
Hussein Almuallim
Information and Computer Science Department
King Fahd University of Petroleum & Minerals

Dhahran 31261, Saudi Arabia
hussein@ccse.kfupm.edu.sa

Uasuhiro Akiba Shigeo Kaneda
NTT Communication Science Labs

l-2356 Take, Yokosuka-shi
Kanagawa 238-03, Japan

{akiba,kaneda}@nttkb.ntt.jp

Abstract

Given a set of training examples S and a tree-
structured attribute X, the goal in this work is to
find a multiple-split test defined on x that maxi-
mizes Quinlan’s gain-ratio measure. The number
of possible such multiple-split tests grows expo-
nentially in the size of the hierarchy associated
with the attribute. It is, therefore, impractical
to enumerate and evaluate all these tests in order
to choose the best one. We introduce an efficient
algorithm for solving this problem that guaran-
tees maximizing the gain-ratio over all possible
tests. For a training set of m examples and an at-
tribute hierarchy of height d, our algorithm runs
in time proportional to dm, which makes it effi-
cient enough for practical use.

of the hierarchy. This makes it impractical to enu-
merate and evaluate all these tests in order to choose
the best one. Nunez discusses a “hierarchy-climbing”
heuristic within his EG2 algorithm (Nunez 1991) for
handling t,his problem. Quinlan lists the support of
tree-structured attribut,es as a “desirable extension” to
his C4.5 package. In order t#o allow the current C4.5
code to handle such attributes, Quinlan suggests intro-
ducing a new nominal attribute for each level of the hi-
erarchy, and encoding the examples using these newly
introduced att,ribut#es(Quinlan 1993). This essentially
means considering only t,hose tests whose outcomes are
all lying on one level in the hierarchy. For example, for
the attribute Shape, only the three tests shown in Fig-
ure 4 are considered. This approach, however, has the
following problems:

Motivation
Current algorithms for learning decision trees from ex-
amples (e.g., CART (Breiman et al. 1984), C4.5 (Quin-
lan 1986; Quinlan 1993), GID3 (Fayyad & Irani 1992))
assume attributes that are ordered (which may be con-
tinuous or discrete) or nominal. Many domains, how-
ever, involve attributes that have a hierarchy of val-
ues, rather than a list of values (Almuallim, Akiba &
Kaneda 1995). Figure 1 shows two examples of such
tree-structured attributes. Each node in the tree as-
sociated with a tree-structured attribute is called a
cutegory and represents one of the values which the
attribute may take. Figure 2 shows examples of the
concept “colored polygons” described in terms of the
Color and Shape attributes of Figure 1. In this case,
the examples are described using leafcategories, while
the concept itself is best described using t)he higher
level categories Chromatic and Polygon.

Although it is true that any multiple-split test can
be simulated using Quinlan’s “one-level” tests, this
comes at) the expense of extra unnecessary split-
ting, and hence, extra complexity of the final de-
cision tree. Moreover, t(he replicat,ion problem (as
discussed by Pagallo and Haussler (Pagallo & Haus-
sler 1990)) ft o en arises as a consequence of such sim-
ulation.

In most cases, one-level t,ests are not well-defined.
For the Color at#tribut#e, for example, unless further
background knowledge is available, we do not know
whether t,o associate the category Achromatic with
the category Chromatic or with t,he categories Pri-
mary and Non-primary, and so on.

In general, at8temptting to reduce the computational
costs by rest8rict,ing t(he at,tention to only a subset of
the possible multiple-split, t)ests is obviously associat.ed
with the risk of missing favorable t,est,s.

