
Source Selection for Analogical Reasoning 
An Empirical Approach 

William A. Stubblefield 

Sandia National Laboratories 
P. 0. Box 5800 

Albuquerque, New Mexico 87 185 
wastub@ sandia.gov 

George F. Luger 

Department of Computer Science 
University of New Mexico 

Albuquerque, New Mexico 8713 1 
luger@cs.unm.edu 

Abstract 

The effectiveness of an analogical reasoner depends 
upon its ability to select a relevant analogical source. 
In many problem domains, however, too little is 
known about target problems to support effective 
source selection. This paper describes the design 
and evaluation of SCAVENGER, an analogical reasoner 
that applies two techniques to this problem: (1) An 
assumption-based approach to matching that allows 
properties of candidate sources to match unknown 
target properties in the absence of evidence to the 
contrary. (2) The use of empirical learning to im- 
prove memory organization based on problem 
solving experience. 

Introduction 
There are infinite things on earth; any one of 
them may be likened to any other. Likening 
stars to Zeaves is no less arbitrary than fikening 
them to fish or birds. 

Jorge Lois Barges 
Labyrinths 

Analogical reasoning (Gentner 1983; Hall 1989) 
makes inferences about novel target problems by 
transferring knowledge to them from a better under- 
stood source domain. Analogical reasoners generally 
choose a source that is known to have properties in 
common with the target under the assumption that 
this implies further commonalities and the 
potential for valid inferences. While this is a 
reasonable heuristic, many current implementations 
of it suffer from a number of limitations, including: 
1. The requirement that enough be known about the 

target to select a relevant source. If the target 

domain is poorly understood, this assumption may 
not be justified. 

Reliance on a restricted retrieval vocabulary 
(Kolodner 1993) to specify properties the reasoner 
may consider in choosing useful sources. Although 
efficiency requires such restrictions, many re- 
trieval methods ignore the problem of their 
selection by assuming an a priori definition of a 
retrieval vocabulary. 

. 

3. The use of context independent measures of simi- 
larity. For example, spreading activation tech- 
niques (Mitchell 1993; Thagard 1988) measure the 
similarity of two concepts as a function of their 
closeness in a semantic network. By fixing simi- 
larity measures in the structure of the network, 
such methods have difficulty in responding to 
changing problem situations. 

4. Failure to consider problem solving context when 
organizing source memory. Many systems use clus- 
tering algorithms like UNIMEM (Lebowitz 1980) 
and COBWEB (Fisher 1987) to construct a hierar- 
chical source organization. These and similar 
methods ignore the structure of target problems 
when defining hierarchies. If such approaches 
are to take the problem solving context into ac- 
count at all, they must do so implicitly, through 
biases in the retrieval vocabulary. 

Hoffman (1995) has demonstrated that reliance 
upon a single “form, format or ontology” for 
background knowledge will obscure many analogies 
that would seem reasonable and useful to humans. 
These limitations restrict both the theoretical 
depth and practical usefulness of many current 
models of analogy. This paper discusses the design 

696 Learning 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



and evaluation of SCAVENGER, an analogical 
reasoner that attempts to correct these problems by 
(1) integrating source selection and inference in an 
assumption-based retrieval mechanism, and (2) 
using empirical learning to improve memory 
organization through problem solving experience. 

Like most analogical reasoners, SCAVENGER orga- 
nizes its source base under a hierarchical index. 
Each index node describes properties that are com- 
mon to a set of similar sources. Each node adds in- 
formation to its parent, and indexes a subset of its 
parent’s sources. SCAVENGER searches its hierarchy 
for nodes whose descriptions match components of 
the target. However, SCAVENGER takes an 
assumption- based approach to matching target 
problems with the patterns stored at index nodes: It 
requires properties known for the target to match 
exactly, but allows properties unknown in the target 
to assume any values required for a match. In a 
sense, rather than using the target problem 
description to select a source, it uses it to eliminate 
sources known to be irrelevant. Unlike approaches 
that treat retrieval and inference as separate steps, 
assumption-based retrieval integrates analogical 
inference with source selection. 

