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Abstract 

The logic of context with the ist (c,p) modality has 
been proposed by McCarthy as a foundation for con- 
textual reasoning. This paper shows that proposi- 
tional logic of context is NP-complete and therefore 
more tractable than multimodal logics or Multi Lan- 
guage hierarchical logics which are PSPACE-complete, 
This result is given in a proof-theoretical way by pro- 
viding a tableau calculus, which can be used as a deci- 
sion procedure for automated reasoning. The compu- 
tational gap between logic of context and modal logics 
is analyzed and some indications for the use of either 
formalisms are drawn on the basis of the tradeoff be- 
tween compactness of representation and tractability 
of reasoning. 

Introduction 
In the last few years there has been a renewed inter- 
est in the use of contexts for natural language un- 
derstanding and knowledge representation form. In- 
deed, the discussion about contextual reasoning in AI 
can be traced back to McCarthy’s Turing Award Lec- 
ture in 1971, and has been recently tackled by Shoham 
(1991) and McCarthy (1993). The need to put theories 
in their contexts is also connected to meta-reasoning 
(Weyhrauch 1980; Aiello & Levi 1984), while (Fagin et 
al. 1995) also discuss the modeling of human reasoning 
as non interacting contexts. 

There has been many proposals to give a logical for- 
malization of contextual reasoning. Just to mention a 
few, we may start with (Shoham 1991), which uses an 
exponent 4” to say that 4 holds in context c; or the 
logic of context introduced by (Guha 1991a), where 
the expression ist (c, 4) is used; this approach is fol- 
lowed also by Buvac et al. (1993; 1995); one may also 
refer to the Multi Languages systems by Giunchiglia 
et al. (1993; 1994), where (4, i) means that 4 holds in 
the i-th meta-theory. Although arising from different 
perspectives, all proposals share a common intuition: 
contextualize the formulae of a knowledge base, i.e. la- 
bel formulae with additional information to “situate” 
them in the appropriate context. 

The explicit representation of the context, where a 
property of a common sense knowledge base holds, or 
an English sentence is uttered, etc. can be a possible 

solution to the problem of generality in AI (BuvaE & 
Mason 1993; McCarthy 1993) and also make it possible 
to effectively manage huge knowledge bases by localiz- 
ing deduction and constraining the search space (Guha 
1991a; Giunchiglia et al. 1993). 

It is important to notice the practical aspect of this 
research, as noted in (Giunchiglia & Serafini 1994): 

[. . .] One of our main interest is, in fact, to 
provide foundation to the implementation of “in- 
telligent” reasoning systems. 

Thus Multi Language hierarchical logics (ML systems 
for short) from Giunchiglia et al. (1993; 1994) may be 
seen as the foundation of the FOL and GETFOL systems 
by (Weyhrauch 1980; Giunchiglia 1992), whereas the 
logic of context of Guha (Guha 1991a) and BuvaE et al. 
(1993; 1995) could play the same role for Cyc micro- 
theories (Guha & Lenat 1990; Guha 1991a). 

In this setting, a question is definitely relevant: 

Question 1 Which is the computational complexzty of 
(these formalizations for) contextual reasoning? 

A partial answer has already been given: the 
equivalence results with modal logics established by 
(Giunchiglia & Serafini 1994) prove (indirectly) that 
their Multi Language hierarchical logics are PSPACE- 
complete as modal Zogics (Ladner 1977; Halpern & 
Moses 1992). The question was still open for the 
logic of context since the decidability proof of (Buvac! 
Buvai:, & Mason 1995) gives a NEXPTIME algorithm. 

We show that the satisflability problem for propo- 
sitional logic of context is NP-complete and give a 
tableau based decision procedure which solve the satis- 
fiability problem in nondeterministic polynomial time 
0( ( @ 14) in the size of the formula <p, also when multi- 
ple contexts are present. Hence logic of context is more 
tractable than modal Zogics (unless NP=PSPACE), 
somehow vindicating McCarthy’s claim “Modality yes, 
modal logic no.” 

