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Abstract 

Early work on default reasoning aimed to formalize 
the notion of quickly “‘jumping to conclusions”. Un- 
fortunately, the resulting formalisms have proven more 
computationally complex than classical logics. This 
has dramatically limited the applicability of formal 
methods to real problems involving defaults. The 
complexity of consistency checking is one of the two 
problems that must be addressed to reduce the com- 
plexity of default reasoning. We propose to approxi- 
mate consistency checking using a novel synthesis of 
limited contexts and fast incomplete checks, and ar- 
gue that this combination overcomes the limitations 
of its component parts. Our approach trades correct- 
ness for speed, but we argue that the nature of default 
reasoning makes this trade relatively inexpensive and 
intuitively plausible. We present a prototype imple- 
mentation of a default reasoner based on these ideas, 
and a preliminary empirical evaluation. 

Computation and Nonmonotonicity 
Early work on nonmonotonic reasoning (NMR) was of- 
ten motivated by the idea that defaults should make 
reasoning easier. For example, Reiter (1978) says 
“[closed-world reasoning] leads to a significant reduc- 
tion in the complexity of both the representation and 
processing of knowledge”. Winograd (1980) observes 
that agents must make assumptions to act in real time: 
“A robot with common sense would [go] to the place 
where it expects the car to be, rather than . . . think- 
ing about the infinite variety of ways in which circum- 
stances may have conspired for it not to be there.” 

Paradoxically, formal theories of NMR have been 
consistently characterized by their intractability. For 
example, first-order default logic (Reiter 1980) is not 
semi-decidable and its inference rules are not effective. 
In the propositional case, most NMR problems are 
Cr or IIF-complete (Gottlob 1992; Stillman 1992).l 
Even very restricted sublanguages based on proposi- 
tional languages with linear decision procedures remain 

‘Arguably, this complexity is the price of increased ex- 
pressivity, allowing NMR formalisms to represent knowl- 
edge that can’t be concisely expressed in monotonic logics 
(Cadoli, Donini, & Schaerf 1994; Gogic et al. 1995) but 
this observation is little help in building practical systems. 

NP-complete(Kautz & Selman 1989). Convincing ex- 
amples of broadly useful theories within demonstrably 
tractable languages for NMR have yet to appear. 

A nonmonotonic formalism sanctions a default con- 
clusion only if certain facts can be shown to be con- 
sistent with the rest of the system’s beliefs-i.e., only 
if it can be shown that the default is not a known 
exceptional case. Unfortunately, consistency is gener- 
ally even harder to determine than logical consequence. 
The need to prove consistency before drawing default 
conclusions is the first source of the intractability of 
nonmonotonic formalisms. 

The second source of intractability is that the order 
in which default rules are applied can effect the exten- 
sion generated. It is these two sources of intractability 
together that produce the CF (or II;) time complexity 
of most problems in default reasoning. However, given 
an oracle for consistency checking, some interesting 
problems, such as finding an extension for a normal de- 
fault theory, could be solved tractably. Conversely, an 
oracle for default ordering would produce tractability 
only for languages with very limited expressive power. 
Furthermore, the ability to check consistency quickly is 
interesting in its own right for many propositional rea- 
soning tasks. Therefore, we believe that a first step to- 
ward developing practicable nonmonotonic reasoners is 
to reduce their dependency on intractable consistency 
checking. 

Our approach to approximate consistency checking 
is ultimately based on limiting the search for excep- 
tions. This approach has the intuitive appeal that a de- 
fault can be applied without first having to discount ev- 
ery possible reason this case might be exceptional. We 
hope to recapture the intuition that a default should 
be applied unless its inapplicability is readily appar- 
ent (i.e., “at the top of your mind”). Our approach 
trades accuracy for speed: “inappropriate” conclusions 
may be reached that must be retracted solely due to 
additional thought, but this tradeoff accords with the 
original arguments for default reasoning. More impor- 
tantly, we argue, defaults generally seem to be used in 
ways that minimize the cost of this tradeoff. 

