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Abstract 
This paper presents mathematical results that 
can sometimes be used to simplify the task of 
reasoning about a default theory, by “splitting it 
into parts.” These so-called Splitting Theorems 
for default logic are related in spirit to “partial 
evaluation” in logic programming, in which re- 
sults obtained from one part of a program are 
used to simplify the remainder of the program. 
In this paper we focus primarily on the statement 
and proof of the Splitting Theorems for default 
logic. We illustrate the usefulness of the results 
by applying them to an example default theory 
for commonsense reasoning about action. 

Introduction 
This paper introduces so-called Splitting Theorems for 
default logic, which can sometimes be used to simplify 
the task of reasoning about a default theory, by “split- 
ting it into parts.” These Splitting Theorems are re- 
lated somewhat, in spirit, to “partial evaluation” in 
logic programming, in which results obtained from one 
part of a program are used to simplify the remain- 
der of the program. ’ In fact, the Splitting Theorems 
for default logic closely resemble the Splitting Theo- 
rems for logic programming introduced in (Lifschitz & 
Turner 1994), despite complications due to the pres- 
ence of arbitrary formulas in default theories.2 Similar 
results for autoepistemic logic can be found in (Gel- 
fond & Przymusinska 1992). Related, independently 
obtained, results for default logic, restricted to the fi- 
nite case, appear in (Cholewinski 1995). 

In this paper we focus on the statement and proof of 
the Splitting Theorems for default logic.3 We illustrate 

‘See, for example, (Komorowski 1990). 
21n (Lifschitz & Turner 1994) we presented without 

proof Splitting Theorems for logic programs with classical 
negation and disjunction, under the answer set semantics 
(Gelfond & Lifschitz 1991). The results for nondisjunctive 
logic programs follow from the Splitting Theorems for de- 
fault logic. The definitions and proofs in this paper can be 
adapted to the more general case of disjunctive default logic 
(Gelfond et ad. 1991), f rom which the Splitting Theorems 
for disjunctive logic programs would follow as well. 

3We do not address the possible application of these 

the usefulness of the results by applying them to an 
example default theory for reasoning about action. An 
extended application of the Splitting Theorems to de- 
fault theories for representing commonsense knowledge 
about actions will appear in (Turner 1997). 

The paper is organized as follows. We present pre- 
liminary definitions. We then introduce the Splitting 
Set Theorem, followed by Splitting Sequence Theo- 
rem, which generalizes it. We exercise the Splitting 
Sequence Theorem on an example default theory for 
reasoning about action. We present an abridged proof 
of the Splitting Set Theorem, followed by a detailed 
proof of the Splitting Sequence Theorem. 

reliminary Definitions 
Given a set U of atomic symbols (not including the 
special constants T and I), we denote by ,C(U) the 
language of propositional logic with exactly the atoms 
U u {T, I} .4 We say a set of formulas from L(U) is 
logically closed if it is closed under propositional logic. 
We write inference rules over ,C( U) as expressions of 
the form 4 

s 
where 4 and $ are formulas from l(U). When conve- 
nient, we identify a formula 4 with the inference rule 

$. 
We say a set I of formulas is closed under a set R 

of inference rules if for all k lc, E R, if 4 E I? then $ E I. 
By Gnu(R) we denote the least logically closed set of 
formulas from .C( U) that is closed under R. 

A default rule over ,C( U) is an expression of the form 

of : Pl , * . * , Pn 
(1) 

7 

where ~,A,. . .,,&,y are formulas from -C(U) (n 2 0). 
Let T be a default rule of form (1). We call a the 
prerequisite of T, and denote it by pre(r). The formulas 
Pl,-,A are the justifications of r; we write just(r) to 
denote the set { ,&, . . . , ,&}. We call y the consequent 
of r, and denote it by cons(r). If pre(r) is T we often 

ideas to the problem of automated default reasoning. 
4Thus, C(0) consists of all formulas in which the only 

atoms are the constants T and 1. 
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omit it, writing ’ Ply . ’ . ’ @ 72 Y instead. If just(r) = 0, 
we identify ?= with the corresponding inference rule 7.” 