Unfortunately, there is trade off between tractabil- 
ity of reasoning and compactness of representation 
(Cadoli, Donini, & Schaerf 1994; Gogic et al. 1995). 
In rough terms, PSPACE-completeness means that an 
exponential model can be polynomially represented by 
a modal formula (Halpern & Moses 1992). Since the 
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logic of context is NP-complete, then it cannot repre- 
sent such information in compact form. 

Back to intelligent systems this means that a tree of 
theories can be compactly stored with modal logics (and 
ML systems) but not with the logic of context. 

This paper analyses further these differences from 
the viewpoint of the compactness of the representa- 
tion and shows how a formula can represent a tree in 
modal logic but not in propositional logic of context. 
We also show how logic of context can be seen as an 
approximation of modal logics. 

From these results we conclude drawing up some in- 
dications to answer the following question: 

Question 2 When should we choose multi modal log- 
its (or ML systems) or the logic of context? 

Propositional Logic of Context 
We assume some basic knowledge of the propositional 
logic of context by (Guha 1991a; McCarthy 1993; 
BuvaE, Buvac, & Mason 1995). Thus, if P is a set 
of propositional letters p, C is a set of contexts c (even- 
tually indexed), then our formulae cp, II, E &XT are 

WI ::= p 1 lcp 1 pA$I ist(c,cp) 

Other connectives can be seen as abbreviations. In the 
sequel c’, is a sequences of contexts (cl, . . . , cn). The 
sequence &ocA is a shortcut for the concatenation of 
c’, and (CA). A sequence & extends a sequence c’i if 
there is a sequence G such that & = 6 04. 

Intuitively, ist (c, ‘p) means that cp “is true” in the 
context c. We follow (BuvaC, Buvai:, & Mason 1995) 
and interpret ist () as “is valid” in a context since we 
are interested in deduction in knowledge bases. 

The semantics is a slight modification of Kripke 
model and we present here a simplified version of the 
original one from (BuvaE, BuvaE, & Mason 1995): 

Definition 1 A layered model is a pair (W, C) where 
W is a set of propositional valuations (possible worlds) 
and C a function which maps sequences of contexts c’, 
into subsets of W. 

The term “layered” has been used since a sequence 
of contexts can be seen as a sequence of layers, each 
build up from the valuations proper of that sequence. 
For instance Fig. 1 shows the case of Gen. Powell from 
US politics, where he is considered a conservative al- 
though, among republicans, he is regarded as a leftist. 

The original proposals of (Guha 1991a; Buvac, 
BuvaE, & Mason 1995) also included a vocabulary to 
cope with partial world descriptions i.e. meaningless 
sentences (neither true nor false in a given context). 
In this paper we only deal with complete descriptions. 
In (BuvaE, BuvaE., & Mason 1995) this is called defined- 
n,ess convention. A tableau calculus which takes into 
account also meaningless sentences has been developed 
in (Massacci 1995). 
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0 1 L!! 0 2 
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conservative(Powell) 
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US * politics 

US e politics o republican 

Figure 1: A layered model 

Definition 2 Let (W, C) be a layered model, c’, a se- 
quence of contexts and w E C(&) a valuation, then the 
entailment relation c’,, w/=cp is such that: 

o &, w/==p iff w(p) = true where p E P 
e &,w~=(PA$ iflc’,,w/==cp and &,wbG 

* c’,, +lcp @X, wkcp 
e c’,, whist (c,(p) ifl for every w* E C(c’,oc) it is 

Definition 3 A formula @ is satisfiable for the con- 
text sequence E’i if and only if there is a layered model 
(W, C) and some w E C(c’i) such that c’;, w+@, 

An Hilbert axiomatization, under the definedness con- 
vention, has been given by (BuvaE & Mason 1993; 
BuvaE, BuvaE., & Mason 1995) and knowledge bases 
can be integrated into this framework either with the 
deduction theorem as in (BuvaE, BuvaE, & Mason 
1995) or directly incorporating them into the tableau 
calculus as in (Massacci 1995). 

