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Abstract 

The ability of case-based reasoning (CBR) systems to 
apply cases to novel situations depends on their case 
adaptation knowledge. However, endowing CBR sys- 
tems with adequate adaptation knowledge has proven 
to be a very difficult task. This paper describes a 
hybrid method for performing case adaptation, using 
a combination of rule-based and case-based reason- 
ing. It shows how this approach provides a framework 
for acquiring flexible adaptation knowledge from ex- 
periences with autonomous adaptation and suggests 
its potential as a basis for acquisition of adaptation 
knowledge from interactive user guidance. It also 
presents initial experimental results examining the 
benefits of the approach and comparing the relative 
contributions of case learning and adaptation learning 
to reasoning performance. 

Introduction 
Case adaptation plays a fundamental role in the flex- 
ibility of case-based reasoning systems. The ability of 
CBR systems to solve novel problems depends on re- 
trieving relevant prior solutions and adapting them to 
fit new circumstances. Considerable domain knowl- 
edge may be needed to guide this adaptation process 
(e.g., Kolodner, 1993), and the need for such knowl- 
edge in turn raises the difficult question of that knowl- 
edge should be acquired and applied. Most CBR sys- 
tems depend on a static library of built-in adaptation 
rules that are applied by rule-based production sys- 
tems. Unfortunately, because CBR is often applied 
to domains that are poorly understood or difficult to 
codify, developing adaptation rules is particularly dif- 
ficult. The problem is so acute that experts in CBR 
research and applications agree that it is not currently 
practical to deploy CBR applications with automatic 
adaptation. Consequently, new methods are needed 
for acquiring case adaptation knowledge. 

We describe research on an approach for facilitat- 
ing acquisition of useful adaptation knowledge. In our 

approach, a CBR system begins with a small set of ab- 
stract transformation rules and memory search meth- 
ods. When presented with a new adaptation problem, 
it first selects a transformation to apply. It then per- 
forms memory search to find the information needed to 
operationalize the transformation rule and apply it to 
the problem at hand (e.g., given a substitution trans- 
formation, finding what to substitute). The system 
improves its adaptation capabilities by case-based rea- 
soning applied to the case adaptation process itself: a 
trace of the steps in solving an adaptation problem is 
saved to be reused when similar adaptation problems 
arise in the future (Leake 1995). In this way, a CBR 
system doing adaptation can acquire specific adapta- 
tion knowledge by using “weak methods” for adapta- 
tion when no specific knowledge is available. 

When autonomous adaptation is unsuccessful, this 
framework can also be used as a basis for interactive 
acquisition of adaptation cases from a human user. We 
are developing an interface that allows a user to guide 
transformation selection and memory search for a par- 
ticular adaptation problem. A trace of the user’s adap- 
tation process is then added to the adaptation case 
library for future use. 

We begin by sketching our testbed system’s archi- 
tecture. We next summarize the adaptation process 
and the knowledge sources it uses. We discuss prelim- 
inary results concerning the relationship of different 
types of memory search strategies, adaptation learn- 
ing, and case learning, as well as the relationship of 
our method to previous approaches. We conclude by 
highlighting strengths of our approach and questions 
for further study. 

DIAL System Overview 
We are developing our model of adaptation learning 
in the context of a case-based planner in the domain 
of disaster response planning. Disaster response plan- 
ning is the initial strategic planning used to deter- 
mine how to assess damage, evacuate victims, etc., in 
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response to natural and man-made disasters such as 
earthquakes and chemical spills. Accounts of human 
disaster response planning suggest that case-based rea- 
soning is important in response planning by human 
disaster planners (Rosenthal, Charles, & Hart 1989). 

Our testbed system, DIAL, processes conceptual 
representations of a news story describing the initial 
events in a disaster, and proposes a response plan by 
retrieving and adapting the response plan for a simi- 
lar prior disaster. DIAL includes a schema-based story 
understander, a response plan retriever and instantia- 
tor, a simple evaluator for candidate response plans, 
and an adaptation component to adapt plans when 
problems are found. The system’s case-based planning 
framework is based in a straightforward way on pre- 
vious case-based planners such as CHEF (Hammond 
1989). Consequently, we will not discuss DIAL’s plan- 
ning process per se, but instead will focus entirely on 
the system’s case adaptation and adaptation learning. 

