
Scaling up Logic-based Truth Maintenance Systems
via Fact Garbage Collection

John 0. Everett and Kenneth D. Forbus
QuaIitative Reasoning Group

The Institute for the Learning Sciences
Northwestern University

Evanston, IL 60201 USA
everett/forbus@ils.nwu.edu

Abstract
Truth maintenance systems provide caches of beliefs and
inferences that support explanations and search. Tradition-
ally, the cost of using a TMS is monotonic growth in the
size of this cache. In some applications this cost is too high;
for example, intelligent learning environments may require
students to explore many alternatives, which leads to unac-
ceptable performance. This paper describes an algorithm
for fact garbage collection that retains the explanation-
generating capabilities of a TMS while eliminating the in-
creased storage overhead. We describe the application
context that motivated this work and the properties of appfi-
cations that benefit from this technique. We present the al-
gorithm, showing how to balance the tradeoff between
maintaining a useful cache and reclaiming storage, and
analyze its complexity. We demonstrate that this algorithm
can eliminate monotonic storage growth, thus making it
more practical to field large-scale TMS-based systems.

I. Introduction
Over the past two decades basic research in Artificial In-
telligence has resulted in an extraordinary wealth of ena-
bling technologies. How these technologies will scale to
address real-world problems has recently become an im-
portant new frontier for AI research. Truth maintenance
systems (TMSs) [McAllester, 1978; 19901, [Doyle, 19791,
[McDermott, 19911 in particular hold out the promise of
enabling the development of articulate and responsive envi-
ronments for supporting people in learning, evaluating in-
formation, and making complex decisions.

TMSs provide valuable explanatory services to auto-
mated reasoners. However, this ability comes at the price
of a monotonic increase in the size of the dependency net-
work as new assumptions are added. We have found that
this memory demand characteristic can result in perform-
ance degradation and even software crashes in fielded ap-
plications, when the dependency network expands to fill
available memory. This was obviously possible in princi-
ple, but we were (unpleasantly) surprised at how quickly it
could happen. In one fielded application (described be-
low), the time taken to revise an assumption increased from
less than a second for the first change to almost 15 seconds
by the thirtieth change, and the application crashed on the
forty-eighth. Such times are unacceptable for an intelligent
learning environment where rapid response to changing

614 Knowledge Representation

assumptions is essential. While TMSs have been success-
fully applied to real problems (particularly in diagnosis),
we suspect that this problem is preventing more widespread
use of TMSs in large-scale applications.

Our solution to this problem is to take the metaphor of a
TMS as a cache of inferences more seriously. Caches have
update strategies that remove information unlikely to be
useful in the future. TMSs already do this partially, by
retracting beliefs in response to retracted assumptions. We
make the stronger claim, that for many practical applica-
tions, it is critical to reduce the size of the dependency
network itself in response to changing information. The
key idea is to identify a class of facts that are (a) unlikely to
be needed again once retracted and (b) almost as easy to
rederive via running rules as they would via TMS opera-
tions. Deleting such facts and the clauses involving them
will eliminate the storage cost associated with parts of the
dependency network that are likely to be irrelevant. In
essence, the TMS includes a fact garbage collector that
implements an update strategy for the TMS, viewed as a
cache for inferences.

Section 2 begins by describing the motivating applica-
tion context. Section 3 describes the algorithm in detail.
Section 4 analyzes the algorithm’s complexity and illus-
trates its performance empirically. Section 5 discusses re-
lated work, and Section 6 summarizes our results and
points out avenues of future investigation.

2. The Problem
Intelligent learning environments (ILEs) are a class of ap-
plications that make extensive use of the explanatory capa-
bilities of truth maintenance systems. The CyclePad sys-
tem [Forbus and Whalley, 19941 is an example of an ILE
for engineering thermodynamics. CyclePad can be thought
of as a conceptual CAD system, handling the mechanics of
solving equations so that students can focus on the thermo-
dynamic behavior of a design. CyclePad utilizes qualita-
tive physics to provide explanations that are grounded in
natural, qualitative terms. To provide these services, Cy-
clePad uses a customized version of the LTRE, a forward-
chaining, pattern-directed inference system described in
[Forbus and de Kleer, 19931, which contains a Logic-based
truth maintenance system (LTMS) [McAllester, 19781. All
derivations are stored in the LTMS, and the dependency

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

network so formed provides the grist for a generative hy-
pertext explanation system that lets students explore the
consequences of their assumptions.