A default theory over ..C(U) is a set of default rules 
over L(U). Let D be a default theory over ,C(U), and 
E a set of formulas from L(U). The reduct of D by E, 
denoted by DE, is the following set of inference rules. 

pre(r) - . r E D and for all ,O E just(r), l/3 r$ E 
cons(r) * 

We say E is an extension of D if E = Gnu (DE) . 
Default logic is due to Reiter (Reiter 1980). The 

(essentially equivalent) definitions given above follow 
(Gelfond et aZ. 1991). Although the definitions in this 
section are stated for the propositional case, they are 
taken, in the standard way, to apply in the first-order, 
quantifier-free case as well, by taking each non-ground 
expression to stand for all of its ground instances. 

Splitting Sets 
Let D be a default theory over ,C(U) such that, for ev- 
ery rule T E D, pre(r) is in conjunctive normal form. 
(Of course any default theory can be easily transformed 
into an equivalent default theory, over the same lan- 
guage, satisfying this condition.) For any rule r E D, 
a formula +4 is a constituent of T if at least one of the 
following conditions holds: (i) 4 is a conjunct of pre( r); 
(ii) 4 E just(r); (iii) q5 = cons(r). 

A splitting set for D is a subset A of U such that for 
every rule r E D the following two conditions hold. 
o Every constituent of r belongs to ,C(A) U ,C(U \ A). 

o If cons(r) does not belong to ,C(U \ A), then r is a 
default rule over L(A). 

If A is a splitting set for D, we say that A splits D. 
The base of D relative to A, denoted by PA, is the 
default theory over L(A) that consists of all members 
of D that are default rules over L(A). 

Let Us = {a, b, c, d}. C onsider the following default 
theory 03 over Ic(U3). 

:1 b :~a avb:a,b aA(cvd):ld bA(cvd):x -- 
a b cvd Td 1C 

Take A3 = {a, b}. It’s easy to verify that A3 splits D3, 
with 

bA3(D3) = q, 7 . 
1 1 

Notice that default theory bA3(D3) over IC(A3) has two 
consistent extensions: &A, ({a}) and &A, ((b}). 

Given a splitting set A for D, and a set X of formu- 
las from l(A), the partial evaluation of D by X with 
respect to A, denoted by eA (D, X), is the default the- 
ory over ,C( U \ A) obt ained from D in the following 
manner. For each rule r E D \ bA(D) such that 

5Allowing the emp y t set of justifications is mathemat- 
ically convenient (Brewka 1991; Marek & Truszczyriski 
1993), although it seems Reiter (Reiter 1980) may have 
meant to prohibit it. 

e every conjunct of pre(r) that belongs to C(A) also 
belongs to &A (X), and 

e no member of just(f) has its complement in CnA (X) 

there is a rule r’ E eA (D, X) such that 
o pre(r’) is obtained from pre(r) by replacing each 

conjunct of pre(r) that belongs to ,C(A) by T, and 
e just(r’) = just(r) r~ L(U \ A), and 

0 cons(+) = cons(r). 

For example, it is easy to verify that 

eA3(D3, CnA3({a})) = & , T A +Idd) : ld } 

and that 

eA3(D3, cu3({b))) = { 2, T * (c_vcd) ’ lc }. 

Let A be a splitting set for D. A solution to D 
with respect to A is a pair (X, Y) of sets of formulas 
satisfying the following two properties. 
o X is a consistent extension of the default theory 

bA(D) over ,C(A). 

o Y is a consistent extension of the default theory 
eA (D, X) over l(U \ A). 

For example, given our previous observations, it is 
easy to verify that 03 has two solutions with respect 
to A3: 

and ( cn& ({a)) > cnU3\A3 ({c, +}) ) 

( cn& tjb)) 7 Cn~~\A~t{lC~ d)) > . 
Splitting Set Theorem. Let A be a splitting set for 
a default theory D over ,C(U). A set E of formulas is 
a consistent extension of D iff E = Cnu(X U Y) for 
some solution (X, Y) to D with respect to A. 

