appear
with diflerent signs in @ij and Qji;
the atoms in a cluster Ci are those appearing in its
local database XJ!i and insets Zij.

It is important to note the following difference between
I-trees and join-trees. First, local databases are part of
the definition of an I-trees. Second, we cannot compute

insets of an I-tree from the clusters although we can
compute sepsets from clusters in a join-tree.

There are two key reasons for defining the class of
I-Trees explicitly:
1. Some I-trees can never be generated by modifying a

join-tree as suggested by Algorithm 1.
2. There is a simple algorithm for generating I-trees

that does not use triangulation, which is the stan-
dard technique for computing join-trees.
Join-trees are constructed through a set of graph

operations, which include moralization, triangulation,
clique identification, and clique ordering. These steps
are meant to guarantee the running-intersection prop-
erty. Since we may destroy this property later, one
wonders whether it is necessary to guarantee it in the
first place. In fact, the I-tree definition suggests that
one may be able to construct I-trees directly, without
having to construct join-trees first. This is indeed true
as we show next.

Without loss of generality, we shall assume that
our database is structured around a directed graph as
shown in Figure l(a). That is, we have a directed
graph $? where each of its nodes is an atomic proposi-
tion; we have a set of propositional sentences attached
to each node; and these sentences mention only that
node and its parents in S. We now show how to con-
struct an I-tree for such a database:

Algorithm 2 (I-Tree-Construction) To construct
an I-tree for a structured database with graph S:

1. eliminate enough arcs from the graph g to transform
it into a connected tree 7;

2. For each node Ni in tree 7, define Qi as the set of
sentences associated with Ni in graph S;

3. For each arc Ni--Nj in tree 7, define the inset Zij as
the set of atoms having different signs in databases
Pij and XPji;

4. Convert each node Ni in tree 7 into a cluster Ci
containing the atoms appearing in database Qi and
insets Zij for all j;

5. Eliminate clusters that are contained by their neigh-
bors (transferring their associated sentences to the
containing neighbor).

Note that arc elimination is not deterministic. De-
pending on which arcs are eliminated, a better or worse
I-tree can be generated. Figure 2 depicts four possible
I-trees for the same structured database. The I-trees
in Figures (a) and (b) are more efficient than those in
Figures (c) and (d), assuming that efficiency is mea-
sured by the total size of tables that an implementation
will construct.

We now show a structured database with the follow-
ing properties. First, a triangulation-based method
would generate a unique join-tree for this database,
with w* = 4. Second, when reducing the size of separa-
tors and clusters of the resulting join-tree, as suggested

Figure 2: Generating I-trees. Clusters that are con-
tained by their neighbors have not been eliminated.
The sign of each atom is also shown, which is useful
for computing arc labels (insets).

by Algorithm 1, only the sepset sizes are affected. The
size of clusters remains the same. However, when con-
structing an I-tree using Algorithm 2, we obtain a tree
with w* = 3. The structured database is shown in Fig-
ure 4(a). Its join-tree together with the reduction is
shown in Figure 3. The constructed I-tree is shown in
Figure 4. Note, however, that the tables constructed
by an implementation for the I-tree in Figure 3 have
a slightly smaller size than those constructed for the
I-tree in Figure 4.

One reason why some I-trees cannot be generated
by modifying join-trees using Algorithm 1 is that the
standard method for constructing join-trees does not
generate all trees that satisfy the running-intersection
property to start with. The standard method is based
on the following steps:
1. moralize a graph by (a) connecting every pair of par-

ents for each node and (b) dropping the directional-
ity of arcs;

2. triangulate the graph by adding enough arcs so
every cycle of length four or more has a chord;

3. identify cliques of the resulting arc; and

that

4. connect the identified cliques into
the running intersection property.

a tree satisfying

Figure 5(a) depicts a graph that has a unique join-
tree, when using this standard method, which is shown
in Figure 5(b). A standard implementation of tree-
inference with respect to this join-tree would require
four tables to be constructed: one table of size 2n+1 for
each clique and two tables of size 2” for the sepset. The

Knowledge Bases h Context 611

A

B c

8

D E

F

liianpJlntlw

ABC

B

z)
A-B
69-c

BCDE BwCDD
BmceB

D

E+

(d) Cluslermns,mn,on

Figure 3: A unique join-tree construction using the
standard method.

total size is then 2n+2 + 2n+1. However, Figure 5(c)
shows another join-tree that is constructed by a proce-
dure we shall give next. The tree consists of one cluster
and, trivially, satisfies the running-intersection prop-
erty. An implementation would construct only one ta-
ble of size 2n+2 with respect to this tree.

The difference between the two methods shows up
more dramatically when using them to construct an
I-tree. If we apply Algorithm 1 to the join-tree in
Figure 5(b), we obtain the same join-tree; no reduc-
tion takes place. However, if we apply Algorithm 2
to the the structured database in Figure 5(a), we ob-
tain the the I-tree in Figure 5(d). An implementa-
tion would construct one table of size Zn+’ for clus-
ter {Bl,---,Bn,C}, one table of size 4 for each clus-
ter {A, Bi}; and two tables of size 2 for each sepset
{Bl}, therefore, totaling 2n+1 + 8n. This is better
than 2n+2 + 2n+1 which is the total size when using
Algorithm 1 on the join-tree in Figure 5(b).