CyclePad is designed to shift the focus of the student
from solving equations to developing better intuitions
about thermodynamics. This requires that students explore
the consequences of parametric changes to cycles they have
designed, often via sensitivity analyses. As a consequence,
the underlying LTRE may be called upon to make dozens
or even hundreds of changes to assumptions involving nu-
merical values during a typical student session. Each of
these changes can have extensive consequences; the analy-
sis of a complex cycle might require between 10 and 30
assumptions, which result in the derivation of hundreds of
additional numerical values.

The large number of assume/retract cycles and the po-
tentially large number of consequences affected by each
cycle means that the cost of this operation dominates Cy-
clePad’s performance. Observations of CyclePad in typical
conditions suggest that the amount of memory consumed
rises linearly with the number of assume/retract cycles,
while the time taken for each cycle rises non-linearly.
There are two sources for the non-linear time increase: (1)
there are more clauses to process on each iteration, because
the dependency network has grown, and (2) as storage
space begins to run out, the Lisp garbage collector and the
virtual memory system require a much larger fraction of the
total time.

3. Fact Garbage Collection
Our solution to this problem is to designate certain classes
of facts as eligible for deletion when they become un-
known. We preserve the integrity of the dependency net-
work for producing explanations of current beliefs at the
cost of greater reliance on the inference engine to rederive
facts. This solution makes sense when one can identify
classes of facts in which (1) it is unlikely that a particular
fact will be believed again once it is retracted and (2) the
cost of rederivation is small. Numerical assumptions in
CyclePad fit both of these criteria. Using a fact garbage
collector and designating statements of numerical values as
collectible results in a significant improvement in Cy-
clePad’s performance. Empirically, we have assumed and
retracted 1000 consecutive values at an average time per
assumption/retraction cycle of 3.1 seconds. In contrast,
CyclePad with the conventional LTRE on the same exam-
ple exhausted a 32MB memory space at 48 changes, at
which point the average retraction was requiring 46 sec-
onds.

The rest of this section describes the fact garbage col-
lection algorithm, and a particular implementation of it,
GC-LTRE. We begin with a brief overview of some rele-
vant LTMS and LTRE concepts, and then describe the fact
garbage collection algorithm in detail.

3.1 Overview of LTMWLTRE

Like all TMSs, the LTMS consists of nodes and clauses,
where nodes correspond to facts and clauses enforce belief
relationships among those facts. The LTMS encodes
clauses in disjunctive normal form. Although this encoding
enables clauses to operate in all directions (i.e., not just
from antecedent to consequent), any particular use of them
in a derivation does identify a set of antecedents and a par-
ticular conclusion. Relationships between beliefs are
maintained via Boolean constraint propagation (BCP).

The LTRE is a forward-chaining, pattern-directed rule
system that uses the LTMS to maintain a database of facts
related to one another via logical dependencies. Facts are
assigned truth values, which may be true, false, or un-
known, according to the label of the corresponding LTMS
node. LTRE rules consist of a list of triggers and a body.
Each trigger consists of a truth condition and a pattern.
The body of a rule is executed for each combination of
facts which both match the trigger patterns and whose truth
values simultaneously satisfy the truth conditions of the
triggers.’ Once their trigger conditions are satisfied, rules
are exhaustively executed in an arbitrary order. The LTMS
caches partially executed rules on the node of the trigger
fact that failed to match its truth condition, and signals the
inference engine to re-queue these rules when that node’s
label changes appropriately.

Rule bodies interact with the LTMS by asserting new
facts and logical relations, which in turn cause the LTMS to
add corresponding nodes and clauses to its database.
Changes in a fact’s label are thus automatically updated by
the LTMS, rather than requiring repeated execution of
rules. Because of this, the conventional LTRE guarantees
that a rule will run exactly once on each set of facts to
which it has matched, to avoid the wasted work and dupli-
cation of clauses that would result. One subtlety in making
a fact garbage collector is ensuring that rules are re-
executed in certain circumstances described below.