Summary of DIAL’s Adaptation Process 
DIAL’s adaptation component starts with a library 
of domain cases-disaster response plans from previ- 
ous disasters-and general (domain-independent) rules 
about case adaptation and memory search. DIAL’s 
case-based planner provides the adaptation component 
with two inputs: an instantiated disaster response plan 
and a description of the problems in the response plan 
that must be repaired. When the response plan has 
been successfully adapted, DIAL stores both the new 
response plan and two types of adaptation knowledge 
for use in similar future adaptation problems: memory 
search cases encapsulating information about the steps 
in the memory searches performed during adaptation, 
and adaptation cases encapsulating information about 
the adaptation problem as a whole, the transforma- 
tions and memory search cases used when solving it, 
and the solution to the adaptation problem. Thus, the 
system learns not only new response plan cases but also 
new ways of adapting existing cases to new situations. 

To adapt a case, DIAL’s adaptation component per- 
forms the following steps: 

1. Case-based adaptation: DIAL first attempts to 
retrieve an adaptation case describing the successful 
adaptation of a similar previous adaptation prob- 
lem. If retrieval is successful, the adaptation pro- 
cess traced by that case is re-applied and processing 
continues with step 3. 

2. Rule-based adaptation: When no relevant prior 
case is retrieved, DIAL selects a transformation as- 
sociated with the type of problem that is being 
adapted. For example, it may decide to substi- 
tute a new plan step for one that does not ap- 

ply. Given the transformation, the program gener- 
ates a knowledge goal (Hunter 1990; Ram 1987) for 
the information needed to apply the transformation. 
(E.g., when performing a substitution, the knowl- 
edge goal is to find an object that satisfies all the 
case’s constraints on the object being replaced.) The 
knowledge goal is then passed to a planning compo- 
nent that uses introspective reasoning about possi- 
ble memory search strategies (Leake 1994) to guide 
search for the needed information. If the needed in- 
formation is found, the transformation is applied. If 
it is not found, the process continues with step 4, 
manual adaptation. 

3. Plan evaluation: The adapted response plan is 
evaluated by a simple evaluator that checks the 
compatibility of the current plan with explicit con- 
straints from the response plan. A human user per- 
forms backup evaluation. If the new response plan 
is not acceptable, other adaptations are tried. 

4. Manual adaptation: If autonomous case adapta- 
tion fails to generate an acceptable solution, an inter- 
face allows the user to guide the adaptation process, 
selecting a transformation and suggesting features to 
consider. During the adaptation, the system records 
a trace of the adaptation process in the same form 
as the traces of system-generated adaptations. This 
trace is added to the adaptation case library for fu- 
ture use. 

5. Storage: When adaptation is successful, the re- 
sulting response plan, adaptation case, and memory 
search plan are stored for future use. 

The basic principles of the adaptation process are 
shown by an example of developing a response plan for 
the story of a 1994 flood in Allakaket, Alaska. When 
DIAL processes that story, it retrieves the closest dis- 
aster case in memory, a flood in Bainbridge, Georgia. 
Part of the Bainbridge response was to build walls 
of sand bags to protect the area from water damage 
as the flood waters rose. In Bainbridge, volunteers 
helped to build the sand walls, and DIAL generates a 
knowledge goal to find people who could fill the same 
role in an Allakaket response plan. However, most of 
the able-bodied people in Allakaket are unavailable be- 
cause they are helping to fight fires in the northwest. 
This prompts a new problem, that the desired role- 
fillers are unavailable. DIAL has no similar adaptation 
cases, so it falls back on rule-based memory search to 
attempt to find a substitution. It checks constraints on 
possible role-fillers and finds that the previous volun- 
teers were under the authority of the police. Searching 
for others who are under the authority of the police, it 
finds prisoners as a possible substitution. Prisoners are 
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suggested to build the flood walls, and, when they are 
judged a reasonable substitution by a human user, the 
replacement of able-bodied volunteers with prisoners is 
saved for future use. 