On constructing a successful analogy, SCAVENGER 
updates its hierarchy by specializing the node that 
led to retrieval of the relevant analogical sources. 
Empirical memory management selects properties 
that best distinguish successful analogies from their 
competitors by using a variation of the ID3 learning 
algorithm (Quinlan 1986). It then uses these 
properties to refine the index hierarchy. By limit- 
ing the properties it considers to those that were ef- 
fective in solving target problems, SCAVENGER both 
eliminates the need for a priori restrictions on its 
retrieval vocabulary, and considers problem solving 
experience in organizing source memory. 

Although promising, this approach raises a 
number of questions and potential problems: 
1. If little is known about a target problem, 

assumption-based retrieval will allow many po- 
tentially contradictory matches. It is possible 
that the overhead of maintaining these alter- 
native hypotheses may cancel any advantage it 
provides over exhaustive search of all sources. 

2. Because analogy is an unsound inference method, 
there is no guarantee that properties that 
characterized a useful source in one situation will 
be useful for other target problems. In using the 
ID3 learning algorithm with such potentially 
unsound data, we are violating many of the 
assumptions underlying its design. This may 

undermine its effectiveness. 
The rest of this paper examines SCAVENGER’s 

design and its ability to overcome these problems. 

he SCAVENGER Architecture 
Although we have tested SCAVENGER on several 
domains (Stubblefield 1995), this paper discusses its 
application to the problem of diagnosing children’s 
errors in simple subtraction problems (Brown and 
VanLehn 1980; Burton 1982; VanLehn 1990). Where 
their DEBUGGY system used an analytic approach 
that considered all likely bugs in forming a 
diagnosis, we have used their diagnostic models and 
problem data to ask a different question: Can 
SCAVENGER learn enough to make effective first 
guesses about the cause of an error without 
performing an extensive analysis? There are several 
reasons this is an interesting test for SCAVENGER’s 
retrieval algorithm: 
1. Although human teachers are generally good at 

inferring the cause of a student’s error, it seems 
unlikely that they use DEBUGGY’s analytic 
methods. It is more likely that they recognize 
similarities between current problems and those 
they have seen in the past. This suggests the use 
of some form of analogical reasoning. 

2 Subtraction problems offer few surface cues to the 
underlying causes of mistakes. This makes them a 
difficult challenge for an analogical reasoner. 

3. A single error may result from multiple 
interacting bugs, further complicating diagnosis. 

SCAVENGER represents analogical sources as class 
and method definitions using the Common LISP 
Object System. The source base used in these tests is 
a set of LISP functions that reproduce the bugs 
described in (Brown and VanLehn, 1980). 
SCAVENGER decomposes each subtraction problem 
into a series of unknown operations on pairs of digits. 
This takes the form of a LISP program containing 
unknown functions. For example, in diagnosing the 
cause of the erroneous subtraction: 

634- 468=276 
SCAVENGER reformulates the problem as a 

sequence of LISP function evaluations: 
(#:G873 4 8 w) -> ? 
(#:G874 3 6 w) -> ? 
(#:G875 6 4 w) -> ? 
(show-result w) -> 276 

In this target, w is an instance of the class working- 

Case-Based Reasoning 697 



memory. w contains two slots: a borrow slot that records 
the value to be decremented from the next column, 
and a result slot that accumulates the column results 
as the program proceeds. Show-result returns the re- 
sult accumulated in working memory. The methods, 
#:G873, #:G874 and #:G875, indicate unknown target 
operations. SCAVENGER diagnoses the error by find- 
ing an analogical mapping of target methods onto 
source operators that reproduces the erroneous be- 
havior. 

The source library contains methods for subtract- 
ing digits. Each of these takes two digits and an in- 
stance of working-memory, and returns an integer. 
Sources include the normal-subtract method and such 
error methods as borrow-no-decrement, borrow-from-zero, 
always-borrow, etc. For example, borrow-no-decrement 
borrows under the appropriate circumstances, but 
fails to decrement the column borrowed from. 