3.2 The FACT-GC Algorithm

To garbage-collect facts we must (a) be able to identify
collectible facts, (b) ensure that all relevant structure is
removed, and (c) cache information for restoring clause
structure under certain circumstances (discussed below).
We address the identification of collectible facts by re-
quiring applications to provide a predicate GCable? that
is true exactly when a fact is of a type that should be col-
lected when it becomes unknown. (We discuss how to de-
fine GCable? in Section 3.4.) Ensuring the deletion of
all relevant structure and the caching of clause information
only requires modifications of the LTMS operations car-
ried out when retracting an assumption. Here is the new
LTMS retraction algorithm:

’ The simultaneity requirement is a modification to the LTRE
presented in [Forbus & de Kleer, 19931. As it results in a sub-
stantial performance improvement, all versions of the LTRE used
in experiments described in this paper have this modification.

Knowledge Bases & Context 615

Retract-Assumption(n)
1. Label(n) = UNKNOWN
2. Queue = Propagate-Unknownness(n)
3. Find-Alternate-Support(queue)
4. Fact-GC(queue)

The first three steps of retract-assumption are
identical to those of the LTRE described in [Forbus & de
Kleer, 19931, with the exception of retaining the queue
computed in propagate-unknownness for additional
processing. Fact garbage collection is only attempted after
seeking alternate support so that still-labeled TMS struc-
ture is not removed.

The fact -gc algorithm simply finds collectible nodes
among those that were retracted and executes co1 let t -
node on them:

Fact-GC(queue)
1. For each node n in queue,

lf label(n) = UNKNOWN and GCable?(n)
then Collect-Node(n)

Collect-Node(n)
1. For each clause c that n participates in,

A. Create-Restoring-Thunk(C)
B. Delete(C)

2. For each rule instance R which includes n in its
bound triggers, Delete (R)

3. Delete(n)

Step 1 of collect-node, the caching of clauseinforma-
tion, is somewhat subtle, so we describe it last. Step 2 en-
sures that every unexecuted rule instantiation formed in part
by triggering on n is destroyed, both to avoid re-
introducing collected nodes and to save the effort of exe-
cuting moot rules. Step 3 deletes the node itself.

Steps 2 and 3 require processing at both the TMS and in-
ference engine levels. In Step 2, partially-bound rules must
be removed from the inference engine and from the TMS’s
cache of partially-executed rules. This step has the desir-
able side-effect of a substantial reduction in memory usage,
as the number of rules in a conventional CyclePad LTRE
can be 2,000 at startup, and rises monotonically to five
times that amount during a typical user session. In Step 3,
the node and its corresponding inference engine fact are
deleted from the TMS and inference engine respectively.

Step 1 caches information necessary to recreate the
clause about to be deleted. This is necessary because the
traditional contract ‘between inference engine and TMS
requires that rules are only run once. Since clauses are the
product of rules, the deletion of a clause can cause perma-
nent loss of information from the LTRE unless we take
steps to ensure that its creating rule runs again.

An example will clarify this point. Suppose we have the
simple database formed by the sequence of transactions:

Assume (A)
A*l3

where both A and B are collectible, and A j B is in-
stalled by a rule that was triggered by A becoming true.
Retracting A will cause B to be retracted, and both will be

collected, along with the clause that linked them. This is
both desirable and safe; if A is assumed again in the future,
the same rule will execute to create another clause, and the
system will again believe B as a result. But suppose that A
were not collectible. Retracting A would cause B to be
retracted. If we collected B, we would delete the clause
linking A and B. But since A is still in the database, the
rule which triggered on A will not be re-executed, and a
valid inference is permanently lost.

The subtlety inherent in this step arises from the expres-
siveness of LTRE rules. Consider the set of literals which
participate in the clauses that the execution of a particular
rule generates. Generally some subset of these literals
(e.g., the antecedents of an implication) will appear in the
rule’s triggers. Call these trigger literals. Our GC algo-
rithm generally requires all non-collectible literals of a rule
to be trigger literals, in order to ensure the proper caching
of a clause-restoring thunk.