Tableau-based Decision Procedure 
The tableau calculus - see (Fitting 1990) for an intro- 
duction - is based on prefixed tableaux as in (Fitting 
1983; Massacci 1994): L CxT-formulae are labelled with 
some model theoretic information. 

For the logic of context, the labels must capture two 
semantical information: the sequence of contexts and 
the possible world. So, a contextualized formula is a 
pair (& [m] : ‘p) w h ere c’, is a sequence of contexts, m 
an integer and cp a formula of LCxT. Intuitively, a 
contextual prefix &[m] “names” the m-th superficial 
valuation of C(&), where cp holds. In Fig. 1 we may 
represent our knowledge as 

(US, politics) [3] : conservative( Powell) 

The definition of tableau is standard: a tableau is a 
binary tree, whose nodes are labelled with contextual- 
ized formulae, and a brunch is a path from the root to 
a leaf. Tableau rules (Fig. 2) transform a tree into an- 
other tree by adding nodes or branching the tree. The 



Pos-entering : 
&[m] : ist (c, cp) 

znoc k : cp 
where c’,oc[k] is present in the branch 

Neg-entering : 
&[m] : list (c, cp ) 

c’,ock :“p 
where c’,oc[k] is new and some &oc[j] : lcp does not occur already 

Figure 2: Tableau Rules for Contextual Reasoning 

basic intuition behind a tableau calculus is refutational 
theorem proving: break down connectives and search 
for contradictions. If all possible choices lead to a con- 
tradiction, then the initial formula is unsatisfiable. 

The rules for propositional connectives are standard, 
whereas the entering rules are the “truly” contextual 
ones. They require some terminology i.e. &[m] is 
present in a branch if there is a contextualized formula 
(& [m] : ‘p) already in the branch, whereas it is new for 
a branch if it is not present. Intuitively, we enter into 
a context to perform some further deduction there. 

For example, we may state that, in the context of US 
politics, conservative are not leftist and that Powell is 
a conservative. Still, it should be satisfiable to say that 
among republicans Powell is not regarded as a leftist: 

(US) [l] : ist(politics, 
conservatiwe(Powelb) + lbeftist(Poweld)) 

(US) [2] : ist (politics, conservative(PoweZl)) 
(US)[l] : +st(politics, ist(republican, 

+eftist (Powell))) 

Here we assume that (US) [l] and (US) [2] are the only 
worlds generated at this stage by the tableau calculus. 

To verify that this situation is indeed satisfiable, we 
can apply Neg-entering to the last contextual formula 
and thus introduce a new world (US, politics) [3] and 
the contextualized formula 

(US, podit its) [3] : list (republican, lleftist(Poweld)) 

Thus, in C( (US, politics, republican)) there should 
be a world where lEeftist(Powelb) does not hold. We 
call this “new” world 6 and apply negative entering 
again to obtain: 

(US, politics, republican)[tj] : 11leftist(Powebl) 

We continue with dneg to get: 

(US, politics, republican) [6] : leftist( Powell) 

We may also go back to (US)[l] and check whether 
conservative and leftist are compatible by applying at 
first Pos-entering and then p to the implication. In 
one branch we get 

(US, politics) [3] : -conservative( Powell) 

which is clearly contradictory with the knowledge gath- 
ered so far and makes it possible to discard the branch. 
However the other branch leads to 

(US, politics) [3] : lleftist(PoweZZ) 

which does not lead to a contradiction: the general con- 
text of US politics is a different from the more specific 
context of republican politics in US. We use a notion 
of contradiction which is sensible to the context: 

Definition 4 A branch is closed if two contextualized 
literals (Zn[m] : p) and (&[m] : -p) are both present in 
the branch for the same contextual prefix c”, [m]. It is 
completed if all rules have been applied. It is open if 
it is completed and not closed. 

Definition 5 A tableau is closed if all branch are 
closed. It is open if at least one branch is open. 