Trying alternative mappings onto the target 
operators, SCAVENGER eventually reproduces the 
behavior seen in the target problem. In the 
example, it diagnoses the error’s cause as a borrow-no- 
decrement bug: 

(normal-subtract 4 8 w) -> 6 
(borrow-no-decrement 3 6 w) -> 7 
(borrow-no-decrement 6 4 w) -> 2 
(show-result w) -> 276 

Assumption-based Retrieval 

Each operator in SCAVENGER’s source base is stored 
along with: 
1. Its signature, specifying the types of its argu- 

ments. Types used in this problem include a digit 
type, and sub-types for each individual digit (0, 1, 
. . .). For example, the signature of the borrow- 
from-zero operator is: 

digit-0 x digit x working-memory -> digit 

The numbers and types of arguments are the only 
information SCAVENGER uses to restrict matches 
between targets and sources. 

2. A description of the bug. The original DEBUGGY 
research derived bugs from a procedural model of 
subtraction skills (Brown and VanLehn 1980; 
Burton 1982; VanLehn 1990). Each bug represents 
a different failure of one step in this model. In 
order to avoid representational biases that might 
distort our evaluation of SCAVENGER, we de- 
scribed each bug according to the stage of this 
model it effects. This yielded 6 bug descriptors: 

1. normal-op. This describes normal subtraction. 

698 Learning 

2. transpose-error. An error in which the student 
subtracts the top digit from the bottom digit. 

3. borrow-error. Any failure in borrowing, such as 
failing to borrow, or always borrowing. 

4. decrement-error. Any failure in 
digit borrowed from. 

decrementing the 

5. subtract-error. A failure in subtracting digits, 
such as assuming that n-0 = 0. 

6. add-error. Adding instead of subtracting. 

For example, borrow-no-decrement is represented by: 
Operator: borrow-no-decrement 
Signature: digit x digit x working-memory -> digit 
Description: (decrement-error) 
Definition: (defmethod . . . ) ; the LISP definition 

SCAVENGER stores sources under a hierachical 
index, where each node contains the signature and 
description shared by a class of similar operators. In 
the example hierarchy of Figure 1, the root contains 
no description pattern, and the child node describes 
borrow-no-decrement and 10 similar operators. 

.----------------p,, References all sources 

Source base 

;“““““““““‘“““““’ 
: operator: borrow-no-decrement i 

--+.A signature: digit x digit x w -> digit i 
i description: decrement-error : 
~,,,,,,,,,,,,,,2-,I-,,ll,ll,J- ,: 

-+ (10 additional matchin operators) 

Figure 1 

In searching this hierarchy, SCAVENGER forms 
and evaluates alternative hypotheses about the 
target. Each hypothesis results from a different 
sequence of index matches, and reflects different as- 
sumptions about the target. SCAVENGER constructs 
and evaluates hypotheses using the following algo- 
rithm: 

1. Create an initial hypothesis based on the root node, in which 
no targets are matched. Move down the hierarchy, creating a 
new hypothesis for every matching index by: 

1.1. For each hypothesis, examine the children of 
specific index node that it has already matched. 

the most 

1.2. For each match between the description stored at a 
child index and an unmatched target operator in the hypoth- 
esis, create a new hypothesis. In it, record the matching 
index, the target that is matched, and transfer the index 



signature and description to the target operator. 

1.3. Repeat 1 .l & 1.2 until no more hypothesis are produced. 

2. Sort all hypotheses according to heuristic merit. 

3. Trying each hypothesis in order, retrieve all sources stored 
under its matching indices, and construct a partial analogy for 
each consistent combination of retrieved sources. 

4. Complete each of these partial analogies using all sources 
that match the remaining target methods. Note that a single 
partial analogy may have multiple completions. 

5. Test each candidate analogy by attempting to reproduce 
the target behavior. Repeat steps 3 - 5 until finding an 
analogy that duplicates the target behavior. 

Matching (step 1) uses type information stored at 
an index to prevent invalid matches. For example, 
the digit 5 cannot match the type digit-O. On 
matching, the index signature and source description 
transfer to the target. This can restrict further ex- 
tensions to the hypothesis as described in 
(Stubblefield 1995). 

The heuristics of step 2 use the information trans- 
ferred to the target under step 1 to rank hypotheses. 
The heuristics used in this problem were (1) a speci- 
ficity criterion that preferred matches deeper in the 
hierarchy, and (2) a simplicity criterion that 
favored matches that transferred the fewest differ- 
ent source descriptions to the target. (Stubblefield 
1995) discussses the use of assumptions made in 
retrieval to evaluate competing hypotheses. 

