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Abstract 

paper, we attempt to reconstruct the sit- 
calculus on a dense flow of time. The 

INTRODUCTION 
Situation calculus is well known as a standard 

framework in the formalization of the temporal rea- 
soning, and especially, it has been providing a useful 
basis for the study of the frame problem since its ini- 
tial formulation. However, the situation calculus has 
several limitations due to its simplicity [Lin & Shoham 
19921. In this paper, we forcus on a serious limita- 
tion among them. That is the inability to represent 
the time duration in the standard situation calculus 
so that the situation at the next time must be deter- 
mined immediately by the current action. We try to 
overcome this limitation by introducing a dense time 
flow. In general, the flow of time is said to be dense if 
we can always find a new time instant between any two 
t#ime points. This means that in every &age of tempo- 
ral thinking we must presuppose t,he possibility that 
unexpected events may occur at any time and change 
the situation. Therefore, any interpretation and belief 
about temporal phenomenon is necessarily tentative 
because it is perfectly reasonable that the current be- 
lief will be changed via the discovery of an unknown 
event. 

This uncertainty in the temporal reasoning on the 
dense time structure leads to about another problem 
into the standard situation calculus. That is the inabil- 
ity to reason directly about the inferential process itself 
because the situation calculus is not an intensional sys- 
tem. However, as shown in the following example, it 
is necessary for the formulation of temporal inference 
to allow the treatments of two time: the time in the 
domain of problems and the time in the mind of the 
reasoning agent herself, if we take the possibility of an 
unexpected event at any time in consideration. 

In this paper, we reconstruct the situation calculus 
on the temporal ontology of the time interval. For the 
logical simplicity, we formulate this reconstruction on 
the classical S2S (the monoadic second-order theory of 
two successor functions [Rabin 19691 rather than the 
first-order logic and introduce a formal system called 
ISC : an intensional situation calculus. 

The following example shows the reason why the in- 
tensional feature of ISC is required in the temporal 
reasoning. 

Examplel. A derivative of Y SP 
Let us assume the following events. 

Event El: It is observed that Teddy is alive and the 
gun is unloaded at a time to. 
Event E2: Teddy is shot at time tl (to 5 tl). 
Event E3: Teddy is observed to be dead at time t2 
(t1 5 t2). 

The question is when Teddy is dead. 
This problem is a derivative of the well known 

YSP(Yale Shooting Problem)[Hanks & McDermott 
19871, but the answer depends on the order in which 
these events are informed. 

Assume that these events are informed in one of the 
following sequences. 
Casel. A strict sequence: 

we observe El first, then E2 secondly and E3. 
Case2. A sequence in the backward order: 

we observe E3 first. After that we are informed E2 
and informed El finally. 
Case3. A random order: 
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We observe El first and then E3 secondly. After that 
we are informed E2 finally. 

In the easel, we hold the belief after the first obser- 
vation that Teddy is alive and the gun is unloaded, 
so that we infer the shooting at the time tl does 
not change the state of Teddy. Consequently, Teddy 
is believed to be alive immediately before the event 
E3 which informs that he is dead. Then, what time 
structure do we build in the mind to explain this se- 
ries of events consistently after we find the event E3? 
The most reasonable time structure, the solutionl, is 
formed on the assumption that Teddy was killed in cer- 
tain unexpected incident between tl and t2. Another 
interpretation, the solution2, is an explanation on the 
assumption that the gun had been loaded by an un- 
noticed event between t0 and tl so that the shooting 
at tl caused Teddy to be dead. This time structure is 
possible but seems to be unnatural in this case. 

On the contrary, we prefer the solution2 to the so- 
lutionl for the case2. In this case, we initially believe 
from the first obsevation of E3 that Teddy was dead 
from tl to t2. Because we have no knowledge about 
the state of the gun in this stage of inference, we have 
two preferable solutions. The first is the solution2, in 
which Teddy was dead as the result of the shooting. 
The second is the solution3 in which Teddy had been 
dead already before the shooting. However, the solu- 
tionl is unnatural in this case. 

For the case3, all of the solutions give the compara- 
bly preferable interpretation. 

This difference in the preference of the solutions is 
based on the simple reason that we usually avoid the 
annoying update of the already constructed belief in 
the inferential process. 

This example reveals that the temporal structure 
and its interpretation for a sequence of events depends 
not only on the temporal order but also the epis- 
temological order in which each event is recognized. 
However, this example brings about yet another frame 
problem because some difficulties arise in attempts to 
deal with this example in the usual nonmonotonic log- 
its, even in the methods proposed to solve YSP [Hanks 
& McDermott 19871. 