We limit our discussion to default logic (Reiter 
1980), but it is important to note that our ideas apply 
directly to other nonmonotonic formalisms. A default 
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has the form w, whe re P, J, and C are formu- 
lae whose free variables are among 3 = xi, . . . . x,; they 
are called the prerequisite, justification, and consequent 
of the default, respectively. The default can be read 
as saying that things satisfying P typically satisfy C 
unless known not to satisfy J. 

Sufficient Tests for Consistency ’ 
Consider testing whether p is consistent with a KB. 
The good news is that there are fast sujJicient tests 
for consistency. For example, provided the theory and 
,0 are each self-consistent, it suffices (but is not neces- 
sary) that no literal in 10 occurs in the clausal repre- 
sentation of the theory. This can be tested in at worst 
linear time even for non-clausal theories. Similarly, if 
+l occurs only in clauses with pure literals, p is consis- 
tent with the KB. More complicated tests derive from 
techniques in (Borgida & Etherington 1989)) knowl- 
edge compilation (Selman & Kautz 1991) and multi- 
valued entailment (Cadoli & Schaerf 1992). 

harder problem of determining relevance, Conversely, 
using a randomly-chosen context for consistency check- 
ing could be expected to produce very cheap consis- 
tency checks (since the fastest sufficient tests will be 
likely to succeed), and still have (marginally) better- 
than-random accuracy (applicable defaults won’t be 
contradicted, and inapplicable default might be de- 
tected). Naturally, any realistic context-selection 
mechanism will fall between these extremes. Addi- 
tional effort spent on context building can reduce the 
accuracy lost in focusing on the context: like most 
approximation schemes, practical context selection in- 
volves balance. 

Unfortunately, there are two serious obstacles to us- 
ing such fast tests. Those fast enough to check the 
whole KB in real time can be expected to fail in re- 
alistic applications. It would be a peculiar KB that, 
for example, had the default “Birds usually fly” with 
no information about non-flying birds! Representing a 
rule as a default seems to presume knowledge (or at 
least the strong expectation) of exceptions. This will 
cause the fast tests described above to fail, giving no 
useful information. The more complicated tests, such 
as knowledge compilation, are too expensive to do on 
the whole KB before each default is applied. More- 
over’ since applying defaults expressly changes what is 
believed, compilation cannot be done once in advance. 

Just what a context should contain is an open 
question, but a rudimentary notion suffices to illus- 
trate the idea (c.f. (Elgot-Drapkin, Miller, & Perlis 
1987)). Facts come into the context as they are at- 
tended to (e.g., from perception or memory), and exit 
as they become stale. The context should include 
ground facts known about the objects under discus- 
sion (e.g., Tweety) as well as rules whose antecedents 
and consequents are instantiated by either the con- 
text or the negation of the justification to be checked 
(e.g., if Penguin(Tweety) is in the context, check- 
ing the consistency of FEies(Tweety), should draw in 
Vx. Penguin(x) > +‘Zies(x)). Such a context can be 
built quickly using good indexing techniques. 

Context-Limited Consistency Checking 

This simple notion of context can be elaborated in 
many ways. Limited forms of rule chaining can be pro- 
vided if chaining can be tightly bounded. For example, 
if the KB has a terminological component (c.f. (Brach- 
man & Schmolze 1985))’ chains through the type hier- 
archy might be brought in by treating deductions from 
terminological knowledge as single ‘rule’ applications. 
Also, “obvious” related items can be retrieved using 
Crawford’s (1990) notion of the accessible portion of 
the KB, Levesque’s (1984) notion of limited inference, 

If computational resources are limited, it makes sense 
to focus our search for inconsistency on the relevant 
parts of the KB. For example, the default that you 
can get a babysitter might fail for prom night, but is 
unlikely to be affected by the stock market; a limited 
reasoner that devotes much effort to seeing if market 
fluctuations prevent hiring a sitter seems doomed. 

Focusing on limited contexts provides two benefits. 
First, in the propositional case, consistency check- 
ing can be exponential in the size of the theory (if 
P # NP). Clearly, if we need only check a small sub- 
set, efficiency will improve significantly. Second, one 
can use fast consistency checks and limited contexts 
together to help gain efficiency even in first-order logic, 
where full consistency checking is undecidable. 