Because SCAVENGER uses assumed information to 
match index nodes, it must evaluate all hypotheses, 
whether produced by internal or leaf nodes. If all 
other indices fail to produce a viable analogy, the 
algorithm will eventually “fail back” to the root, 
where it effects an exhaustive search of the source 
base. Since this process may generate the same 
analogies several times, SCAVENGER keeps a list of 
previously tried analogies, and checks it to avoid 
testing the same analogy twice. Although this adds 
to the algorithm’s overhead, the results of section 3 
show that it does not outweigh its benefits. 

In step 4, SCAVENGER completes a hypothesized 
analogy by matching each of its unmatched targets 
with all matching sources. Consequently, a single 
partial analogy can have many completions. 

Continuing with the example problem, 
assumption-based retrieval produces four 
hypotheses, based on the initial match with the 
root, and a match between the child node and each 
target operator (#:G873, #G874 and #:G875). 
SCAVENGER evaluates each hypothesis in turn by 
retrieving all source operators referenced under the 
matching index. For example, evaluating the match 

between target #:G873 and the child node of Figure 1, 
produced 11 partial analogies, including one that 
eventually led to a correct diagnosis: 

#:G873 -----> borrow-no-decrement 
#:G874 -----> ? 
#:G875 -----> ? 

SCAVENGER generates and tests all possible 
extensions to each partial analogy. 
Although a given error may have different possible 
diagnoses, SCAVENGER stops after finding the first. 
This is not as thorough as the approach taken by 
DEBUGGY, but it fits our stated goal of testing 
SCAVENGER’s ability to efficiently find relevant 
analogies. 

successful analogy 

#:G873 operator: borrow-no-decrement 
signature: digit x digit x w -> digit 
description: decrement-error 

#:G874 operator: normal-subtract 
signature: digit x digit x w -> digit 
description: normal-op 

#:G875 operator: borrow-no-decrement 
signature: digit x digit x w -> digit 
description: decrement-error 

failed analogy 

#:G873 operator: borrow-no-decrement 
signature: digit x digit x w -> digit 
description: decrement-error 

#:G874 operator: normal-subtract 
signature: digit x digit x w -> digit 
description: normal-op 

#:G875 operator: normal-subtract 
signature: digit x digit x w -> digit 
description: normal-op 

Figure 2 

Empirical Memory Management 

When an analogy correctly reproduces the target 
behavior, SCAVENGER specializes the index that 
led to its construction according to the algorithm: 

1. Consider the index whose match led to the successful anal- 
ogy. This may be either a leaf or an internal index node. 

2. For each target function in the successful analogy that was 
not matched to an index pattern but matched a source when 
the partial analogy was extended: 

2.1. Use the signature and description transferred to that 
function in the successful analogy to partition all analogies 
produced at the index into matching and non-matching sets. 

Case-Based Reasoning 699 



2.2. Using ID3’s information theoretic evaluation function 
(Quinlan 1986), rank each partition according to its ability 
to distinguish successful and failed analogies. 

2. Create a new child node using the function description that 
best partitioned the candidate analogies. 

For example, Figure 2 shows a successful and a 
failed analogy that resulted from the match of 
target #:G873 with the index node of Figure 1. 

Figure 3 shows two potential extensions to the 
index of Figure 1, resulting from the respective 
mappings of #:G874 onto normal-op, and #:G875 onto 
borrow-no-decrement in the successful analogy. 
Candidate child node #1 partitions the analogies 
considered into those that mapped #:G875 onto a 
source operator from the set of decrement-errors and 
those that gave this target function a different 
interpretation. Candidate child node #2 partitions 
them into those that mapped #:G874 onto normal-op 
and those that gave it a different interpretation. 

candidate child node #1 candidate child node #2 
(later eliminated) 

Figure 3 

SCAVENGER rates each candidate child node ac- 
cording to its ability to distinguish the successful 
and failed analogies using the information theoretic 
evaluation function from the ID3 learning algo- 
rithm. For details, see Quinlan (1986). In our exam- 
ple, it determined that mapping target operator 
#:G875 onto the borrow-no-decrement source made the 
greatest contribution to the successful analogy, and 
selected candidate specialization #l from Figure 3. 
This new node indexes all matching sources. 