Intensional Situation Calculus : ISC 
2.1 Time Structure 

ISC is based upon a constructive time structure, 
which is built from an interval by iterating the interval 
division everytime new event is treated in the process of 
temporal inference. So that the time structure is repre- 
sented with a binary tree of which node corresponds to 
an interval and the left and the right successors of the 
node correspond to the intervals before and after the 
occurrence of the event in that interval, respectively. 

Definition 1. Temporal structure 
Let U be the set of all finite sequences of O’s and 

1’s. Namely, U = (O,l)*. U can be diagramed as a 

binary tree. We denote the parent node of x by ox, 
the successor nodes of x by x0,x1, and the length of x 
by W. 
We introduce two order relations in U. 
(i) an epistemological order : Let a, b denote the ele- 
ments of U. Define a 5 b iff a is an initial segment of 
b. 
(ii) a temporal order : Let a, b denote the elements 
of U. A temporal order a 5 b is defined by a 5 b iff 
(32)[20 g a A zl s b] 

A subset V : V C U is called a subtree if and only 
if 
(Vx)[x E v --+ ox E V] A [x0 E v iff xl E V] 

A maximal linearly ordered subset of the tree U is 
called a branch of U. Since a branch is a decreasing se- 
quence of intervals, it has a limitting point in (0, l}w, 
which corresponds to the time instant. 

Definition 2. S2S 
S2S (second-order theory of two successors) has the 

usual logical connectives and quantifiers for the vari- 
ables x, y, . . . ranging over elements of {O,l}*. It con- 
tains also the set variables X, Y, . . ..and their quantifier 
ranging over the subsets of { 0, l}* and the member- 
ship relation e. Terms are obtained from the individ- 
ual variables and a constant E by ‘application of the 
successor functions. Atomic formulas are of the form 
teT1 = ter2, terl E ter2, terl E X where terl, ter2 are 
terms and X is a set variable. The S2S-formula is gen- 
erated from atomic formulas by the logical connectives 
and quantifiers ranging over both the individual and 
the set variables. 

The most important feature of the S2S is decidabil- 
ity. Namely, 

Rabin’s Tree Theorem [Rabin 19691 
The (monoadic) second order theory of infinite bi- 

nary tree is decidable. 

The S2S theory has been widely used to study the 
dynamic logic and the temporal logic. Especially, the 
satisfiability of some tree based modal logics has been 
shown to be decidable based on Rabin’s Tree Theorem 
[Thomas 19901. Conversely, ISL can be formulated in 
the modal logic. 

Definition 3. Temporal topology 
Let x be an element of 27. We define the subsets (x 

and x) of U by 
(x = {Zlop ] p 2 0) 

if x = zlOQ for some z E {O,l}* and q 2 0 
= (OP ] p > 0) elsewhere 

2) = (ZOlP ] p 2 0) 
if z = zOlq for some 2; E (0, l}* and Q 2 0 

= { lp ] p 2 0) elsewhere 

[xl = iY I 37 c Y} 

634 Knowledge Representation 



Note that these sets are definable by the S2S- 
formulas. 

As known well, we can introduce a topology into the 
tree U by the definition that [z] is a neighbor of x. A 
open set is also defined by the S2S formula. Namely, 
a set Q is open if and only if (Vx)[x E Q + [x] E Q] 

2.2 ISC 
We present a formal treatment of ISC by using 

S2S, which is a reconstruction of the situation calculus 
on the interval ontology. First, we transform the ele- 
mentaly objects of the situation calculus such as fluent, 
action and situation, into the subsets of U. Namely, a 
fluent p is represented by the set P E U such that 
(Vx)[z E P + a fluent p holds in the interval x] 
Note that U - P also treated as a not-P fluent. 
Similarly, we use the set A instead of an action a where 
(Vx)[x E A + an action u is performed in the interval 
Xl 
A situation is simply corresponding to the set (x or x). 

Secondly we define a predicate Hold, which is also 
defined by; 

How? (4 = (VY)IY E ( x --$ (W[Y L 2 A b] c_ PI 
HoZd(P,x)) = (Vy)[y E x) --f (3z)[x c z A [z] c P] 

The predicate HoZd(P, (x) means that the fluent P 
holds not only at the situation (x but also in the neigh- 
bor of this situation. 