A restoring thunk is needed exactly when a clause is be-
ing deleted because its consequent is being gc’d and when
at least one of its antecedents is both unknown and not gc-
able:

Create-Restoring-Thunk(C)
1. Retrieve rule instance R used to create c
2. Find antecedent M in c such that TGCable? (M)

and Unknown(M)
3. If antecedent M found then schedule R to be exe-

cuted when M receives the appropriate label.

The LTMS caches the environment of the rule instance in
force with each clause when it is constructed. Create-
restoring- thunk moves this information from the
about-to-be-deleted clause to a cache associated with a
non-gc-able and unknown antecedent. In the above exam-
ple this antecedent would be the node corresponding to A.
Should A become believed at some future time, the TMS
will check this cache and signal the inference engine to
schedule any rules found there for execution, thus ensuring
that the clause implying B will be re-instantiated. This is
merely an extension of the services that the TMS already
provides in keeping track of partially executed rules.

For this algorithm to work correctly, any non-collectible
literal which becomes unknown must be a trigger literal.
Otherwise, there is no appropriate place to cache the thunk,
and step 3 above will not execute. The exception to this is
when a rule involves no collectible literals, for this reduces
to the standard LTMS case.

There are also two cases in which it is possible that step
3 will not execute yet the LTRE will not permanently lose
structure: (a) when the application bypasses the rule engine
and installs clauses directly, and (b) when all trigger literals
are either unknown and gc-able or known. In the first case,
the onus for restoring the clause rests with the application.
The only responsibility of the TMS in this instance is to
signal the application that a directly-installed clause is to be
deleted and return that clause to the application. In the
second case the clause will be replaced by a new clause
when new gc-able facts corresponding to the trigger literals

616 Knowledge Representation

are inserted into the database because these
match and cause the execution of the rule.

new facts will

3.3 Applicability to Other Types of TMSs
Although we have implemented the fact-gc algorithm in an
LTMS, all of our concepts and algorithms are directly ap-
plicable to Justification-based TMSs (JTMS) [de Kleer and
Forbus, 19931 as well. It is less clear what the ATMS
equivalent of Fat t-GC would be, given that the ATMS
does not retract assumptions. If one added the idea of par-
ticular assumptions (or environments) becoming irrelevant,
it might be desirable to adapt something like these algo-
rithms for weeding out irrelevant environments and justifi-
cations.

3.4 How and When to Use Fact-GC
Fact garbage collection requires that the system designer
specify what classes of facts are subject to fact garbage
collection, by supplying the procedure GCable?. Candi-
dates for collectible kinds of facts are those which

@ Constitute a sizable fraction of the LTMS database
Are unlikely to become valid again once unknown

@ Are cheap to rederive

The first constraint determines how much storage fact
garbage collection will save. The second constraint con-
cerns the likelihood of needing to re-execute rules, and the
third constraint concerns the cost of re-executing rules.

In the case of CyclePad, the two classes of facts we
elected to garbage collect were

@ (<parameter> N-VALUE <value>) which states that
the continuous parameter <parameter> has as its
(numerical) value <value>, a floating point number.

@ (<parameter> PROPOSED-NVALUE <value>)
which states that <value> has been proposed by some
rule as being an appropriate value for <parameter>.

The PROPOSED-NVALUE statements represent conclu-
sions based on different possible methods for deriving a
value, and the NVALUE statements represent the particular
proposal chosen. (Conflicting PROPOSED-NVALUE

statements represent a contradiction, since all methods
should lead to the same answer.)

These choices satisfy all three constraints:

1. NVALUE and PROPOSED-NVALUE statements are
the overwhelming majority of the facts derived by Cy-
clePad.

2. While users sometimes revisit assumptions, the whole
point of sensitivity analyses (a critical activity in
building intuition about how thermodynamic cycles
work) is to systematically vary input assumptions.

3. Given the off-line compilation of rules and equations
into code, the cost of re-executing rules is small.

We suspect that many TMS applications have similar
properties.

4. Analysis and
We begin by analyzing the complexity of the algorithm,
and then illustrate its performance empirically.

4.1 Algorithmic Analysis
We assume that the cost of GCable? is negligible. The
first three steps are the standard LTMS retraction algo-
rithm, which is worst-case linear in the number of nodes
and clauses in the database. The complexity of Fat t-GC
is governed by the size of the queue Propagate -
Unknownnes s returns, so we can guarantee that the
number of nodes and clauses examined is bounded by the
complexity of the normal retraction algorithm. If the op-
erations carried out over each node and clause are of low
complexity, then the whole algorithm is worst-case linear.