It is important to note that SCAVENGER is using 
ID3’s evaluation function differently than was orig- 
inally intended. Each specialization of the index 
hierarchy results from a different target problem. 
Since an analogy that proved useful for solving one 
problem will not necessarily be correct for another, 

700 Learning 

the examples used to construct the indices lack the 
global consistency usually assumed by ID3. In addi- 
tion, since SCAVENGER stops evaluating analogies 
on finding one that solves the target problem, many 
of the analogies evaluated in step 2.2 may not have 
been tested. SCAVENGER assumes these to be 
failures. One of the questions we consider in the next 
section concerns the algorithm’s ability to produce a 
useful hierarchy under these circumstances. 

Evaluating SCAVENGER 

We evaluated SCAVENGER on a Power Macintosh 
6100 computer. The source base consisted of 67 opera- 
tors. Although this is less than the 97 bugs that 
were considered in the original DEBUGGY work, 
many of those were either combinations of simpler 
bugs or restrictions of bugs to a specific context (e.g., 
the leftmost column). Consequently, SCAVENGER 
was able to duplicate all the original bugs when 
constructing analogies. We randomly chose 500 
buggy subtractions from VanLehn’s (1990) study of 
children’s subtraction; to these, we added the correct 
solutions to the problems, producing a set of 575 
potential test problems. Our test procedure 
randomly chose 161 problems from this set, dividing 
them into a training set containing 75 problems, and 
a test set containing 86 problems. 

1600 

f 1200 
0) cn 
-z 
3 800 
Q 
iij 
g 400 
.- I- 

O 
2 3 4 5 

Run # 

Figure 4 

Figure 4 shows SCAVENGER’s improvement across 
5 trials of the training data. Due to the many 
possible combinations of bugs it had to test, the 
untrained algorithm took approximately 1600 
seconds per problem. The trained version took an 
average of 11 seconds per problem. The longest 
solution time for the trained algorithm was 30.5 
seconds, the shortest was just over 2 seconds. The un- 
trained version of the algorithm generated an av- 



erage of 3096 candidate analogies per problem. 
After training, it generated an average of 78 per 
problem. 

In applying SCAVENGER to the test set (problems 
that the learning algorithm had not seen), the un- 
trained version took about 1500 seconds per problem. 
This improved to 76 seconds after training. 
Although this is a strong result, it is worth noting 
that it was skewed by the presence of a small num- 
ber of completely novel problems that, consequently, 
took a very long time (2220, 1556,593,569, 568 and 
116 seconds) to solve. Excluding these, the average 
time on the test problems drops to under 11 seconds. 

+ Trained algorithm & 

- Trained algorithm & 

7 13 19 25 31 38 45 52 59 66 

Number of sources 

Figure 5 

The algorithm scales well as the source base 
grows. To examine its scaling behavior, we divided 
the source base into 10 sets of 6 or 7 buggy operators. 
Each of these “test units” included approximately 16 
problems that could be solved with those operators. 
Repeated trials “grew” the source base by adding 
test units and problems. At each stage, we randomly 
divided the problems into test and training sets and 
repeated the test described above. As the source 
base grows, the untrained algorithm shows the ex- 
ponential rise in complexity we would expect of ex- 
haustive search (Figure 5). However, times for the 
trained algorithm remain nearly flat when applied 
to problems it has trained on. The algorithm also 
remains efficient on the test problems, although the 
results show some fluctuation due to the existence of 
novel problems that caused it to perform badly. 

The effectiveness of SCAVENGER’s retrieval algo- 
rithm rests on two factors: the first is the repetition 
of useful patterns of analogy in the problem domain. 
These tests confirmed the existence of such common 
patterns in our test domain. The second is the 
ability of the learning algorithm to construct ef- 
fective hierarchies. Although SCAVENGER uses a 
variation of the well tested ID3 learning algorithm, 
it did so in a very different way than was originally 
intended. SCAVENGER used a different analogy for 
each extension of its index hierarchy. In addition, it 
stopped evaluating analogies on success, and as- 
sumed unevaluated analogies to be failures. This 
contrasts with ID3’s usual global analysis of entire 
sets of training data, and it was not clear that it 
would support construction of a useful index hierar- 
chy. The results of our evaluation strongly suggest 
that it does, providing another example of the 
robustness of the ID3 algorithm. 