Algorithm 2 can be modified slightly to construct
join-trees:
Algorithm 3 (Join-Tree-Construction) To con-
struct a join-tree for graph G:

1. eliminate enough arcs from the graph s to transform
it into a connected tree 7;

2. for each arc Ni-Nj in tree 7, define sepset Sij as
the intersection of (a) atoms in ?;j and their parents
in G and (b) atoms in 7ji and their parents in s;

3. convert each node Ni in 7 into a cluster Ci that
includes Ni, its parents in 6, and the atoms in sepset
Sij for all j;

4. eliminate the clusters contained by their neighbors.

An example of this procedure is shown in Figure 5(c)
and another is shown in Figure 6.

612 Knowledge Representation

Figure 4: Constructing an I-tree using Algorithm 2.

What is interesting about join-trees is that al-
though running-intersection is the property character-
izes them, they are typically not defined using this
property but by the way they are typically constructed:
moralize, triangulate, etc. This is probably due to the
dominance of this standard method of construction.
But other methods exist for generating join-trees -
see (Draper 1995) for example - which are based on
applying transformations to a graph of clusters in order
to generate a tree of clusters that satisfies the running-
intersection property. Six transformation are defined
for this purpose in (Draper 1995) and some constraints
are formulated so algorithms using these transforma-
tions can terminate. Algorithm 3 can be viewed as ap-
plying transformations to the original directed graph,
and is closely related to the Collapse transformation
proposed in (Draper 1995).

This paper makes several contributions to graph-based
algorithms. Most importantly is the observation that
knowledge base content (its non-structural properties)
can be useful in reducing the complexity of graph-
based algorithms. In fact, we argue that knowledge
base structure alone, although very useful, cannot lead
to completely satisfactory results. A Horn database,
for example, may have a very complicated structure,
yet it is computationally well behaved. Similarly, how-
ever, looking at knowledge base content may not suf-
fice in certain cases: a database may not be Horn and
yet have a tree structure that permits linear-time in-
ference. Therefore, neither structure, nor content are
enough on their own and we need methods that uti-
lize both. We have presented one such method in this
paper.

Figure 5: Constructing a join-tree using both the
standard method and Algorithm 3: (a) a structured
database; (b) a unique join-tree constructed using the
standard method; (c) a join-tree constructed using Al-
gorithm 3; (d) an I-tree constructed using Algorithm 2.

We have also presented a number of results that
help us in gaining more insights into graph-based al-
gorithms for logical reasoning, such as the Intersec-
tion Corollary and Interaction Theorem. Moreover,
our proposed method for generating join-trees is also
a contribution that seems to stand on its own, inde-
pendently of the main theme of this paper. We did
not, however, provide an analysis of the relative mer-
its of this new method as compared to the standard
one based on triangulation. But this is beyond the
scope of this paper.

We close by observing that although we have re-
stricted our discussion to propositional entailment, the
results we have presented can be extended easily to
a number of logic-based inferences such as comput-
ing diagnoses using graph-based methods (Geffner &
Pearl 1987; Dechter & Dechter 1994; Darwiche 1995;
Darwiche & Pearl 1994).

Acknowledgement
The work reported in this paper was partially sup-
ported by ARPA contract F30602-95-C-0251.

References
Darwiche, A., and Pearl, J. 1994. Symbolic
causal networks for reasoning about actions and

Figure 6: Constructing a join-tree using Algorithm 3.

plans. Working notes: AAAI Spring Symposium on
Decision-Theoretic Planning.
Darwiche, A. 1995. Model-based diagnosis using
causal networks. In Proceedings of International Joint
Conference on Artifical Intelligence (IJCAI), 21 l-
217.
Dechter, R., and Dechter, A. 1994. Structure-driven
algorithms for truth maintenance. Artificial Intelli-
gence. To appear.
Dechter, R., and Pearl, J. 1989. Tree clustering for
constraint networks. Artificial Intelligence 353-366.
Dechter, R. 1992. Constraint networks. Encyclopedia
of Artificial Intelligence 276-285. S. Shapiro, editor.
Draper, D. L. 1995. Clustering without (think-
ing about) triangulation. In Proceedings of the 11th
Conference on Uncertainty in Artificial Intelligence
@JAI), 125-133.
Geffner, H., and Pearl, J. 1987. An improved
constraint-propagation algorithm for diagnosis. In
Proceedings of IJCAI, 1105-l 111.
Jensen, F. V., and Jensen, F. 1994. Optimal Junc-
tion Trees. In Proceedings of the Tenth Conference
on Uncertainty in Artificial Intelligence, 360-366.
Jensen, F. V.; Lauritzen, S.; and Olesen, K. 1990.
Bayesian updating in recursive graphical models by
local computation. Computational Statistics Quar-
terly 41269-282.
Mackworth, A. K., and Freuder, E. C. 1985. The
complexity of some polynomial network consistency
algorithms for constraint satisfaction problems. Arti-
ficial Intelligence 25(1).
Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Inc., San Mateo, California.

Knowledge Bases & Context 613