The operations carried out over each node and clause
can be divided into two types, those operations that involve
only the LTMS, and those operations that involve both the
inference engine and the LTMS. The operations involving
only the LTMS are trivial, involving at worst linear opera-
tions in the size of the term list of a clause, which is typi-
cally very small compared to the number of clauses in the
database (e.g., 5 versus 10,000) and so they can be ignored.
Those involving the inference-engine can all be imple-
mented as constant-time operations if enough information
is cached, or as linear operations (e.g., our current code
implements the deletion of rules as a single pass through
the entire set of nodes in the LTMS after the rest of the
retraction is complete) quite easily. Therefore we conclude
that the entire algorithm is linear in the size of the LTMS
dependency network.

A more interesting complexity measure is the change in
storage required as a function of the number of as-
sume/retract cycles. We assume that the assumption being
made is new, in that its statement does not appear in the
TMS database until the assumption is made, and once it is
retracted, it is never reassumed. In a standard TMS, stor-
age requirements for the dependency network will grow
monotonically with the number of such cycles, with the
order of growth being linear if there are no interactions
between consequences of distinct assumptions. In a fact
GC’ing TMS, if the assumptions being made are collecti-
ble, there will in the best case be no growth in the size of
the dependency network, no matter how many as-
sume/retract cycles occur. However, in many cases there
can still be growth, since a non-collectible fact can be in-
troduced as a consequence of a collectible assumption, and
such facts are never destroyed. (This growth may assumed
to be modest, else one should consider making the non-
collectible facts introduced collectible.) As the next sec-
tion demonstrates, it is possible to approach the best case
quite closely in a realistic application.

4.2 Empirical Results
We conducted our tests of the fact-gc algorithm on Pen-
tium-based microcomputers equipped with 32MB of RAM.

Knowledge Bases & Context 617

TABLE 1: Comparative Results of 48 Retract-Assume Cycles:
ConventionaVGC-LTRE

Trial
I

Time (seconds) Facts
Execution GC Total GC-able Total Clauses Rules

0.73 / 0.63 0.16/ 0.22 0.89 / 0.85 288 I 288 1,014/ 1,014 1,301 / 1,301
2
3
4
5
6
7
8
9

10

20

30

40

48(a)

0.88 IO.66
0.96 I 0.68
0.94 / 0.63
0.99 IO.64
1.13 / 0.71
1.24 / 0.65
1.35 IO.69

1.45 I 0.67
1.56 / 0.67

2.73 IO.66

: 4.01 / 0.65

5.5’3 / 0.66

11.1’2/0.65

0.27 IO.27
0.38 IO.27
1.04 I 0.28
I .27 IO.28
1.16lO.22
1.81 / 0.27
1.15/0.22
2.63 IO.22
1.65 IO.22

1.15 IO.93

1.34 IO.95
1.98 / 0.91
2.26 IO.92
2.29 I 0.93
3.05 JO.92
2.50 IO.91
4.08 IO.89
3.21 IO.89

441 I 288
594 I 288
747 I 288
900 I 288

1,053 I 288
1,206 I 288
1,359 I 288
I,5121 288
1,665 I 288

1,167 I 1,014
1,320/ 1,014
1,473 / 1,014
1,626 / 1,014
1,779 / 1,014
1,932 I 1,014
2,085 / 1,014
2,238 I 1,014
2,391 / 1,014

2.96 IO.22 5.69 IO.88 3,195 I288 3,921 /1,014

10. iS / 0.38

15.is JO.22

35. i3 I 0.44

14.i9 / 1.03 4,725 / 288 5,451 / 1,014

20.71 IO.88 6,255 I288 6,981 /1,014

46.25 / 1.09 7,479 I288 8,205 I 1,014

1,629 / 1,301
1,957 / 1,301
2,285 / 1,301
2,613 / 1,301
2,941 / 1,301
3,269 I 1,301
3,597 / 1,301
3,925 I 1,301
4,253 / 1,301

7,533 / 1,301

io,si3 / 1,301

14,093 / 1,301

16,717 I 1,301

2,547 / 2,547
2,949 / 2,547
3,351 I 2,547
3,753 12,547
4, I55 I 2,547
4,557 I 2,547
4,959 I 2,547
5,361 12,547
5,763 12,547
6,165 I 2,547

lO,lsS / 2,547

14,205 / 2,547

18,225 I 2,547

21,441 I 2,547

(a) Conventional LTRE failed after this trial on a machine with 32 MB of RAM

Times reported, therefore, are typical of those a user of the
CyclePad system would experience.