The positive results on scaling tests indicate that 
in spite of the algorithm’s complexity and the large 
numbers of hypotheses it typically evaluates, the 
algorithm behaves well as its source base grows. 

SCAVENGER provides an analogical retrieval 
mechanism that overcomes the four limitations of 
traditional approaches that were listed in the 
introduction: 
1. By projecting commonly useful patterns of analogy 

onto poorly defined target problems, assumption- 
based retrieval enables reasonable analogies in 
poorly defined problem domains. 

The use of empirical learning to select properties 
that are effective predictors of source utility 
eliminates the need for a priori restrictions on the 
retrieval vocabulary. 

2 

3. SCAVENGER determines the similarity of sources 
and targets by heuristically ranking 
hypothesized matches between the target and 
different index nodes. This is more flexible and 
expressive than context independent approaches. 

4. Empirical memory management takes the 
structure of target problems into account in 
organizing the retrieval system. 

It is interesting to contrast SCAVENGER with the 
more analytic approach taken by DEBUGGY and 
most expert systems. SCAVENGER does not reason 
about problems: it simply remembers useful patterns 
of analogy. This “analogize-test-remember” 
approach could be useful in poorly understood 
problem domains. For example, if we are diagnosing 

Case-Based Reasoning 701 



problems in systems where failure of one component 
could cause or interact with failures of another in 
poorly understood ways, SCAVENGER could be a 
useful tool for discovering and recording patterns of 
interacting failures. 

The SCAVENGER experiments corroborate the 
viability of assumption-based retrieval and 
empirical memory management for analogical source 
retrieval. In particular, they show that the 
experience gained in constructing analogies, 
although limited and contingent in nature, will 
support construction of effective hierarchical indices 
for future source selection. Finally, SCAVENGER 
provides an alternative to the separation of 
retrieval and analogical inference common to many 
models of analogy. In doing so, it offers what we 
believe to be an elegant, flexible and theoretically 
interesting model of analogical reasoning. 

Acknowledgements 
We wish to thank Kurt VanLehn for graciously pro- 
viding the original data from his Southbay study of 
children’s performance on subtraction problems. We 
also thank the Computer Science Departments at 
Dartmouth College and The University of New 
Mexico for providing the intellectual communities 
that made this research possible. 

References 

Brown, J. S. and K. VanLehn. 1980. Repair theory: a 
generative theory of bugs in procedural skills. 
Cognitive Science 4~379-426. 

Burton, R. R. 1982. Diagnosing bugs in a simple pro- 
cedural skill. in Sleeman and Brown (1982). 

Gentner, Dedre. 1983. Structure-Mapping: A 
Theoretical Framework for Analogy. Cogni tiue 
Science 7: 155-170. 

HaII, R.P. 1989. Computational Approaches to 
Analogical Reasoning: A Comparative 
Analysis. Artificial Intelligence 39(l): 39-120. 

Hoffman, R. I?. 1995. Monster Analogies. A I 
Magazine 16(3):1 l-35. 

Kolodner, J. L. 1993. Case-Based Reasoning. San 
Mateo, Cal.: Morgan Kaufmann. 

702 Learning 

Mitchell, M. 1993. Analogy-making as Perception. 
Cambridge, Mass.: MIT Press. 

Quinlan, J. R. 1986. Induction of Decision Trees. 
Machine Learning 1 (1 ): 81-106. 

Sleeman, D. and Brown, J. S. 1982. Intelligent 
Tutoring Systems. New York: Academic Press. 

Stubblefield, W. A., 1995. Source Selection for 
Analogical Reasoning: An Interactionist 
Approach. PhD Dissertation, Department of 
Computer Science, University of New Mexico. 

Thagard, P. 1988. Computational Philosophy of 
Science. Cambridge, Mass.: MIT Press. 

VanLehn, K. 1990. Mind Bugs: The origins of proce- 
dural misconceptions. Cambridge, Mass: MIT 
Press. 