Guiding Adaptation 
In order to reason about adaptation problems, a uni- 
form framework is needed for characterizing the case 
adaptation problem. DIAL’s rule-based case adapta- 
tion treats the case adaptation process as involving 
two parts: applying structural transformations (e.g., 
additions, substitutions, and deletions) and perform- 
ing memory search to find the information needed to 
apply the transformations (Kass 1990). Accordingly, 
two types of case adaptation knowledge are needed: 
abstract transformations and memory search strate- 
gies. A small set of transformations is sufficient to 
characterize a wide range of adaptations (Kolodner 
1993), but much domain-specific reasoning may be re- 
quired to find the information to apply those transfor- 
mations. Consequently, a key issue is learning how to 
find the needed domain-specific knowledge. This in- 
volves a process of generating knowledge goals, using 
them to focus search for information, and packaging 
the reasoning trace to guide future adaptations. 
Knowledge Goals: DIAL generates knowledge goals 
to obtain information necessary for a specific adap- 
tation. For example, the national guard was called 
out to prevent riots after the Los Angeles earthquake. 
When using the response to that earthquake as the ba- 
sis for the response to an earthquake in Liwa, Indone- 
sia, a problem arises: Indonesia has no national guard. 
Consequently, the Los Angeles response plan must be 
adapted. In response to the inappropriate value prob- 
lem, a knowledge goal is generated to find a substitute 
for the national guard in the Liwa earthquake context. 
Memory Search Plans: DIAL’s memory search pro- 
cess starts from an input knowledge goal and uses a 
combination of rule-based and case-based reasoning 
to guide the traversal of memory to find the needed 
information. DIAL’s memory is frame-based, hierar- 
chically organized by memory organization packages 
(MOPS) (Schank 1982). MOPS representing event se- 
quences include roles such as actor and object (e.g., 
the MOP for a flood disaster includes a role for the 
rescuers), constituent sub-events, called scenes (e.g., 
rescuers traveling to the victims, rescuers evacuating 
the victims), and constraining relationships between 
the roles in a main MOP and roles in its scenes (e.g. 
the fillers of the victims role of the flood MOP are the 
evacuees in its evacuation scene). DIAL’s MOPS may 
also include explicit relationships in which role-fillers of 
a MOP are involved (e.g., because the police respond- 

ing to a particular flood are directed by the mayor, the 
MOP represents that they participate in an authority 
relationship with the mayor). All these of relationships 
may suggest pathways to be pursued during memory 
search. Corresponding memory search operations exist 
to examine roles, scenes, explicit relationships between 
role-fillers, or the meanings of those relationships; to 
examine MOPS or response plans that are nearby in 
the abstraction hierarchy; and to examine a represen- 
tation of the problem prompting memory search. 

Memory search cases: When memory search is suc- 
cessful, a trace of the search process is packaged as 
a memory search case. A memory search case con- 
sists of a sequence of primitive memory search opera- 
tions which was previously used to find some informa- 
tion in memory. Initial memory search cases are built 
up interactively by recording traces of manual adapta- 
tion. When similar knowledge is next needed in a sim- 
ilar context, a retrieved search case provides an initial 
strategy for finding the needed information. Memory 
search cases are indexed under adaptation cases that 
have successfully used them and the knowledge goals 
they satisfy, so that they can be used as operators when 
building up future memory search plans. 

Adaptation Cases: Adaptation cases package the 
results of a successful adaptation. They package both 
a transformation type (e.g., substitute, add, delete) 
and the memory search steps used to find the informa- 
tion needed to apply the transformation. An adapta- 
tion case consists of three parts: indexing information, 
adaptation information, and evaluation information. 
The indexing information includes a representation of 
the type of problem to adapt as the primary index, 
along with information about the response plan con- 
text in which the adaptation case was generated. Thus, 
appropriate adaptations can be retrieved to deal with 
new adaptation problems. 

The type of problem to be repaired by adaptation 
is described in terms of a vocabulary similar in spirit 
to the problem vocabularies used to guide adapta- 
tion in other CBR systems (e.g., Hammond, 1989; 
Leake, 1992). For example, DIAL’s problem types in- 
clude the following problems involving role-fillers in 
a candidate plan: UNAVAILABLE-FILLER (e.g., a 
police commissioner may be out of town and unable 
to be reached in an emergency situation), FILLER- 
MISMATCH (e.g., if a workplace response plan in- 
volving notifying the victims’ union is applied to a 
school disaster, whose victims-children-do not have 
unions), UNSPECIFIED-FILLER (e.g., if a plan calls 
for a rescue without specifying who will carry it out). 
These categories are used to index adaptation cases. 
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How Adaptation Knowledge is 
Acquired 

DIAL acquires adaptation cases in two ways. First, 
it generates them autonomously, based on the adap- 
tations it performs. Second, they can be entered into 
the system with a manual adapter, in which a human 
user interactively builds an adaptation case in response 
to a problem, selecting the type of transformation to 
apply and the types of memory links to follow. The 
manual adapter lets a user input cases which implic- 
itly contain the user’s knowledge of important features 
to consider when performing a particular type of adap- 
tation. The specific adaptation and a trace of how it 
was derived are saved for future use. At present, the 
use of the manual adapter requires considerable knowl- 
edge of the system’s memory organization, but a future 
research direction is to allow the user to provide gen- 
eral suggestions to be operationalized by the system’s 
own memory search mechanisms. 