Thus, for example, it follows from the Split- 
ting Set Theorem that default theory 03 has ex- 
actly two consistent extensions: Cnu3 ({ a, c, ld}) and 
Cw,({b, =, 4). 

Splitting Set Corollary. Let A be a splitting set for 
a default theor.y D over L(U). If E is a consistent 

\ I 

extension of D, then the pair 

(En-W), EnW\A) > 
is a solution to D with respect to A. 

Splitting Sequences 
A (transfinite) sequence is a family whose index set 
is an initial segment of ordinals {CV : 0 < ,u}. We 
say that a sequence (Acu)a<P of sets is monotone if 
A, E Ap whenever (;Y < ,B, and continuous if, for each 
limit ordinal cr < ,u, A, = U,< cy A,. 

A splitting sequence for a default theory D over 
l(U) is a nonempty, monotone, continuous sequence 
h&<P of splitting sets for D s.t. UcwCP A, = U. 
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lHoZds( Up&$), SO) A lHoZds( Up(Right), So) A lHoZds(SpiZZed, So) 
Precedes (So, 5’1) A Occurs (Raise (Left), So) A Occurs (Rarise( Right), SO) 

Precedes(S1, S,) A Occurs(Lower(Left), S,) 

&curs(Raise(x), s) A Precedes(s, s’) Occurs(Lower(x), s) A Precedes(s, s’) 
HoZds( Up(x), s’) lHoZds( Up(x), s’) 

HoZds( Up(Left), s) $ HoZds( Up(Right), s) 
Holds (Spilled, s) 

Holds (f, s) A Precedes (s, s’) : Holds (f, s’) 7 Holds f, s A Precedes s, s’ : -, Holds f, s’ 
Holds ( f, s’) lHoZds(f, s’) 

Figure 1: Default theory D1 

The notion of a solution with respect to a splitting 
set is extended to splitting sequences as follows. Let 
A = (JL)~<~ be a splitting sequence for D. A solution 
to D with respect to A is a sequence (E,)cu<P of sets of 
formulas that satisfies the following three conditions. 

o Eo is a consistent extension of the default theory 
PA, over L(Ao). 

o For any a such that LY + 1 < p, E,+l is a consistent 
extension of the default theory 

over C(A,+l \ &J. 
o For any limit ordinal ct < ,u, E, = Cq (0). 

We generalize the Splitting Set Theorem as follows. 

Splitting Sequence Theorem. Let A = (A,),cl, 
be a splitting sequence for a default theory D over 
L(U). A set E of formulas is a consistent extension of 
D if and only if 

E= Gnu 

for some solution (Ecu)cu<p to D with respect to A. 

The proof of the Splitting Sequence Theorem, which 
appears in later in the paper, relies on the Splitting 
Set Theorem. We also have the following counterpart 
to the Splitting Set Corollary. 

Splitting Sequence Corollary. Let A = (ACY)CY<ti 
be a splitting sequence for a default theory D over 
WJ>. Let (u&dp be the sequence of pairwise disjoint 
subsets of U such that for all CY < 1-1 

UCX = Aa \ u A,. 

If E is a consistent extension of D, then the sequence 
(E f-l Wa) )cu<P is a solution to D with respect to A. 

Example: Splitting a Default Theory 
easoning About Action 

We will illustrate the use of the Splitting Sequence 
Theorem by applying it to a default theory that for- 
malizes commonsense knowledge about actions. The 
action domain we formalize is based on the “Soup 
Bowl” example from (Baral 8z Gelfond 1993), which 
involves reasoning about the effects of concurrent 
actions.6 The default logic formalization we con- 
sider relies, implicitly, on the notion of “static causal 
laws,” recently investigated in (McCain & Turner 1995; 
Turner 1996). 