The following property of Hold is immediately fol- 
lows from the above definition. 

HoZd(P, (x) A HoZd(Q, (x) E HoZd(P n Q, (x) 

HoZd(P, x)) A HoZd(Q, x)) G HoZd( P n Q, x)) 
Another set Clip(P) is used in IS C, that is a set of 
the intervals in which the truth value of the fluent P 
changes from true to false. Clip(P) is defined by the 
the following S2S-formula. 
Clip(p) = {x 1 (vy)[y E 20) -+ (3z)(z E PA y 5 z)]} 

A(vy)[y E (xl -+ (%)(z E U-PAY C z)] 
This definition means that x E Clip(P) if and only if 

P contains the infinite intervals in x0) and U - P con- 
tains the infinite intervals in (xl. Note that Clip(P) 
is defined as a close set. Therefore, we have 

x $8 Clip(P) -+ HoZd(P,xO)) E HoZd(P, (xl) 
On the contrary, 
x E Clip(P) + HoZd(P, x0)) A HoZd(U - P, (xl) 

is not valid unless P is continuous. 

Definition 4. ISC-system 
Let A = (Pl,Pz ,..., P,.,,Al,Az ,..., A,) be a 

set of the S2S formulas with the set-constants 
PI, Pg, . . . . P,, Al, AZ, . . . . A,,,. A is called ISC-system 
if and only if Ai n Ai = 4 if i # j. This condition 
excludes the concurrent action. 

For simplicity, we abbreviate PI, Pz, . . . . Pn to 13. 
Similarly, j denotes Al, AZ, . . . . A, and 6P denotes 
CP(Pl), **a, CP(Pn), CP( u - PI), . . . . CP(U - P,). 

A subtree V E U is called a temporal domain of 
IS C-system if 
V~={~}~{xO,x1~x~A;of 2) 

U {X0,X1 IX E CPi Of c”p) 
Note that an event (either a clipping of a fluent or an 
action ) occurs only in the element of the subset V, 
that is, 
vxEU(x~V-+[x]EPV[x]EU-P) 
for each fluent P. 

Definition 5. Continuity of fluents 
A fluent P C U is said to be continuous if and only 

if every branch B C U satisfies the following condition: 
(3x)(x E B ---) (Vy)[x 5 y A y E I? + y E P] 

V (Vy)[x C y A y E I? -+ y E u - P] 
Namely, P is continuous unless both P and U - P 
contains the infinite elements of a branch, so that P is 
continuous if and only if U - P is continuous. 

A PSC-system A = (p, A) is called continuous if all 
fluents of A are continuous. 

Theoreml. Totalness of the Hold 
Let P be a continuous fluent. For, every x E U, 

HoZd(P, (x) v HoZd(U - P, (x) 

HoZd(P, x)) v HoZd(U - P, x)) 

Theorem2. Persistence of a fluent 
We assume that a fluent P is continuous in the fol- 

lowing. 

(1) the persistence in the epistemological order: 
(a) HoZd(P, (cc) if and only if HoZd(P, (x0) 
(b) HoZd(P, x)) if and only if HoZd(P, xl)) 
(c) Hold( P, (x) A (Vy)[y E U A x 5 y + 

Y $ CZiP(P)l --+ HoZd( P, 2)) 
(d) Hold( P, x)) A (Vy)[y E U A x 5 y + 

Y e CZiP(P)l + HoZd( P, (x) 

(2) the persistence in the temporal order: 
Let x,y E U such that x 3 y. 

(a) HoZd(P, (x) A (Vz)[z E U A x 5 z A z 5 y -+ 

z e wwl + HOW, Y>) 
(b) H~Z~(P,~))A(V~)[~EUAX=L~AZ~~-+ 

z $ chv)1 --+ HoZd(P, (x) 

The proofs for the above theorems are trivial. How- 
ever, notice that the continuity is an essential require- 
ment for the persistence of a fluent. For example, as- 
sume that A = (P, (0, 1)“) is ISC-system, 
where P = ((lo)p(o)q I P 2 0, Q 2 0). 
The fluent P is discontinuous because both P 
and U - P contain the infinite elements of a 
branch { 1, 10, 101, 1010, 10101, . ..I. Clearly, we have 
HoZd(P, (0) and HoZd(U-P, 1)). But Clip(P) is empty 
from the construction. This example reveals that for 
a discontinuous fluent we can not always specify the 
time instant (the division point of an interval) where a 
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fluent changes its value although the value apparently 
changes in the interval. 