Definition 6 A validity proof for the formula @ for 
the initial context Zi is the closed tableau starting with 
(Zi [0] : +B). A satisfiability proof for @ is an open 
branch of the tableau starting with (c[O] : @). 

Intuitively, to prove that @ is valid we try to con- 
struct a counter model for it and if we fail (the tableau 
is closed) we conclude that it is valid. Thus, we have 
an effective proof theory and a nondeterministic algo- 
rithm for the satisfiability of Qi can be easily derived 
(Alg. CXT-SAT). F or a deterministic one, simply add 
backtracking at choice points as in (Fitting 1990). 

Completeness and Complexity 
Soundness and completeness of the calculus can be 
proved with an almost standard procedure (Fitting 
1983; Massacci 1994). 

Theorem 1 A formula @ is satisfiable for the context 
5 ifl the tableau starting with {c[O] : (a} is open. 

Proof. We sketch the completeness part. Start with 
(6 [0] : a} and apply a systematic procedure to the 
tableau. If it does not close, one can choose an open 
branch and construct a model. 

The key idea is to use the labels &[m] occuring in the 
branch as possible worlds and to define the assignments 
of propositional variables so that w(&[m])(p) = true 
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) initialize 8 := {crO] : ia} 

B repeat 

- if 8 contains &[m] : p and Z”[m] : lp for some 
prefix and some propositional letter then stop 
with failure; 

- else if B is completed then stop with SAT; 
- else select a formula &[m] : $ not yet pro- 

cessed; 
* mark the formula as processed unless it is a 

c’, [ml : ist (CA, cp) which has not been applied 
to all ,-,ocA[k] present in a; 

* if the (p) rule branch the tableau then choose 
nondeterministically a branch; 

* add the consequent formulae to 8; 
* if a new prefix &ocA[k] has been introduced 

then mark all prefixed formulae of the form 
&[m] : ist (CA, cp) as not yet processed. 

Figure 3: Algorithm CXT-SAT 

iff (& [m] : p) is present in the branch. This can be 
safely done since for no p E P both (& [m] : p) and 
(&[m] : lp) are present (otherwise the branch would 
be closed). Then, let C maps each sequence of contexts 
c’, into the set of valuations w(&[m]) built so far. 

Finally one exploits the completion of the branch 
to shown that if (&[m] : 4) is present in the branch 
then c’,, w(Zn[m])kq5. For instance if (&[m] : q5 A I,!J) is 
present in the branch both (&[m] : 4) and (Zn[m] : $) 
must be present and the claim follow by a induction. 

Hence 6, w(g[O]) b@ and thus @ is satisfiable. 0 

Now we are left with the following. . . 
Question 3 Which is the complexity of CXT-SAT? 
The problem is clearly NP-hard since it subsumes 
propositional satisfiability (Cook 1971), and therefore 
we only need NP membership. 

So let @ be the formula to be checked and C, P and 
L be respectively the number of ist 0, propositional 
connectives and different literals occuring in @. 

Lemma 2 Alg. CXT-SAT generate at most O(C3) 
dz’flerent prefixes &[m] whichever branch is chosen. 

Proof. At first observe that any application of the en- 
tering rules decrease the number of ist () modalities 
present in the new formula. Hence the length of each 
sequence extending the initial ?i is bounded by C. 

Next, for each sequence Go(ci+i, . . . , en) present in 
the branch, there must be at least one sub-formula 
of the form ist (ci+r, . . . , ist (cn, . . .)) occuring in @, 
where each ist () may be either prefixed by a nega- 
tion or not. Since the number of ist () subformulae is 
bounded by C, so is the number of different sequences. 