Garbage collection provides little or no benefit to an
LTRE in which there are few known facts, so one would
expect such cases to reveal the additional cost of the GC
operations. This cost turns out to be insignificant; in a Cy-
clePad with the bare minimum of assumptions installed to
establish the structure of the problem, the assumption and
retraction of different numerical values requires 0.04 sec-
onds at the outset from both the conventional and GC
LTREs. However, by the fortieth retraction the conven-
tional LTRE requires 0.14 seconds per assump-
tion/retraction cycle, because it has been steadily adding
nodes and clauses to the TMS, whereas the GC-LTRE still
requires 0.04 seconds, and its LTRE has remained constant
in size.

clePad when the cycle is one assumption short of being
fully constrained. This is, however, precisely the situation
in which a user would find making and retracting assump-
tions most useful-when doing so provides lots of infor-
mation. The results we present below therefore focus on
this situation.

To generate the data presented in Table I, we set up a
simple refrigerator cycle example in CyclePad and iterated
through 48 assume/retract cycles, incrementing the value of
a particular numerical assumption each time. We have run
the GC-LTRE for as many as 1000 iterations on several
different CyclePad examples with no fundamental change
in the results, but we cannot do more than 48 iterations in
the standard LTRE on the simple refrigerator without
causing CyclePad to crash due to an out-of-memory condi-
tion.

Worst-case assumption/retraction behavior occurs in Cy- Table 1 shows the data for both the conventional and GC

Comparison of
Data Structures Generated

Comparison of Total Runtimes

50,000
$
5 40,000
G
2 30,000
G
a z 20,000 --

a 10,000

--- 1
Convention\3

Conventional LTRE

0 tttttttw+-
1 5 9 13 17 21 25 29 33 3741 45

Trials

1 5 9 13 17 21 25 29 33 37 41 45

Trials

Figure 1 Figure 2

618 Knowledge Representation

LTREs. Note that both execution and gc times for the con-
ventional LTRE rise steadily. By the time the conventional
LTRE exhausts memory (at 48 assumption/retraction cycles
in this particular experiment), data structures have grown
by an order of magnitude, and total processing time by two
orders of magnitude. Also note that this growth in data
structures is evenly distributed among nodes, clauses, and
rules.

In contrast we find virtually no growth in data structures
in the GC-LTRE, and total time remains virtually constant.
The graph in Figure 1 compares the growth in total data
structures. In Figure 2, note that the response times of the
conventional LTRE are distinctly non-linear. These results
indicate that one must be careful to consider the ecological
effects of an algorithm as well as its inherent complexity,
especially when attempting to scale-up a system.

5. Related Work
We are not aware of any previous paper describing TMS
algorithms that reclaim nodes and clauses, nor do we know
of any unpublished systems that do so. This may seem
surprising at first, but recall that the permanence of the
cache provided by a TMS is considered to be one of its
defining features. We were only driven to this change by a
pressing problem that arose while trying to field software.
The term “fact garbage collector” was used by Stallman
and Sussman [19771 for one of the first truth-maintenance
systems, but their program, like all subsequent TMSs to our
knowledge, maintained nodes and clauses indefinitely.