Default Theory D1 

We will formalize the following action domain in de- 
fault logic. There is a bowl of soup. There are actions 
that raise and lower its left and right sides. If one 
side of the bowl is up while the other is not up, the 
soup is spilled. In the initial situation So, both sides 
of the bowl are not up, and the soup is not spilled. We 
let 5’1 be the situation that would result from raising 
both sides of the bowl simultaneously. Notice that, in- 
tuitively speaking, it follows that in situation S1 both 
sides of the bowl are up and the soup is not spilled. 
We also consider an additional situation 5’2 that would 
result from lowering the left side of the bowl, when 
in situation 5’1. Intuitively speaking, we can conclude 
that in situation Sa the left side of the bowl is not up, 
the right side is up, and the soup is spilled. 

We will use the Splitting Sequence Theorem to 
demonstrate that the default theory D1, shown in Fig- 
ure 1, is a correct formalization this action domain. 

More precisely, what we will show is that the lit- 
erals HoZds( Up(Left), S,), HoZds( Up(Right), S,), and 
lHoZds(SpiZZed, S,) are among the consequences of de- 
fault theory D1, which establishes that D1 correctly 
describes the values of the fluents in situation 5’1. 

6We will not a ttempt in this paper a general analysis of 
the problem of representing commonsense knowledge about 
concurrent actions. Nor will we attempt a general justifica- 
tion of the style of representation employed in the example 
default theory itself. Such analysis and justification is an 
important problem that is beyond the scope of this paper. 
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lHoZds( Up(Left), SO) A lHoZds( Up( Right), SO) A yHoZds(SpiZled, SO) 
Precedes(So, 5’1) A Occurs(Raise(Left), So) A Occurs(Raise(Right), So) 

Precedes(&, S2) A Occurs(Lower(Left), S,) 

HoZds(Up(Left), SO) f Holds( Up(Right), So) 
j 

Figure 2: Default theory bAO (01) 

HoZds( Up&e.@ &) HoZds( Up(Right), S,) 

HoZds( Up(Left), SI) f Holds{ Up(Right), Sll 
Holds (Spilled, S,) 

: lHoZds( UpcLeft), Sl) : lHoZds( Up(Right), S,) 
lHoZds( Up(Left), S,) lHoZds( Up(Right), S1) 

Notice that A0 splits D1, with bAO (01) the default the- 
ory over lT(Ao) shown in Figure 2. 

We obtain Al by adding to A0 all ground instances 
in ,Cl of HoZds(f, Sr). Finally, let A2 = Z.71. One easily 
checks that (Ao, Al, A ) 2 is a splitting sequence for D1. 

Let Xe consist of the following literals: 

-+fozds( up&$), SO) , lHoZds( Up(Right), So) , 

-HoZds(SpilZed, So) , Precedes(So, 5’1) , 
Occurs(Raise(Left), So) , Occurs(Raise(Right), So) , 

Precedes(S1, S2) , Occurs (Lower( Left), 5’1) . 

: lHoZds(SpiZZed, Sl) 
1 Holds (Spilled, 5’1) 

Figure 3: Default theory e& (bag (Dl), Eo) 

-HoZds( Up(Left), S2) 
HoZds( Up(Left), 5’2) f HoZds( Up(Right), Sz) 

Holds (Spilled, S2) 
: HoZds( Up(Left), S2) : HoZds( Up(Right), &) 
Holds( up(Left), S2) HoZds( Up(Right), S2) 

Figure 4: Default theory eA1 (bA2(Dl), Eo U El) 

Similarly, we will also show that D1 entails the lit- 
erals lHoZds( Up(Left), S’s), HoZds( Up(Right), S2), and 
Holds (Spilled, S2), which establishes that D1 also cor- 
rectly describes situation S2. 

Splitting Default Theory D1 
Before applying the Splitting Sequence Theorem, we 
must be more precise about the language of D1. 