Third, given a sequence 6o(c;+i,. . . , en) we must 
prove that for each j between i + 1 and n the number 

of different prefixes Zj [m] is bounded by C. The only 
rule which introduces new prefixes is negative entering 
(Fig. 2). Note that from the generating formula 6 [m] : 
list (cj+i, 4) to the new formula $ocj+l[k] : 14, the 
information about the generating world is discarded 
and only the information about the sequence Zj is kept. 
Thus, no matter how many worlds we generated at step 
j, at step j + 1 we need a different list (cj+l, 4) sub- 
formula of Q to create a new world. These subformulae 
are also bounded by C and hence the claim. •I 

Now, for every prefix c’, [k] we may have to reduce 
some propositional connectives i.e. O(P) times O(C3). 
After this stage, when everything has been broken 
down into prefixed literals we must check for consis- 
tency each prefix &[m] i.e.check whether there are two 
contradictory literals and this takes O(C3 x L). So a 
nondeterministic upper bound of 0( I@ 14) follows by a 
simple multiplication: 

Theorem 3 Propositional logic of context is NP- 
complete and satisfiabidity can be checked in nondeter- 
ministic polynomial time 0( 1 <p I”). 

One may wonder why this proof cannot be applied 
to modal logics. Indeed, the first two part of the proof 
of Lemma2 hold for modal logics. The third step fails: 
the information about the generating world matters. 

Comparison with Modal Logic 
The logic of context, in its propositional form, can 
be seen as a normal multi modal logic: just re- 
place ist (c, 4) with [c]$. Therefore one would have 
expected also the same complexity. On the con- 
trary, modal logics for knowledge and belief are 
PSPACE-complete in the multi-modal case (Ladner 
1977; Halpern & Moses 1992). It is therefore worth 
to analyze further the differences between these logics. 

In the sequel we assume some knowledge of modal 
logic (Fagin et al. 1995; Halpern & Moses 1992). 
As mentioned, the language is (practically) the same, 
whereas the semantics is based on Kripke models, that 
is pairs (IV, R c w ) h ere W is a set of propositional val- 
uation (possible worlds) and Rc a family of relations 
over W. One may obtain different logics by varying 
Rc. In the sequel we focus on the simple logic Ii’, (no 
restriction on Rc). 

Definition ‘7 Let (W, Rc) be a Kripke model, w a val- 
uation in W, then the entailment relation w+qS is s.t. 

e wbp ifl w(p) = true where p E P; 
o wbq!~r\$ ijfwb# and wb?.,b; 

* WI=14 ie-+d; 
0 wl=[c]+ iflfor every w* such that wR,w* it is w* j=q5 

where R, E 7& 

A formula 4p is satisfiable iff there is a Kripke model 
(W, Rc) such that for some w E W it is wb$. 
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Figure 4: Kripke and Layered Models 

In the sequel we use the term objective knowledge of 
a world (either in a layered or a Kripke model) to de- 
note the truth values it assigns to propositional letters. 
For instance in Fig. 4 worlds (1) and (2) differ for the 
objective knowledge of p. 

The key part of the PSPACE-hardness proof in 
(Halpern & Moses 1992) is to show that in multi modal 
logic one can represent a complete tree of depth m with 
a short formula, polynomial in m. In case of Fig. 4 we 
can reformulate this problem as follows: 

Question 4 Can a formula say that worlds (1) and 
(2) generate a pair of worlds (with different objective 
knowledge) without being repeated twice? 

Question 5 Can a formula distinguish the subtree 
rooted in world (1) from that rooted in world (2) by 
looking locally at those worlds? 

If both answers are yes, we can represent 
model with a formula of polynomial size. 

a tree-like 

Fact 1 To represent branching either in the logic of 
context or in the modal logic I< (replacing ist (c, 4) 
with [c]d) we can put in the world (0) the formula 

@branch = ist (c, list (c, q) A list (c, 19)) 

One can use the tableau to verify it: start with E[O] : 
@bran& and assume that the context prefixes <oc[l] 
and Zi oc[2] were already present. 

So question4 does not discriminate enough. 

Fact 2 Modal logics can distinguish the subtrees with 

@local-inherit = [cl HP + klP) A (1P + k+P>> 

but logic of context cannot. 