Ideally, the context should contain exactly the for- 
mulae relevant to determining consistency. Then 
all necessary information is available, and irrelevant 
search is curtailed: consistency checking is no harder 
than it must be for correctness. Of course, this ideal 
solves the problem by reducing it to the arguably 

or other mech 
\ 

.anisms that’ guarantee cheap retrieval. ’ 
The significant feature of our approach is the syn- 

ergy between the two components: context focuses the 
consistency check on the part of the KB most likely to 
contain an inconsistency and, often, can be expected 
to allow fast sufficient checks to succeed where they 
would fail in the full KB. Such fast tests can allow 
context-limited consistency testing to be efficient even 
in large first-order KBs. 

A Simple Example: Consider the canonical default 
reasoning example: 

Robin(Tweety), Penguin(Opus), Emu(Edna) - - - 

Vx. Canary(x) > Bird(x) (1) 
‘dx. Penguin(x) 3 Bird(x) (2) 

Vx. Penguin(x) 3 lFZies(x) (3) 
‘v’x. Emu(x) > Bird(x) 

Vx. Emu(x) > -S’Zies(x) . . . 

Bird(x) : Flies(x) 
Flies(x) 
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where the ellipses indicate axioms about many other 
kinds of birds and many other individual birds. 
To conjecture that Tweety flies, one must prove 
FZies(Tweety) is consistent with the above theory- 
i.e., that Penguin(Tweety), Emu(Tweety), etc. aren’t 
provable. This amounts to explicitly considering all the 
ways that Tweety might be exceptional, which seems 
unlike the way people use defaults. 

On the other hand, if recent history hasn’t brought 
exceptional types of birds to mind, the context might 
contain just Robin(Tweety) and (1). A fast test for 
consistency of FZies(Tweety) would succeed, and so 
FZies(Tweety) could be assumed. Deciding if Opus 
can fly, however, brings Penguin(Opus) into the con- 
text and hence (2) and (3)’ so the consistency test 
fails. Similarly, after a long discussion about various 
forms of flightless birds, facts about exceptional classes 
should still be in the context. Fast consistency tests 
for FZies(Tweety) would thus probably fail, and one 
would have to explicitly rule out exceptions. 

The Mitigating Nature of Defaults 
Clearly context-selection is difficult. Fortunately, the 
nature of defaults makes selection of a useful context 
less problematic than might be expected. For a de- 
fault to be reasonable, we contend, (at least) two fac- 
tors must combine favorably: the likelihood that the 
consequent holds given that the prerequisite holds and 
the likelihood that if the prerequisite holds but the 
justifications are not consistent (so the default is not 
applicable), the agent will be aware of this fact. If the 
default is extremely likely to apply, one can tolerate 
overlooking the odd exception. Similarly, if exceptions 
are easy to spot, it may be useful to have a default 
that rarely applies. However, if exceptions are com- 
mon but difficult to detect, one is ill-advised to make 
assumptions.2 Now, if we characterize a “good de- 
fault” as one for which the probability is low that the 
prerequisite holds, the justification is inconsistent, and 
the inconsistency will not be noticed, we are guaran- 
teed that a context-based system will produce accuracy 
as good as its defaults3 

Experimental Results 
We now turn to the results of preliminary experiments 
beginning the validation of our approach. A com- 
pletely convincing test would involve extensive exper- 
iments on large, first-order, real-world nonmonotonic 
KBs, showing significant computational gains and ac- 
ceptable error rates. Sadly, the intractability of non- 

2We ignore the obvious third factor: the cost of errors. 
3Gricean principles of cooperative communication seem 

to enforce the second property above: if the speaker be- 
lieves the hearer may draw an inappropriate default con- 
clusion from her utterance, she must explicitly block it 
(Grice 1975), ensuring the appropriate contradiction is in 
the hearer’s context when the default is considered. 

monotonic formalisms seems to have stifled construc- 
tion of large KBs with defaults; we hope that the this 
work will be a step toward their construction. 