Let Ul consist of all ground atoms of the following 
many-sorted, first-order language ,Cr. The sorts of ,Cr 
are situation, action, fluent and side. There are ob- 
ject constants 5’0, Sr and 5’2 of sort situation, Left and 
Right of sort side, and Spilled of sort fluent. There 
is a unary function symbol Up of sort side --+ fluent, 
and unary function symbols Raise and Lower of sort 
side -+ action. There is a binary predicate symbol 
Holds of sort fluent x situation, a binary predicate 
symbol Occurs of sort action x situation, and a binary 
predicate symbol Precedes of sort situation x situation. 

We take D1 to be the (propositional) default theory 
over ,C( VI) consisting of all ground instances in ,Ci of 
the rules shown in Figure 1. 

Now we can specify a splitting sequence for D1, 
which will allow us to break D1 into simpler parts. 

To begin, let A0 consist of all ground instances in ,Ci 
of the following atoms: 

Holds(f, So) , 0 ccurs(u, s) , Precedes(s, s’) . 

Take 
EO = CnAo(XO). 

Notice that Eo is the unique extension of bA,, (01). 
The default theory e&(bA, (Dl), Eo) over lC(Ai \/lo) 

is (essentially) as shown in Figure 3. 
Thus, if we take Xr to consist of the literals 

Holds{ Up(Left), 2%)) HoZds( Up(Right), SI) , 
lHoZds(SpiZZed, S1) , 

and let 
El = CnA~\Ao txl) 

we find that El is the unique extension of default the- 
ory eA,(bA#h), Eo). 

Finally, observe that the default theory 
eAl(b&(D1), Eo U El) over C(A2 \ Al) is essentially 
as shown in Figure 4. 

Let X2 consist of the literals 

lHoZds( Up(Left), 5’2) , HoZds( Up(Right), S2) , 
Holds (Spilled, S2) . 

Take 
E2 = cnAz\A1 (x2) - 

It is not difficult to verify that E2 is the unique exten- 
sion of eA1 (bAz(D1), Eo U El). 

We have shown that (Eo, El, E2) is a solution to de- 
fault theory D1 with respect to (Ao, Al, AZ). In fact it 
is the unique solution. It follows by the Splitting Se- 
quence Theorem that Gnu, (Eo U El U E2) is the unique 
consistent extension of D1. 

This shows that the literals HoZds( Up(Left), S,), 
HoZds( Up(Right), &), and 1 Holds (Spilled, S, ) are 
among the consequences of D1, which, as we discussed 
previously, is intuitively correct. 

We have similarly established that the liter- 
als -4Yolds(Up(Left), &), HoZds(Up(Right), Sz), and 
Holds (Spilled, 5’2) are among the consequences of D1, 
which is again the intuitively correct result. 
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Proof of the Splitting Set Theorem 
Due to space constraints, we present an abridged proof 
of the Splitting Set Theorem, omitting several interme- 
diate lemmas, and proofs of the remaining lemmas. 

Lemma 1 Let U, U’ be disjoint sets of atoms. Let R 
be a set of inference rules over ,C( U), and R’ a set of 
inference rules over C(V). Let X = Cnuuut (R U R’). 

e If X is consistent, then X f7 ,C(U) = Cnv(R) . 
e X = Cnuvul (Gnu(R) U R’) . 

In proving the Splitting Set Theorem it is convenient 
to introduce a set of alternative definitions, differing 
very slightly from those used in stating the theorem. 
(We nonetheless prefer the original definitions, because 
they are more convenient in applications of the Split- 
ting Theorems.) 

Let D be a default theory over ,C(U) split by A. We 
define the following. 
e tl(D)={r~D : cons(r)EL(U\A)) 

o b;(D) = D \ t;(D) 

The advantage of these alternative definitions is cap- 
tured in the following key lemma, which fails to hold 
for their counterparts bA (D) and D \ bA (D). 

Lemma 2 Let D be a default theory over l(U) with 
splitting set A. For any set X of formulas from L(U), 
bL(D)x = b>(Dx) and t2(D)x = t>(DX). 

The proof will also make use of the following addi- 
tional alternative definitions. 