As is discussed later, the continuity condition is 
also necessary for the nonmonotonic reasoning in ISC- 
system to be decidable theory, but it restricts the ex- 
pressiveness of ISC. For example, a super task with in- 
finite actions such as Zeno’s paradax can be described 
in ISC. For example, Thomson’ lamp is given by the 
following causal rules; 
x E SW -+ [HoZd(On, x0)) G HoZd(U - On, (ccl)] 
A [HoZd(U - On,xO)) E HoZd(On, (xl)] A xl E SW 
where SW denotes SWithing which always changes the 
status of the lamp from on to off or off to on. However, 
by the following theorem, Thomson’ lamp can not be 
continuous. 

Theorem3. Finiteness of the Clip 
Assume that a fluent P is continuous. Then Clip(P) 

is finite. 
Proof: For each branch B in V, Clip(P) contains only 
finite elements of B. Therefore, we have a subtree 
V+ in which all branchs are finite and Clip(P) = 
CZip( P) n v +. From the campactness of tree, which is 
known as the fan theorem, V+ itself is also finite. So 
that CZip(P) is finite. 

Example2. The derivative of YSP formulated 
in ISC 

In the EC-system, the example1 is described as fol- 
lows. 

(i)Rules of actions 
(Vx){x E SHOOT ---) [HoZd(AZive,xO)) 
A HoZd(Louded,xO)) + HoZd(V - Alive, (xl)]} 
(Vx)(x E LOAD + [HoZd(Louded, {xl)]} 

(ii)Rules of observation 
(Vx){x E OBL(P) + [HoZd(P, (xl)]~ 
(Vx)(x E OBR(P) 3 [HoZd(P,xO))]} 

(iii) SpesiAcation of events 
Casel: 
OBL(AZive) = {cj,OBL(V - Loaded) = {E}, 
OBR(V - Alive) = (ll},SHOOT = (1) 
Case2: 
OBR(V - Alive) = {E}, OBL(AZive) = {OO), 
OBL(V - Loaded) = (00}, SHOOT = (0) 
Case3: 
OBL(AZive) = {c},OBL(V - Loaded) = {E}, 
OBR(V - Alive) = (l}, SHOOT = (10) 
(iv) Solutions 
Solution1 for Casel: 
v = (E,O,l, 10, 11,110,111,1100, llOl), 
CZip(AZive) = (llO}, 
Solution2 for Casel: 
v = {E,O, 1, 10, 11,100,101,110, ill}, 
CZip(V - Loaded) = {lo), CZip(AZive 
Solution1 for Case2: 
v = {E, 0, l,OO, 01,000,001,010,011}, 
Cdip(AZiue) = (01) 

)= (1 1 

Solution2 for Case2: 
v = {E, 0, l,OO, 01,000,001,0010, OOll}, 
CZip(V - Loaded) = (OOl}, CZip(AZive) = (0) 
Solution3 for Case2: 
v = {E, 0, l,OO, 01,000,001,0010, OOll}, 
CZip(AZiwe) = (001) 
Solution1 for Case3: 
v = (E, 0, 1, 10, 11,100,101,1010, loll}, 
CZip(AZive) = (101) 
Solution2 for Case3: 
v = {E, 0, 1, 10, 11,100,101,1000, lOOl}, 
CZip(V - Loaded) = {loo}, CZip(AZive) = { 10) 
Solution3 for Case3: 
v = (e, 0, 1, 10, 11,100,101,1000, lOOl}, 
CZip(AZive) = (100) 

NON-MONOTONICITY 
In this paper, we focus on two aspects of the non- 

monotonic temporal reasoning : the persistence and 
the frame problem (in the narrow sense) in the frame- 
work of ISC. The persistence means the principle of 
reasoning that any unnecessary clipping of fluents can 
be neglected in each stage of the inference. The frame 
problem is related to the stipulation that we can omit 
the specification about the behavior of the action in 
the case of no effect. Although the frame problem is 
often treated based on the persistence, the invariance 
of fluent irrelevant to the action is stronger requirment 
than the persistence of fluent on time flow. We present 
a new method of nonmonotonic reasoning, which se- 
lects the preferred model in two steps : first step, the 
selection related to the frame axiom and secondly, the 
slection related to the persistence. In the following, we 
present the description of this two-step minimization, 
together with the formulation of the other methods of 
nonmonotonic reasoning in the framework of S2S. 