Meanwhile, the goal of these experiments is more 
modest: preliminary determination of the effect of con- 
text limitations on the accuracy and cost of consis- 
tency checking for randomly-generated propositional 
theories. Such theories are generally characterized by 
two parameters: the number of variables and the num- 
ber of clauses (the length of all clauses is generally 
taken to be three). For low clause-to-variable ratios, 
almost all problems are satisfiable, and most problems 
are computationally easy. At high ratios, almost all 
problems are unsatisfiable and most problems are easy. 
In between, in the so-called “transition region”, lies a 
mixture of satisfiable and unsatisfiable problems, and 
many quite hard problems (Cheeseman, Kanefsky & 
Taylor 1991; Mitchell, Selman & Levesque 1992; Craw- 
ford & Auton 1993). 

Our experiments are primarily in the undercon- 
strained region. In the overconstrained region, almost 
all theories are inconsistent, so no defaults are appli- 
cable. Solving problems in the transition region gen- 
erally seems to require intricate case-splitting of the 
kind found more in logic puzzles than in commonsense 
reasoning. Also, an agent’s world knowledge is likely 
to be fairly underconstrained-we generally know suf- 
ficiently little about the world that there are many 
models that are consistent with what we know.4 

Working in the underconstrained region, we face a 
problem: it is likely that a random literal chosen to 
be our “default” will be consistent with a random the- 
ory’ and consistency checking in any limited context 
(even the empty context!) will give the right answer. 
To solve this problem, we add a randomly generated 
set of literals to our theories. Intuitively, the clauses 
correspond to general knowledge about the world and 
these literals correspond to a set of facts. 

The experiments presented below investigate the 
success of context-limited consistency checking as 
problem size (# variables, V) 7 degree of constraint (# 
clauses, C), and number of facts (# literals, L) vary. 
We find that context limitations are useful in much 
of the underconstrained region, but their utility drops 
sharply as we approach the transition region. This is 
consistent with the generally held belief that, in the 
transition region, clauses throughout the theory inter- 
act with each other in complex ways. Context-limited 
consistency checking also becomes less useful as L be- 
comes more than about V/2; in these cases unit prop- 
agation makes full consistency checking so easy that 
context-limitations become superfluous. 

40f course, commonsense knowledge no doubt clusters 
and some of these clusters may be locally quite constrain- 
ing. Ideally in these cases one would want to choose the 
context to include the entire cluster, but this goes beyond 
the scope of the current experiments. 
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Experimental Setup 
We generate random 3-SAT theories using Mitchell et 
al’s (1992) method-each clause is generated by pick- 
ing three different variables at random and negating 
each with probability 0.5. There is no check for re- 
peated clauses. Inconsistent theories are discarded. 
We then randomly select a series of L literals consis- 
tent with the theory built so far. Consistency checks 
are done using TABLEAU (Crawford & Auton 1993). 

We select a random literal d to be the “default”, 
and construct a series of concentric contexts around 
d. C, d denotes the context around d with radius r. 
Intuitively, the radius measures how many clauses the 
context extends out from d. More formally, the context 
is the subset of the input theory, T, defined as follows: 
Cl,0 is 1Z if 11 E T, and { } otherwise. For r > 0, 

&,I = G-1,l u u ((~x:vyV + u Gc,r-lucly,r-l) 

lem size. Run time depends on the number of branches 
and on the time spent at each node. However, the time 
TABLEAU spends at each node depends linearly on V 
even when reasoning in a restricted context. This is 
an artifact of the design of TABLEAU (and the context- 
building mechanism) that could be removed with some 
recoding. If this artifact were removed, run time for 
reasoning within the limited contexts would presum- 
ably not increase appreciably with problem size. In any 
case, run time in the contexts increases more slowly 
than run time for consistency checking in the entire 
theory. Accuracy (the percentage of correct answers 
from the consistency check) also seems relatively unaf- 
fected by problem size. We conjecture that, for large 
problems, accuracy is a function of r, C/V and L/V. 

xvyv~Z~T 

(e.g., the r = 3 context around 1 contains the r = 2 con- 
texts around I, and around Z’s neighbors). TABLEAU 
is used to test satisfiability. For these tests we modi- 
fied it to halt the search whenever the current partial 
assignment satisfies all the clauses in the theory. 