Tests on tree-structured attributes may be binary, This paper addresses the problem of how one can effi-
or can have multiple outcomes as shown in Figure 3. ciently opt,imize over t#he whole set, of possible multiple-
Searching for the category that gives the best binary split test,s. We assume t(liat, t,lie gain-ratsi criterion
split is not difficult and is discussed in (Almuallim, (Quinlan 1986) is used to evaluate t,ests. It is well-
Akiba & Kaneda 1995). This is not, the case, how- known t,hat tests with too many out,comes (those de-
ever, for multiple-split tests. It can be shown that the fined on low level cat.egories) have more “split,ting
number of possible multiple-split tests for a given hi- power” than t,hose with few outcomes (defined on
erarchy grows exponentially in the number of leaves higher level cat#egories). This necessitates the use of

Decision Trees 703

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Any Shape

Convex Non-convex

Polygon Ellipse
/\

Straight-lines CUNY
non-convex non-convex

/I\ /\ /\ A
Triangle Hexagon Square Proper Circle cross star Kideny Crescent

ellipse shape

Any Color

ChronZ/ \

Prim&/ \

Achromatic
Non-primary

A/ \\ /I\
Yellow Violet Orange Pink Black White Gray

Figure 1: The Shape and Color hierarchies

([Yellow, Square] , + >
([Green, Hexagon] , +)
([White, Cross] , - >
([R-4 Circle 17 ->
([Black, Circle] , -)

Figure 2: Examples of the concept “colored polygons”

a criterion such as the gain-ratio that involves
penalty for excessive splitting.

some

We introduce an algorithm that, given a set of exam-
ples and a tree-structured attribute x, finds a multiple-
split test defined on a: with maximized gain-ratio over
all possible multiple-split tests defined on x. Our algo-
rithm employs a computational technique introduced
by Breiman et al. in the context of decision tree prun-
ing (Breiman et al. 1984). The proposed algorithm
can be called from any top-down decision tree learn-
ing algorithm to handle tree-structured attributes. We
show that when the number of examples is m and the
depth of the hierarchy is d, our algorithm runs in time
proportional to dm in the worst case, which is efficient
enough from a practical point of view.

In the next section, we start by giving a precise
definition of the problem studied in this paper. An
overview of the pruning algorithm of Breiman et al. is
then given, followed by an outline of our algorithm and
a discussion of its time complexity. Finally, we con-
clude with a discussion of future research directions.

Binary Test Multiple-Split Test

Figure 3: Binary and multiple outcome tests on at-
tribute Shape

Figure 4: The three “one-level” tests for attribute
Shape

Problem Definition
Let S be a set of training examples each having the
form [(ul,uz,..., a,), c 1, where al, ~2,. . . , a, are the
values of attributes x1, x2, e. . , x,, and c denotes a
class. Given such a set S, the basic operation in top-
down induction of decision trees is to compute a score
for each xi, 1 5 i 5 n, that measures how good it is to
use xi for the test at the root of the decision tree being
learned for S. The attributes ~:i may be continuous,
discrete, and/or nominal. The objective of this work is
to extend this to tree-structured attributes such as the
Shape and Color attributes shown in Figure 1. A tree-
structured attribute x E (~1, x2, . . . , z,} is associat,ed
with a hierarchy which we will denote by x-tree. Each
node in x-tree is called a category of 2. For simplic-
ity, we assume that only the categories at t.he leaves
of x-tree appear in the examples as values of x. (See
Figure 2.)

Following (Haussler 1988), we define a cut, C, of P-
tree as a subset! of the categories of x satisfying t,he
following two properties: (i) For any leaf e of x-tree,
eit#her ! E C or e is a descendant of some cat,egory
g E C. (ii) For any two categories ;,j E C, i is not,
a descendant) (nor an ancest$or) of j. Figure 5 shows
some cuts for the Shape hierarchy.

Each cut C of x-tree can be turned int,o a multiple-
split, test defined on x in a natural way. Namely, the

704 Learning

Any Shape

TI

- - Polygon --------Ellipse& non-convex, non-convex

cut I
---I

*iangle Hexagon Square Proper Circle
/\\ /\

Cross Star cut 3 Kideny -Crescent -
ellipse shape

Figure 5: Examples of cuts for the Shape hierarchy

test would have ICI outcomes-an outcome for each
g E C, where an example in which z = v is of outcome
g iff v is a descendant of g, or ZJ is g itself. For exam-
ple, Cut 3 in Figure 5 represents a test with the four
outcomes { Con zle.r, Straight-lines-non-convex, Icidney
shape, Crescent}. Clearly, the value of Shape in any ex-
ample would belong to exactly one of these categories.