3.1 S2S formalization of existing theories 

In general, the minimal model is defined through a 
preferential relation between two models. In the ISC- 
system, however, it can be specified by the circumscrip- 
tive formula [McCarthy 19801 called a C-form within 
the ISC. 

Let A = (p,i) b e a continuous ISC-system. As- 
sume that @(V, p, A, K) contains the description of a 
problem; that is, @ consists of a logical conjunction 
of the domain independent axioms of A, the domain 
axioms (causal rules) and the description of the occur- 
rence of events, where K represents a set to be mini- 
mized. 
The C-form: 
3(V, P, A, K){@(V, p, A, K) -+ 

V(V’, P, A’, K’)[fqV’, P’, 2, K’) + 
PC(V, V’, K K’)]} 

gives the minimal model with respect to the preferen- 
tial condition PC(V, V’, K, K’), if both @(V, r’, A) and 
PC(V, V’, K, K’)are consistent S2S-foumulas. Also it 
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is decidable weather Cp has the minimal model from PC 
Rabin’s Theorem. 

c~,.ono~ogy(~‘, v’, 6?‘, tip’) z (tip < d”) A 
PCdomain (K V’) 

The domain minimization 
The first approach to the nonmonotonic reasoning 

in ISC is to construct a preferable model by removing 
the unnecessary intervals from the temporal structure. 
This is attained by circumscribing the temporal do- 
main. The minimal model with respect to the domain 
V is given by the C-form with the following preferen- 
tial condition; 
PC(jomain(V, V’) G (V’ c_ v --, v 2 V’) 
Since this is a consistent S2S-formula, there exists the 
minimal model in the meaning that V is minimal with 
respect to the set inclusion. However, it is as weak as 
the standard nonmonotonic logics. For example, it is 
impossible to give a correct answer to the YSP. 

The causal minimization 
Haugh (Haugh 19871 presented one of the first solu- 

tions to YSP based upon the notion of the causal min- 
imization, preferring the model which contains fewer 
potential causes. The potential cause is a set of belief 
about the possibility of clipping of a fluent, which is 
defined by the following S2S-formula. 
RC = {x 1 (3P)[x E Clip(P)] v 

Namely, nC is a set, of intervals in which some fluent P 
is actually clipped or the action effects the clipping P 
if every precondition holds. The causal minimization is 
incorporated in ISC by the C-form with the following 
preferential condition; 
PC catlse( v, V’, RC, RC’) E (RC’ c RC + RC c - - 

Rc’) A PCdnnin (V, v’) 

Although the causal minimization gives the correct 
answer for YSP, it doesn’t work for the derivative of 
the YSP in the example1 because the set of potential 
causes is minimal for the following two solutions in 
easel; 
Solutionl: 
v = {E,Q, 1, 10, 11,110,111,1100, llOl}, 
RC = (1,110) 
Solution2: 
v = {E,Q,l, lO,ll, 100,101,110,111},RC = {l,ll} 

The chronological minimization 
The chronological minimization [Kautz 19861 is also 

successful approach to YSP which yields a particular 
preference to the model in which the clippings of flu- 
&ts are delayed as long as possible. T& pieference 
condition can be represented by the S2S-formula such 
that; 
CP << C>’ if and only if 
c? c CP v (Vx){x E CP A x 4 tir + 

(3z)[z -( x A z E 6-l’ A z $ &j} 
The chronological minimization in ISC is described 

by using the preference condition. 

Similar to the causal mimization, the chronological 
minimization is a S2S-definable and decidable theory 
but it also does not work for the examplel. 

3.2 Epistemological Minimization 

As we discussed in the beginning of this section, 
the two level selection of the model-is necessary for 
the nonmonotonic reasoning in ISC-system. First, the 
selection of the time structure, which is as faithful as 
possible to the frame axiom, is attain .ed by using the 
causal minimization. 

Let 
RF(R) = {x 1 (x E Clip(R) A x E ii) V 
(3Ai)[x E AA(VY)(Y E A + (3Q)[Hozd(Q,~)) + Y E 
~W~)II~ 
where R = PI, . . . . Pn, V - PI, . . . . V - P,. 
The set RF represents the potential cause similarly 
to the causal minimization. However, RF is different 
from the RC at the point that x E A; whenever x E 
RF(P). We use a relation RF < RF’ to abbreviate 
the following series of set inclusions 
RF(Pl) c RF(P;) A . . . A RF(P,) C RF(P:,) A . . . A 
RF(V - P,) c RF(V’ - P,!J. 
The preference condition PCf,,,e is defined by 
PC,,,,, G RF << RF’. 