Given a set X of formulas from L(A), let ei (D, X) 
be the default theory over ,C(U \ A) obtained from D 
in the following manner. For each rule r E t> (0) s.t. 
e every conjunct of pre (r) that belongs to L(A) also 

belongs to CnA (X), and 
o no member of just(r) has its complement in CnA (X) 

there is a rule r’ E ei (D, X) such that 

a pre( r’) is obtained from pre( r) by replacing each 
conjunct of pre(r) that belongs to C(A) by T, and 

e just(r’) = just(r) n,C(U \A), and 
0 cons(r’) = cons(r). 

Notice that e> differs from eA only in starting with 
the rules in t>(D) instead of the rules in D \ bA (D). 

Finally, let s>(D) be the set of all pairs (X, Y) s.t. 
e X is a consistent extension of b>(D), and 
e Y is a consistent extension of e: (D, X) . 

The following lemma shows that these alternative 
definitions are indeed suitable for our purpose. 

Lemma 3 If a default theory D over ,C(U) is split by 
A, then sL(D) is precisely the set of solutions to D 
with respect to A. 

Now we present the two main lemmas, and then use 
them to prove the Splitting Set Theorem. 

Lemma 4 Let D be a default theory over ,C(U) with 
splitting set A. Let E be a consistent set of formulas 
from ,C(U). E = Cnu(DE) if and only if 

@ E nL(A) = CnA[b>(D) End] and 

* E = Cnu[(E n l(A)) U tL(D)E]. 

Lemma 5 Let D be a default theory over it(U) split 
by A. Let E be a logically closed set of formulas from 
L(U), withX = ErM(A) andY = EM(U\A). We 
have Cnu[X U e> (D,X)y] = Cnv[X ~t>(D)~l. 
Proof of Splitting Set Theorem, Given a default the- 
ory D over L(U) with splitting set A, we know by 
Lemma 3 that s2 (D) is precisely the set of solutions 
to D with respect to A. We will show that E is a con- 
sistent extension of D if and only if E = Cnu(X U Y) 
for some (X,Y) E s>(D). 

(+) Assume E is a consistent extension of D. 
Let X = E n L(A) and Y = E n c(U \ A). 
By Lemma 4, X = CnA(b>(D)X) and E = 
Cnu(X U t>(D)E). By Lemma 5, E = Cnv(X U 
eL (D, X)y>. By Lemma 1, we can conclude that 
Y = CnU\A(e> (D,X)y). So we have established that 
(X, Y) E sf4 (D). We can also conclude by Lemma 1 
that E = Cnu[XUCn U\A (e> (Q X>y)]. And since 
Y = cnu\A(e> (D,X)y), we have E = Cnu(X U Y). 

(+) Assume E = Cnu(X U Y) for some 
(X,Y) f s>(D). Since (X,Y) E s;(D), we have 
Y = cnu\A(e; (D,X)y). Hence E = Cnu[X U 
Cnu\A(e> (D,X)y)]. By Lemma 1, we can conclude 
that E = Cnu(X U e> (D,X)y). Thus, by Lemma 5, 
E = Cnu(X Ut>(D)E). By Lemma 1, En ,C(A) = 
CnA (X) , and since X is logically closed, CnA (X) = X. 
So E n C(A) = X. Since (X,Y) E s>(D), we have 
X = CnA(bi(D)X). We can conclude by Lemma 4 
that E = Cnu(DE). cl 

Proof of Splitting Set Corollary. Assume that E is a 
consistent extension of D. By the Splitting Set The- 
orem, there is a solution (X, Y) to D with respect to 
A such that E = Cnu(X UY). Since X & L(A) and 
Y 2 ,C( U \ A), we can conclude by Lemma 1 that 
E fl L(A) = CnA (X) . And since X is logically closed, 
CnA(X) = X. So En L(A) = X. A symmetric argu- 
ment shows that E n ,!Z(U \ A) = Y. 0 

roof of Splitting Sequence heorem 
Lemma 6 Let D be a default theory over ,C(U) with 
splitting sequence A = (ACY)CY<p. Let E be a set of 
formulas from l(U). Let X = (X,),,, be a sequence 
of sets of formulas from J(U) such that 
e Xc,= EfM(Ao), 
e for all o s.t. a + 1 < p, X,+1 = En .C(A,+l \ A,), 
e for any limit ordinal a < p, X, = Cna (0). 
If E is a consistent extension of D, then X is a solution 
to D with respect to A. 