Effects of Adaptation Learning 
To obtain initial indications of the potential value of 
adaptation learning, we compared the system’s adap- 
tation efficiency under six different conditions. In the 
first four conditions, all memory search during case 
adaptation was done by “local search,” with different 
combinations of learning methods: (1) No learning of 
either cases or adaptations, (2) Learning of response 
plan cases only (this is the standard learning of CBR 
systems), (3) No learning of response plan cases, but 
learning of adaptation cases, and (4) learning of both 
response plan cases and adaptation cases. Conditions 
(5) and (6) replaced “local search” with memory search 
planning to find needed information. In (5), DIAL 
performed response plan learning only, and in (6), it 
learned both response plans and adaptation cases. 

The memory for the trials included nodes for 870 
concepts. The initial case library included 6 response 
plans, for the following disasters: an earthquake in 
Los Angeles, an air quality disaster at a manufactur- 
ing plant, a flood in Bainbridge, Georgia, a chemical 
disaster at a factory, a flood in Izmir, Turkey, and an 
air quality disaster in a rural elementary school. The 
system processed conceptual representations of 5 sto- 
ries taken from the Clarinet News Service newswire and 
the INvironment newsletter for air quality consultants: 
An indoor air quality disaster at Brookview School; A 
chemical disaster at Johnson School; An air quality 
disaster at the Kirtland military base; A flood at Al- 
lakaket, Alaska; and an earthquake in Liwa, Indonesia. 
Appropriate response plans for each of these can be 
generated by adapting one of the prestored plans. l?or 
example, one change to adapt the plan for the Bain- 

bridge flood to apply to Allakaket is that the Salvation 
Army-which provided shelter during the Bainbridge 
flood, but does not exist in Allakaket-is replaced by 
the Red Cross. 

Each of the input problems required multiple adap- 
tations. In the trials including adaptation learning, the 
system built 30 adaptation cases. Efficiency of adapta- 
tion was compared across the six conditions by count- 
ing both the number of primitive memory operations 
performed and the number of memory nodes visited; 
each gives an indication of memory search effort. Ta- 
ble 1 shows the results for a single problem order, but 
changes in problem order did not appear to have a sig- 
nificant effect. 

Multiple search strategies combined with adaptation 
learning performed best overall in terms of memory op- 
erations performed. This contrasts with the relatively 
poor behavior of using multiple search strategies with- 
out adaptation learning, which will be discussed below. 
The same general pattern follows in results based on 
the number of memory nodes visited. 

The poor performance of multiple strategies without 
learning, compared to local search without learning, 
was initially surprising. However, it can be explained 
by the types of adaptations that are most common to 
these problems and the contents of memory: near-by 
substitutions, such as sibling nodes, were often appro- 
priate fillers, and these fillers could be found directly 
by local search. 

Conversely, a problem that is difficult for local search 
is often easier for the other strategies, which perform 
operations such as attempting to find substitute fillers 
based on explicit constraints (e.g., as in the case of hav- 
ing to notify children’s parents instead of their unions). 
Another illustration involves adapting the Los Angeles 
earthquake response plan into a plan for Liwa, Peru. 
The Los Angeles plan involved the Red Cross sending 
supplies in by truck, but the roads to Liwa are im- 
passable so the Red Cross cannot deliver the supplies. 
(In the real episode, the solution was a military air- 
lift.) Using local search to replace the Red Cross with 
an agency that can deliver the supplies is costly, be- 
cause the Red Cross and the military are distant in the 
system’s memory. A search based on other strategies 
identifies an old case where “lack of access” was an im- 
pediment, uses this case to identify vehicles that can 
make the trip, and then looks for actors who control 
these vehicles. This leads to the suggestion of the Liwa 
military after minimal search. Such problems did not 
arise often, however. When adaptation cases based on 
both local search and other strategies are saved and 
reused, average performance is better than for either 
method individually. 
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Memory Ops Nodes visited 
Avg Max Min Avg Max Min 

Using “local search” to find needed information 
1. No learning 103 226 7 53 114 4 
2. Plan learn&g only 80 214 7 41 108 4 
3. Adaptation learninq or& 68 181 4 40 92 3 
4. Plai + Adaptation- Leaking 66 181 4 39 92 3 

Using multiple strategies to find needed information 
5. Plan Learning 548 812 42 56 83 5 
6. Plan + Adapiation Learning 59 312 1 26 50 1 

Table 1: Average, maximum and minimum effort expended adapting the five sample cases. 

As was expected, when no adaptation cases are 
learned, learning additional response plan cases makes 
the system able to solve new problems with less adap- 
tation effort-more similar cases are available. This 
is the foundation for the benefits of learning found in 
most CBR systems. 