Making TMSs more efficient was a cottage industry in
the late 1980s with most of the attention focused on the
Assumption-based TMS (ATMS). The primary advantage
of the ATMS is its ability to rapidly switch among many
different contexts, but this comes at the cost of an expo-
nential node-label updating process. To address this ineffi-
ciency, Dixon and de Kleer [19881 implemented the ATMS
algorithm in a massively parallel fashion. Forbus and de
Kleer [19881 introduced the implied&p strategy, which
enables the ATMS to explore infinite problem spaces by
ensuring that the inference engine maintains firm control of
the subspace the TMS is searching, although it does not
directly address the label-updating problem. Dressler and
Farquhar [199 I] introduced a means of enabling the infer-
ence engine to exercise both local and global control over
the consumers of an ATMS. Collins and DeCoste [19911
introduced a modification to the ATMS algorithm which
compresses labels into single assumptions, while Koff,
Flann, and Dietterich [19881 implemented a specialized
version of the ATMS that efficiently computes equivalence
relations in multiple contexts. None of these schemes at-
tempted to reclaim storage.

LTMS-based research has focused on finding a practical
means of making BCP logically complete for some situa-
tions. The issue here is that BCP on individual clauses
does not infer all possible implications because logical
formulas may require encoding as multiple clauses, and
there is no explicit connection among these clauses within
the conventional LTMS. Based on the work of Tison

[19691, de Kleer [1990, 19921 has developed an algorithm
for enabling BCP to operate at the formula rather than the
clause level by utilizing prime implicates. In practice we
have found that the relative efficiency of clausal BCP is
essential in large-scale systems, and we rely on the infer-
ence engine to redress the incompleteness of the LTMS.

Of perhaps more interest in this context is the compari-
son to OPS5 type production systems [e.g., Brownston et
al, 19851, which as a matter of course delete facts from
working memory. The marriage of such systems with
TMSs has not been particularly successful nor widespread.
Morgue and Chehire [19911 have combined such a rule
engine with an ATMS, and report several problems in con-
trolling the instantiation of facts which are subsequently
discovered to be inconsistent, provoking a costly label-
updating process.

In contrast to the forward-chaining, pattern-directed in-
ference system we employ, an 0PS5 rule system does not
run all queued rules, but instead employs either weak
methods or domain-specific heuristics to select rules for
firing. We believe that, for our task domains, the additional
demands that this imposes on the rule author outweighs the
additional control afforded.

These reservations aside, OPS5 systems have been
shown to scale. Doorenbos has developed an OPS-5 pro-
duction system that scales to encompass on the order of
100,000 rules [Doorenbos, 19931. He shows that the Rete
and Treat algorithms do not scale well in the matching
phase. The solution presented is to augment the Rete algo-
rithm’s shared structure efficiencies (which occur mostly at
the top of the beta memory network) with a strategy of un-
linking elements near the bottom of the tree from the alpha
memory when they contain no beta memory elements. In
lieu of garbage collecting, this approach emphasizes parsi-
mony in space and allocation of processing time.

6. Gonclusiorn
Experience with fielding software in an AI application
forced us to go back and reexamine one of the fundamen-
tals of truth-maintenance systems, namely that dependency
networks should grow monotonically over time. If we take
the often-used metaphor of TMS as an inference cache
seriously, it stands to reason that we must provide an up-
date strategy for that cache, eliminating elements of it that
are unlikely to be useful. The fact garhage collection algo-

rithm presented here provides such a strategy. It is success-
ful enough that we have incorporated it into the current
release of CyclePad, which is in use at three universities on
an experimental basis by engineering students.

To be beneficial, fact garbage collection requires that a
TMS application identify a class of facts that are com-
monly made as assumptions, that comprise a substantial
fraction of the database, and are inexpensive to rederive.
We have demonstrated that fact garbage collection indeed
greatly benefits a specific application, an intelligent learn-
ing environment. We believe that many TMS applications
have similar characteristics.

Knowledge Bases & Context 619

On the other hand, there may be applications where fact
garbage collection provides minimal benefit or even harm.
An application which creates a large cache of nogoods,
each representing the result of considerable computation
and intended to be heavily used in future computations, is
unlikely to benefit from making the facts involved in such
nogoods collectible. Applications which switch back and
forth between a small number of sets of assumptions many
times may be better off with a traditional TMS-if the
available memory can support it. However, we suspect that
for many applications, and especially those where the pur-
pose of the TMS is to provide explanations rather than to
guide search, the fact garbage collection algorithms pro-
vided in this paper can be very beneficial. This, however,
is an empirical question.

We plan to try the GC-LTRE on other kinds of TMS-
based applications, such as coaches for ILEs and qualita-
tive simulators. Another research group at Northwestern
University is currently using the LTRE as the basis for an
educational simulator of predator-prey relationships
[Smith, 19961.