In this work, a test (cut) is evaluated using Quinlan’s
gain-ratio criterion. For a given set S of examples with
q classes, let

Ent(S) = - 2 Freyg7 ‘) X log, (“7;’ “’) ,

j=l

where Freq(j,S) denotes the number of examples of
class j in S. The mutual information of a cut C for
at,tribut,e X, denoted MI(C), is defined as follows:

M(C) = ‘);7 !Gfd
gEC ISI

x Ent(Sg),

where S, is the subset of S having the outcome g of
t,lie cut, -c for the attribut,e
for the cut, is defined as

x. The split information

Finally, the gain-ratio score foI
t#o a training set S is given by

the cut C with respect

m?(C) =
Ent(S) - MI(C)

SPF) .

With the above
statsed as follows:

definitions, our problem can now be

Given a set of examples S and a tree-structured
at,tribut,e x with hierarchy x-tree, find a cut C of x-
tree such t,hat GR(C) is maximum over all possible
cuts of x-tree.

Not,e t,hat, cut,s consist,ing of “specific” categories (t#hose
t,liat, appear at, low levels of x-tree) give test#s with t,oo

many outcomes and consequently yield good MI scores
compared to cuts with more “general” categories which
naturally have fewer outcomes. The use of gain-ratio
(rather than the pure gain or other similar measures)
helps in avoiding the t,endency towards those tests with
too many outcomes (Quinlan 1986).

It can be shown that the number of possible cuts for
a given hierarchy grows exponentially in the number
of leaves of the hierarchy. Thus, the challenge here is
t,o solve the above optimization problem within afford-
able computational costs. It turns out that this task
is very similar to the task of decision tree pruning. A
natural one-to-one correspondence exists between cuts
and trees obtained by pruning x-tree. Namely, a cut C
is mapped to the pruned tree in which the subtrees
rooted at each g E C are removed (substituted by
leaves). Conversely, a pruned tree is mapped to the
cut C = {g I g is a leaf in the pruned tree}. This view
allows employing a decision tree pruning technique in-
troduced by Breiman et al. (Breiman et al. 1984) in
solving our problem.

reirnan et alh runing Algorithm
Breiman et al. present an efficient optimal pruning al-
gorit,hm in which the goal is to minimize what they
call the cost-complexity of a decision tree. They as-
sume that a decision t#ree T is given in which each test
node t is associated with an error est,imate e(t) which
measures the error int#roduced if the subtree below t is
substituted by a leaf. The error of a tree T’ obtained by
pruning subtrees from T is then defined as error =
c e leaf of T, e(e). They also define size(T’) as the num-
ber of leaves of T’. The quality of a pruned decision
t,ree T’ is measured as a linear combination of its size
and error: Score, (T’) = error + Q siae(T’), for a
constant) Q > 0.

The goal in Breiman et al.‘s work is to find for each
o 2 0 a pruned t)ree that minimizes Score,. Such a
tree is said to be optimally pruned with respect to Q.
Alt,hough o runs t#hrough a cont,inuum of values, only
a finit,e sequence of optimally pruned decision trees ex-

Decision Trees 705

ists, where each tree minimizes Score, over a range of
01. Breiman et al. show that such a sequence can be
generated by repeatedly pruning at node t for which
the quantity

4 - I&L(t) 44

IL@) I - 1
is minimum, where L(t) denotes the set of leaves of the
subtree rooted at node t in the current tree. They call
this approach weakest link cutting.

Although Breiman et al. consider binary decision
trees only, extending their algorithm to decision trees
with multiple branches is straightforward (Bohanec &
Bratko 1994). Moreover, in the setting of Breiman et
al., each leaf in a pruned tree contributes a uniform
amount (exactly 1) to the size of the tree. Neverthe-
less, the same algorithm can be easily generalized by
associating a weight, w(t), with each node t in the given
tree T, and then letting size(T’) = Cl, leaf of T, w(e),
for a pruned tree T’. In this generalized setting, the
node t at which pruning occurs-is the node whickmin-
imizes the quantity

44 - &L(t) 44
c CEL(t) 44 - w(t) *

Thus, generalized as above, the algorithm of Breiman
et al. can be characterized as follows:
8 Input: A decision tree T, with error estimate

and a weight w(t) at each node t in T.