The table also shows that for this small test set, 
adding response plan learning to adaptation case learn- 
ing produced a very small (and probably insignificant) 
benefit. This requires further investigation, but sug- 
gests that for achieving good performance from CBR 
systems, it is not sufficient to consider only the ef- 
fects of learning domain cases: serious attention must 
be paid to the interaction of retrieval, similarity, and 
adaptation criteria. In our trials, the best performance 
came from simultaneously learning both response plans 
and adaptations. 

We plan to follow up on these initial tests with a 
more controlled analysis of the effects of learning for 
a larger set of problem examples. We also intend to 
study the tradeoff between adaptation effort and adap- 
tation quality, and the effects of adaptation learning on 
the quality of solutions generated. 

Relationship to Other Approaches 
Some early case-based reasoning systems included 
components for learning adaptation knowledge. For 
example, CHEF (Hammond 1989) bases its adapta- 
tions on both a static library of domain-independent 
plan repair strategies and a library of special-purpose 
ingredient critics, which suggest steps that must be 
added to any recipe using particular ingredients (e.g., 
that shrimp should be shelled before being added to 
a recipe). CHEF uses special-purpose procedures to 
learn new ingredient critics. PERSUADER (Sycara 
1988) uses a combination of adaptation heuristics and 
previously-stored adaptation episodes to suggest adap- 
tations. In both these systems, learned adaptations 
can only be reused in very similar situations; the adap- 
tation cases learned by DIAL can be reused more flex- 
ibly. In addition, DIAL can perform adaptations from 
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scratch when necessary to augment its library of cases. 
DIAL’s flexible approach to memory search is in- 

spired by the memory search process of CYRUS 
(Kolodner 1984)) and also relates to Oehlmann’s 1993 
question-based approach to introspective reasoning for 
guiding adaptation. 

Our use of both case-based planning and case- 
based case adaptation provides advantages of both 
derivational (Veloso & Carbonell 1994) and stan- 
dard transformational approaches to CBR. Transfor- 
mational CBR approaches store and adapt a solution 
to a problem, while derivational approaches store and 
replay a derivational truce of the problem-solving steps 
used to generate a previous solution. For CBR tasks 
such as disaster response planning, derivations of so- 
lutions are not generally available, and planning from 
scratch is not satisfactory because domain theories are 
inaccurate and intractable. However, examples of prior 
solutions are readily available in news stories and case- 
books used to train disaster response planners (e.g., 
Rosenthal et al., 1989). This favors a transformational 
approach to reusing disaster response plans. However, 
derivational approaches can simplify the reapplication 
of a case to a new situation, and the rationale for the 
system’s choice of particular steps during adaptation 
of prior cases is available. 

There is growing interest in alleviating case adap- 
tation problems through interactive user adaptation 
(e.g., Bell, Kedar & Bareiss, 1994; Goel et al. 1991), 
including presenting the user with derivational traces 
(Goel et al., 1996). However, because those systems 
do not capture the results of the user’s adaptations 
for future use, DIAL contributes a new approach to 
acquiring adaptation knowledge. 

Conclusion 
We have described ongoing research on a method for 
facilitating the acquisition of case adaptation knowl- 
edge. The method depends on representing adap- 
tations as combinations of abstract transformations 
with memory search plans for finding the information 



needed to apply them. When no specific adaptation 
knowledge is relevant, reasoning from scratch is used 
to search memory for the information needed to per- 
form an adaptation. When a similar adaptation has 
been performed in the past, case-based reasoning is 
used. This hybrid method makes it possible for a CBR 
system to acquire adaptation expertise through case- 
based reasoning about adaptation, and also to reason 
from scratch when needed to solve novel adaptation 
problems that would be beyond the scope of previous 
case-based adaptation methods. The view of adapta- 
tions as involving transformations plus memory search 
has also been used as the basis for interactive acquisi- 
tion of adaptation knowledge. 

Preliminary studies show speedup benefits from 
adaptation learning for an initial sampling of problems. 
More extensive studies are needed to corroborate these 
benefits, to investigate the affects of adaptation learn- 
ing on the quality of adaptations suggested, and to 
examine whether the indexing scheme for adaptation 
cases is sufficient to make the approach resistant to the 
utility problem as large numbers of cases are learned. 
Another issue requiring study is how similarity assess- 
ment criteria should change as adaptations are learned 
(Leake, Kinley, & Wilson 1996). Nevertheless, we be- 
lieve that combining transformational CBR for plan- 
ning with derivational CBR for performing adaptation 
is a promising approach. 
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