Acknowledgments
This research was supported by the Computer Science Di-
vision of the Office of Naval Research and the Applica-
tions of Advanced Technologies Program of the National
Science Foundation. We thank the anonymous reviewers
for several helpful suggestions.

References
[Brownston et al 19851 L. Brownston, R. Farrell, E. Kant,
and N. Martin. Programming Expert Systems in OPSS; An
Introduction to Rule-Based Programming. Reading, MA:
Addison-Wesley.

[Collins and DeCoste, 19911 J.W. Collins and D. DeCoste.
CATMS: An ATMS Which Avoids Label Explosions. Pro-
ceedings of the 9th National Conference on Artificial Intel-
ligence, pp. 28 l-287.

[Dixon and de Kleer, 19881 M. Dixon and J. de Kleer.
Massively Parallel Assumption-based Truth Maintenance.
Proceedings of the (jth National Conference on Artificial
Intelligence, pp. 182-187.

[de Kleer, 19901 J. de Kleer. Exploiting Locality in a
TMS. Proceedings of the 8th National Conference on Arti-
ficial Intelligence, pp. 264-27 1.

[de Kleer, 19921 J. de Kleer. An Improved Incremental
Algorithm for Generating Prime Implicates. Proceedings
of the IOth National Conference on Artificial Intelligence,
pp. 780-785.

[Doorenbos, 19931 R.B. Doorenbos. Matching 100,000
Learned Rules. Proceedings of the llth National Confer-
ence on Artificial Intelligence, pp. 290-296.

[Doyle, 19791 J. Doyle. A Truth Maintenance System.
Artificial Intelligence 12, pp. 23 l-272.

[Dressler and Farquhar, 19911 0. Dressler and A. Farqu-
har, Putting the Problem Solver Back in the Driver’s Seat:
Contextual Control Over the ATMS, in Proceedings of the
1990 ECAI Workshop on Truth Maintenance, Springer
Verlag, 1991.

[Forbus and de Kleer, 19881 Proceedings of the 6rh Na-
tional Conference on Artificial Intelligence, pp. 182- 187.

[Forbus and de Kleer, 19931 K.D. Forbus and J. de Kleer.
Building Problem Solvers. MIT Press, Cambridge Massa-
chusetts.

[Forbus and Whalley, 19941 K.D. Forbus and P. Whalley.
Using Qualitative Physics to Build Articulate Software for
Thermodynamics Education. Proceedings of the 12th Na-
tional Conference on Artificial Intelligence, pp. 1175 1182.

[Koff, Flann and Dietterich, 19881 C. Koff, N.S. Flann,
T.G. Dietterich. An Efficient ATMS for Equivalence Rela-
tions. Proceedings of the 6th National Conference on Arti-
ficial Intelligence, pp. 182-l 87.

[McAllester 19781 D.A. McAllester. A Three- Valued
Truth Maintenance System, S.B. thesis, Department of
Electrical Engineering, Cambridge: M.I.T.

[McAllester 19901 D.A. McAllester. Truth Maintenance.
Proceedings of the 8rh National Conference on Artificial
Intelligence, pp. 1109-l 116.

[McDermott, 19911 D. McDermott. A General Frame-
work for Reason Maintenance. Artificial Intelligence 50
pp. 289-329.

[Morgue and Chehire, 199 l] G. Morgue and T. Chehire.
Efficiency of Production Systems when Coupled with an
Assumption-based Truth Maintenance System. Proceedings
of the 9th National Conference on Artificial Intelligence,
pp. 268-274.

[Smith, 19961 B. K. Smith. Why Dissect a Frog When You
Can Simulate a Lion? Abstract, to appear in the Proceed-
ings of the 13th National Conference on Artificial Intelli-
gence.

[Stallman and Sussman, 19771 G.J. Sussman and R.M.
Stallman. Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit
Analysis, Artificial Intelligence 9 pp. 135196.

[Tison, 19671 P. Tison. Generalized Consensus Theory
and Application to the Minimization of Boolean Functions.
IEEE Transactions on Electronic Computers 4 (August
1967) pp. 446-456.

620 Knowledge Representation