Experiment 1: The first experiment tests how the 
efficacy of context limitation varies with problem size. 
We varied V from 100 to 600 incrementing by 100. We 
set C to 2V (roughly centered in the underconstrained 
region), and L to 0.4V, generated 200 theories, and 
tested 10 defaults per theory. Each check was done 
against contexts with radius 0 to 3, and then against 
the entire theory. The results appear in Figure 1. 

Combining these effects, we conclude that the ef- 
fectiveness of context-limited consistency checking in- 
creases with problem size. The size of a radius r con- 
text, and thus the complexity of the consistency check, 
is essentially unchanged as V increases, but the accu- 
racy of the consistency check does not seem to fall. 
This attractive property is due to the fact that, at 
least for underconstrained, random theories, the aver- 
age length of the inference chains that might lead us 
to conclude ld depends on C/V rather than on V. If 
this same effect occurs in realistic KBs then context 
limitation should be quite effective for large problems. 

Experiment 2: The second experiment measures the 
effect of changing L on the effectiveness of context lim- 
itation. We fixed V at 200 and C at 400. We varied 
L from 20 to 180 by 20, generating 100 theories and 
testing 10 defaults per theory. Results are shown in 
Figure 2. 

The limited growth of the context size is not sur- 
prising. A simple probabilistic argument shows that 
for large problems the expected context size depends 
on r and C/V (not V) . Further, since the number of 
branches in the search tree depends primarily on the 
size of the context, it makes sense that the number 
of branches does not increase appreciably with prob- 

The most interesting result is the accuracy, which 
generally falls to a minimum at around L = 0.4V, and 
increases on either side of this point. We believe that 
the rise in accuracy below 0.4V is due not to any real 
increase in the effectiveness of the context-limited con- 
sistency check; below this point more defaults are con- 
sistent, and context-limited checks only make mistakes 
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when defaults are inconsistent. However, note that as 
L falls, the difference in run time (and search tree size) 
between the context-limited check and the full check 
rises dramatically. Thus the results in Experiment 1 
would have been even more favorable had we chosen 
a lower L/V ratio. Above L = O.SV, the accuracy of 
the context-limited checks rises again. However, this 
region is not particularly interesting because so many 
literals are set by the input theory that full consistency 
checking becomes trivial. 

Experiment 3: The final experiment measures how 
the effectiveness of context limitation changes with C. 
We fixed V at 200 and L at 20, and varied C from 
200 to 800 by 100. This takes us from quite under- 
constrained to the edge of the transition region. We 
generated 100 theories and tested 10 defaults per the- 
ory, at each point. The results appear in Figure 3. 

Here again Accuracy is the most interesting graph. 
Starting at about 600 clauses, or C/V about 3, the 
accuracy falls dramatically. We believe this is because 
near the transition region the interactions between the 
clauses in the theory become more global and any lim- 
ited context is likely to miss some of them and so fail 
to detect inconsistencies. Our hope, of course, is that 
realistic theories of commonsense knowledge do not in- 
teract in this way (or do so only within local clusters 
that can be entirely included within the context). 

One surprise is that starting at about 500 clauses, or 
a ratio of about 2.5, the cost of the consistency check 
in the radius 3 context rises above the cost of the full 
check. We believe this is due to of a kind of “edge 
effect” in the context. Consider a clause x V y V z in 
the context. In some cases, there may be sets of clauses 
and literals in the full theory (e.g., lx V a V b, la, and 
lb) but not in the context, that force the value of x. 
If this happens, the full check may actually be easier 
due to unit resolution. One way to test this hypothesis 
would be to unit resolve the input theory (this can be 
done in linear time) before any other reasoning is done. 