Nonmonotonis Reasoning 649 



Proof. There are three things to check. 
First, by the Splitting Set Corollary, we can conclude 

that E nL(A 0 is a consistent extension of bAO (D). ) 
Second, choose a such that o + 1 < p. We must 

show that X,+1 is a consistent extension.of 

(2) 

Let /3 = cy + 1. By the Splitting Set Corollary, E n 
,lZ(Ap) is a consistent extension of bAg (D). Let D’ = 
bAg (D) and let E’ = E n ,C(As). By the Splitting 
Set Corollary, since A, splits D’ , E’ n l(As \ ACY) is 
a consistent extension of e& (D’, E’ n ,C( A,)). It is 
easy to verify that X,+1 = E’ f7 ,C(Ap \ ACY). It is not 
difficult to verify also that eA, (D’, E’ fl L(A,)) is the 
same as (2). 

Third, for any limit ordinal a < p, X, = Cns(0). 
cl 

Lemma 7 Let D be a default theory over ,C(U) with 
splitting sequence A = (A,)a<P. Let (ECY)(Y<P be a 
solution to D with respect to A. For all a < 1-1 

CnA, 

is a consistent extension of bA, (0). 

Proof. For all (Y < ,u, let 

Proof is by induction on o. Assume that for all y < a, 
X, is a consistent extension of bAy (D). We’ll show 
that X, is a consistent extension of t)~, (D). There 
are two cases to consider. 

Case 1: Q is not a limit ordinal. Choose y such that 
y + 1 = a. By the inductive hypothesis, Xh is a con- 
sistent extension of bA, (D). We also know that E, is 
a consistent extension of eA, (bALI (D), UPC,, Es). Let 

= bA (D). It is clear that bA (0) = %A (0’). It 
t’not di&cult to verify that eA,(aA, (D), U,;, Ep) is 
the same as eA,(D’, X-,). So we’ve shown that X, is a 
consistent extension of bA (D’) and that E, is a con- 
sistent extension of eA,(o7/, X7). By the Splitting Set 
Theorem, it follows that &A, (X, U Ea) is a consis- 
tent extension of D’. And since it’s easy to check that 
CnA,(X, u -&) = X,, we’re done with the first case. 

Case 2: cy is a limit ordinal. First we show that X, 
is closed under bA, ( D)xp. So suppose the contrary. 
Thus there is an r E ~A,(D)~, such that pre(r) E X, 

- . ’ and cons(r) $! X,. Since A is continuous and cr is a 
limit ordinal, we know there must be a y < a such 
that T E b~,(D)~a. Since bAy (D) is a default theory 
over l(A,), we have bA,(D)xe = bA,(D)xy. So r E 
bA,(D)x7 - Furthermore, it follows that pre(r) E X, 
and cons(r) +i X7. This shows that X, is not closed 

under bAy ( D)x7, which contradicts the fact that, by 
the inductive hypothesis, X7 is a consistent extension 
of bA,(D). So we have shown that X, is closed under 
bA,(D)xa. 

Now, let E = CnAa(bA,(D)XOr). We will show that 
E = X,, from which it follows that X, is a consistent 
extension of bAa (0). S ince X, is logically closed and 
closed under bAQ (D)x0, we know that E C X,. Sup- 
pose E # X, , and consider any formula 4 E X, \ E. 
Since A is continuous and CE is a limit ordinal, there 
must be a y < o such that 4 is from ,C( A?) and 
therefore 4 E X,. Thus, X, is a proper superset of 
E n L(A,). By the inductive hypothesis, we know 
that X7 is a consistent extension of bA,(D). Thus, 
X7 = CnA,(bAy(D)XY). And since bA,(D)xy = 

by tDjxa, we have X, = CnA,(bA,(D)x=). Since 
E= cnA,(bAa(D)xa) and bA,(D)xa E bA,(D)Xa, 
we know that E is closed under bAy (D)xa. More- 
over, since bAy ( D)xe is a default theory over L(A,) , 
E fl L(A,) is closed under bA,(D)xe. But X, is the 
least logically closed set closed under bA7 ( D)xe, so 
X, E EnC(A,), h h w ic contradicts the fact that X, is 
a proper superset of E n ,C(A,). We can conclude that 
E = X,, which completes the second case. cl 