This minimization of RF precludes the time struc- 
ture which contains the action with the unexpected 
occurrence of clipping. 

Secondly, the selection of the model which satisfies 
the principle of the persistence, is attained by the de- 
vising of the new minimization schema called an epis- 
temological minimization, in which the clipping of a 
fluent is postponed as long as possible with respect to 
the epistemological order rather than the chronological 
order. 

The preference condition for the epistemological 
- minimization is given by the following formula; 

PCpersistence(V~ V’, n”E, RE’) f 

where 
(V’ c V + V C V’) A (IfE << tiE’) 

RE = {X 1 (~P)x E Clip(P) A 2 $ AiVAi E 2) 
Note that RE counts the intervals without action but 
some fluent P is clipped. The relation of preferential 
condition iy defined as follows. 
RE << Ii!E if and only if 
HE c R-E’ v (Vz){x E Ri!? A x $ tiE -+ (3z)[Z(x) < 
Z(z) A z E R-E A z Q! R&l]} 

The epistemological minimization is given in the C- 
form by -using this preference condition. However, this 
is not a S2S-formula because the inequi-level predicate 
Z(x) < Z(z) is not S2S-definable. TheS2S-formula aug- 
mented with the inequi-level predicate is known to be 
undecidable. However, the epistemological minimiza- 
tion theory is decidable because RE is not only finite 
but also bounded if all fluents are continuous. 
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The nonmonotonic reasoning in IS C is accomplished 
by using these prefernce conditions in two steps : first 
PC, rame secondly PCpersistence. Namely, 
if $(V, I’,A),HF, J!E, is consistent then there exists 
the m_ini_mal mo$el which _sat&fie_s the C-form. 
3(V,P,A, RF, RE)(@(V, P,A, CP) + 

V(V’, f”,& tiF’, tiE’)[@(V’, p’,,@, RF’, tiE’) 
+ PC,,,,, + PCpersistence]} 

Example3. The derivative of YSP: epistemo- 
logical minimization 

We have the following RF, n’E set from the descrip- 
tion in the example2. 
Casel;soIutionl 
CZip(AZive) = {llO}, RF = {l}, gE = {llO}, 
Casel;solution2 
CZip(V - Loaded) = { 101, CZip(AZive) = (11, 
n’i;l = {l},tiE = {lo}, 
Case2;solutionl 
CZip(AZive) = {Ol}, h!F = (0}, IfE = {Ol}, 
CaseZJ;solution% 
CZip( V - Loaded) = { OOl}, CZip(AZive) = {0}, 
tiF = {O},tiE = (OOl}, 
Case2;solution3 
CZip(AZiue) = {OOl), hfF = {0}, IfI? = {OOl), 
Case3;solutionl 
CZip( Alive) = {lol}, R”F = {lO},IfE = {lOl}, 
Case3;solution2 
CZip( V - Loaded) = {loo), CZip( Alive) = {lo}, 
IiF = {lo}, RYE = {loo}, 
Case3;solutionS 
CZip(AZive) = {loo}, l’i!F = {lo}, n”E = (100) 

According to the eyistemological minimization, we 
select the solution1 for the easel, either the solution2 
or the solution3 for the c‘ase2, and one of all solutions 
for c<ase3. 

Concluding Remarks 
We extend the sit,uation calculus on a dense flow of 

time and give a new schema for nonmonotonic tempo- 
ral reasoning in the modified situation calculus. The 
eyisten~ological minimization proposed in this paper 
satisfies the crit,crion of the cpistemologically complete 
theory [Lin & Shoham 19921. Also it satisfies the AGM 
postulates in the belief revision theory[Alchourr6n, 
G%denfors & Makinson 19851. 

An extension to the continuous time is necessary to 
deal with the real-valued fluent. Sandewall [Sandewall 
19891 studied extensively the reasoning about action 
on the continuous time by explicitly introducing the 
real-valued time parameter. However, in the situation 
calculus, time is a constructive object built from the 
action and fluent, so that the different (intuitionistic) 
definition of the continuous time is required. For ex- 
ample, we can extend ISC by adding the following 
postulate based on the intermediate value theorem. 

For every real-valued fluent P, 
‘dx[P((x) = a A Pox) = b + 

3Y(X 5 Y A P{(Y) = WY) = y>1* 
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