Related Work 
The idea of restricting the scope of consistency check- 
ing to a subset of the KB is not new. Our ideas are 
the logical result of a long tradition of context-limited 
AI reasoning systems dating back to CONNIVER (c.f. 
(McDermott & Sussman 1972; Fahlman 1979)). This 
line of work limits deductive effort, resulting in incom- 
pleteness. Limiting consistency checking in default rea- 
soning, however, results in unsoundness-unwarranted 
conclusions may be reached due to lack of deliberation. 

More directly related is Perlis’ suggestion to limit 
consistency checking to about seven formulae deter- 
mined by immediate experience. Perlis argues that 
anything more is too expensive (Perlis 1984; Elgot- 
Drapkin, Miller, & Perlis 1987). He suggests that 
agents will have to simply adopt default conclusions 
and retract them later when further reasoning reveals 
contradictions. There are problems with Perlis’ ap- 
proach, however. First, consistency-checking can be 
undecidable even in such tiny theories. More impor- 
tantly, though, the errors this approach produces do 
not seem justifiable, since defaults are applied with es- 
sentially no reflection. Our analysis can be seen as 
explaining why (and when) such context-limited con- 
sistency checking can be expected to have a high prob- 
ability of correctness. Furthermore, we believe that the 
notion of applying fast consistency tests in limited con- 
texts provides significant leverage, allowing contexts to 
be larger while still achieving tractability. 
THEORIST (Poole 1989) is also related in that it uses 

limited consistency checking to determine default ap- 
plicability. However, THEORIST does not maintain a 
notion of context, so its errors are based on the use 
of incomplete reasoning mechanisms, rather than re- 
stricted focus of attention. Also, THEORIST has no no- 
tion of fast sufficient consistency checking. 

Conelusions and Open Problems 
We have described, and presented a preliminary ex- 
perimental evaluation of, a practical way to trade ac- 
curacy for speed in consistency checking, that we ex- 
pect to have applications to NMR (as well as to other 
commonsense reasoning problems that involve verify- 
ing consistency). We argue that restricting the consis- 
tency check to a focused context, combined with fast 
tests for consistency, can improve expected efficiency, 
at an acceptable and motivatable cost in accuracy. 

The techniques we have outlined are not universally 
applicable-any gains from our approach hinge on the 
nature of the theories and defaults involved. It is easy 
to construct pathological theories in which any restric- 
tion of the context will falsely indicate consistency. In 
general, our approach will suffer if there are too many 
exceptions and those exceptions are hard to detect. 
We conjecture, however, that commonsense reasoning 
in general, and default reasoning in particular, is well 
behaved, in that complex interactions between distant 
parts of the KB are rare, and inconsistent defaults are 
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generally readily apparent. In addition, we achieve 
“asymptotic correctness” : if the agent has time to re- 
trieve more formulae and reason with them, the prob- 
ability of correctness increases. Thus, we can achieve 
a favorable trade of correctness for efficiency, without 
abandoning the semantic foundation provided by non- 
monotonic logic. Also, since by their very nature, de- 
faults may be wrong despite being consistent with all 
one knows, agents should be prepared to accept errors 
in default conclusions, and deal with the resulting in- 
consistencies, as Perlis (1984) and many others have 
argued. An increase in the error rate should thus be 
less problematic to a default reasoner than it might be 
to a purely deductive system. 

The efficacy of our approach depends on the design 
of both the context-generalization and consistency- 
checking mechanisms. These choices can only be based 
on, and ultimately verified by, extensive experiments 
with realistic commonsense KBs. Here we offered, and 
experimentally examined, only some simple first-cut 
mechanisms. In particular, our experiments use com- 
plete consistency checking in the context. In the propo- 
sitional case, this appears to be sufficient; we believe 
that sufficient tests for consistency will be important 
primarily for first-order theories. 

We reiterate that consistency checking is only one 
source of combinatorial complexity in default reason- 
ing; for many problems of interest, default ordering 
presents another. We conjecture that limited contexts 
can also serve to limit the search of default order- 
ings (e.g., by considering only defaults in the context), 
which may allow a tractable approximation of the over- 
all default reasoning problem. 
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