Let D be a default theory over L(U) with splitting 
sequence A = (Acu)a<P. The standard’extension 
is the sequence B = (Ba)cu<p+i such that 
o for all a < p, B, = A, , and 
e B,=U. 

Notice that the standard 
splitting sequence for D. 

extension of A is itself a 

of ;i 

Lemma 8 Let D be a default theory over ,C(U) with 
splitting sequence A = (A,),cP. Let B = (Ba)cu<P+l 
be the standard extension of A. Let X = (X,),,, be 
a sequence of sets of formulas from C(U). Let Y = 
(Y,)cy<P+l be defined as follows. 

e Foralla<p,Y,=X,. 
9 Up = Cn0(0). 

If X is a solution to D with respect to A, then Y is a 
solution to D with respect to B. 

Proof. First, it’s clear that Ye is a consistent exten- 
sion of bg, (D), since Ye = X0, bB,(D) = bA,(D), and 
X0 is a consistent extension of bAn (D). Similarly, it’s 
clear that for any a such 
consistent extension of 

that cry l’< p, %+I is a 

We also know that for any limit ordinal (Y < p, Y, = 
Cnm(8). It remains to show that we handle p correctly. 
There are two cases to consider. 

Case 1: p is a limit ordinal. In this case we must 
show that Yp = Cq(Q)), which it does. 
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Case 2: /-1 is not a limit ordinal. In this case, choose 
a, such that Q + 1 = ~1. We must show that Yp is a 
consistent extension of the default theory 

(3) 

over ,C (B, \ BCY ) . Since A is a splitting sequence for a 
default theory over Z(U), we know that U,,, A, = U. 
Moreover, since A is monotone and 1-1 is not a limit 
ordinal, it follows that A, = U. And since B, = A,, 
we know that bga (D) = D. It follows that default 
theory (3) is empty. It also follows that B, \ B, = 0, 
so the language of (3) is t(0). Since YcL = Cn0(0), we 
have shown that Yp is a consistent extension of (3). •I 

Proof of Splitting Sequence Theorem. (3) assume 
that E is a consistent extension of D. By Lemma 6, 
there is a solution (Ecu)cu<p to D with respect to 
w&<P for which it is not difficult to verify that 

E=CnU 

(+) Assume that X = (X,>,<, is a solution to D 
with respect to (A,),cp. Let 

E= Gnu 

Let B = (&)a<p+l be the standard extension of 
mJa<IL - By Lemma 8, we know there is a solution 
Paw+1 to D with respect to B such that 

E = Cw ( U Y-J . 
\a<fi+l / 

Moreover, we know there is an o < p + 1 such that 
B, = U. Thus bB, (D) = D and 

It follows by Lemma 7 that E is a consistent extension 
of D. 0 

Proof of Splitting Sequence Corollary. Assume that 
E is a consistent extension of D. By the Splitting 
Sequence Theorem, there is a solution (X,),,, to D 

with respect to A such that E = Gnu /Jcucp X, . 
( > 

We will show that for all a < p, E n L( Ua!) = X, . 
Let X = UacpXcu. Consider any ct < 1-1. We 
have X, E L(Ua), X \ X, C ,C(U \ U,), and E = 
Cnu(X, U X \ X,). Th us, by Lemma 1 we can con- 
clude that E fl L(Uor) = Gnu, (X,) . And since X, is 
logically closed, we have Gnu, (X,) = X, . q  
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