The key point is that we can use p --f [c]p to express a 
local constraints: once we arrive at (l), then all worlds 
accessible from it will inherit p, without touching the 
worlds reachable through (2). In the logic of context 
we have global inheritance: all worlds reachable in two 
c-steps will be affected, no matter if reached through 
(1) or (2). Hence we can distinguish logics with: 

@DIFF + ~[c]P A l[C]lp A @branch A @local-inherit 

Proposition 4 The formula <PJJIFF is satisfiable in 
modal logic I<, but not in logic of context. 

In the layered model shown in Fig. 4 this means that 
(3) and (4) are identical: both satisfy q and both can 
satisfy either p or lp (but clearly cannot satisfy them 
together and thus QPDIFF is unsatisfiable). 

At this stage one may wonder if the same trick used 
to prove PSPACE-completeness of S5n in (Halpern & 
Moses 1992) works here: replace [c] with [cA][c~] and 
check the satisfiability of @g;FF in the logic of context. 
One can use the tableau to check that 

Proposition 5 The formula @giFF is satisfiable in 
modal logic S52 but is not in logic of context. 

Hence we may conclude with the following property: 

Theorem 6 Modal logic is exponentially more suc- 
cinct than logic of context. 

Proof. In the modal logics for knowledge and belief 
Kn . . . S4, (and also S5, for n 2 2) one can represent 
a Kripke model with at least 2” worlds with a formula 
of size only O(m2), generalizing QDIFF to tree of depth 
m as in (Ladner 1977; Halpern & Moses 1992). On the 
contrary, in the logic of context, each formula <p can 
be satisfied in a layered model with at most 0( 1 ip I”) 
worlds by Lemma2. Thus, to represent structures with 
at least 2” worlds one needs a formula almost of the 
same size i.e. O(2m13)). 0 

Still, the relationship between modal logics and logic 
of context is much subtler. Intuitively we may charac- 
terize a world by. . . 

1. its objective knowledge, 

2. the introspection steps necessary to reach it, 

3. the particular path used to reach it. 

Logic of context uses only the first two information to 
distinguish a pair of worlds whereas modal logic uses 
all three. Therefore logic of contexts can be seen as 
an approximation of modal logics Ii’, which takes into 
account only the steps of introspection. For instance 
in the mono-modal case (one context) we only look if 
we need one, two, three etc. steps of introspection. 
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Conclusions 
We can summarize new and old results about the com- 
plexity and compactness of logic of context and modal 
logics (ML systems) as follows: 
Tractability of Reasoning: logic of context is NP- 

complete whereas modal logics and ML systems are 
PSPACE-complete. Logic of context can be seen 
as an approximation of modal logic where only the 
steps of introspection does matter. 

Compactness of Representation: the logic of con- 
text can store compactly non-theorems for a group 
of theories while modal logics (and ML systems) can 
represent in compact form such a tree pIus local in- 
heritance of theorems. Thus modal logic can be ex- 
ponentially more succinct than logic of context. 
At this stage we may look back to intelligent systems 

and ask whether these technical results can provide an 
indication for the choice of a formalism in practice. 

Of course, there are many different viewpoints that 
must be taken into account: the expressiveness of 
the language, the possibility to cope with limited 
omniscience etc. In this respect we refer to Guha 
(1991a), McCarthy (1993) and BuvaE et al. (1995) 
for the logic of context, to Giunchiglia et al. (1994) for 
Multi Language Systems and to (Fagin et a/. 1995; 
Halpern & Moses 1992) for modal logics. 

Still, in the quest for intelligent and effective systems 
some indications can be drawn: 

if positive knowledge is the main (and overwhelming) 
component then logic of context fits better; 

whenever positive and negative knowledge are mixed 
we may choose the logic of context if global inheri- 
tance of positive knowledge between theories is the 
main requirement; 

complex structures with negative knowledge and 
local inheritance of positive knowledge suit better 
modal logics since storing same information with 
logic of context may lead to an exponential blow up. 
Finally there is also the possibility to use the tableau - _ _ 

for the logic of context as a sound approximation for 
the satisfiability of modal logics. 

As a conclusion, we may rephrase McCarthy’s state- 
ment from a computational perspective: 
“Modality yes, logic of context. . . sometimes”. 
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