* Output: A sequence ((TGI), (Et, 4, (G,Q&
. a., (T,, a,.)}, such that each Ti is a pruned tree
that minimizes Score, in the range cri- 1 < cx < CY~,
where ~0 = 0, and CE,. = 00.

Although Breiman et al. only address the case of bi-
nary trees and uniform weight, their arguments can
be extended to our generalized case of multiple branch
trees and non-uniform weights. Details are omitted
here, however, for lack of space.

Finding a Multiple-Split Test with
Optimal Gain-Ratio

We now outline our algorithm for finding a test wit,h
maximum gain-ratio for a given set of examples S, and
a given attribute x with hierarchy x-tree. The first step
of the algorithm is an initialization step:

Step I: For each category g in x-tree, attach an
array CD, to be used to store the class distribution
at that category. This array has an entry for each
class which is initially set to 0. We repeat the
following steps for each example e E S:
1. Let 21 be the value of at,tribute x in e.
2. Let cl be the class of e.
3. Increment CD, [cl].
4. Climbing from v towards the root, increment

CD,[cl] for every ancestor g of 21 in x-tree.

At the end of Step I, each array CD, will be storing the
class distribution for those examples in S in which the
value of the attribute x is a descendant of the category
g. The next step computes the amounts each category
g would contribute to MI(C) and Sp(C) if g were a
member in a cut C.

Step II: For each category g in x-tree, let IS,I =
cc C4kl P a is, the number of examples in t
which the value of attribute x is a descendant of
g), and compute the following two quantities:

i(g) = -zF y X log:, (v)

9 9

s(g) = # x log,, (E)
Now for any cut C, it is obvious that MI(C) and

Sp(C) (as defined in Section 2) can be computed as
C;EC iis) and EYCYC s(g), respectively. The next step
is a call to the generalized algorithm of Breiman et al.:

Step III: Pass the tree x-tree to the generalized
Breiman et al.‘s algorithm, viewing each i(g) and
s(g) as the error estimate and the weight of node
g , respectively.

As explained previously, there is a one-to-one corre-
spondence between the set of all possible cuts and the
set of all possible pruned decision trees. Since we are
passing i(g) and s(g) to Breiman et al.‘s algorithm
as the error estimates and the weights at the nodes,
error and size(T’) are respectively equivalent to
MI(C) and Sp(C), for the cut C corresponding to T’.
This then justifies the following view:

Step IV: View the tree sequence returned by
Breiman et al.‘s algorithm as a sequence ((Cl, al),
(C2, cq), ((2’3, CQ), . . . , (C,, a,.)}, in which each Ci
minimizes Score, (C) = 1MZ(C) + 0 Sp(C) over all

where cuts
a() =

C
0

, within
and cy,

the range
= 00.

The cut sequence we now have at hand is not directly
maximizing the gain-ratio, but rather optimizing under
a different criterion (hill(C) + Q Sp(C)) which involves
the unspecified parameter CY. However, the following
theorem puts things in perspective:

Theorem: In the sequence {Cl, C’, . . . , C,.-1) of cuts
produced by employing the algorithm of Breiman et al.,
there exists a cut with maximum gain-ratio.

Proof: This is shown by contradiction. Suppose none
of the produced cuts maximizes the gain-ratio. Then,
there exists some cut C* such that, for all 1 5 i 5 T- 1,
we have GR(C*) > GR(Ci), that is

Ent(S) - MI(C*)

Su(C*)
> Ent(S) - M1(ci), 1 < i < r _ 1

SP(Ci) - - *
(1)

706 Learning

Consider now the following value of o:

ct = Q1 = JWS) - Mw*)
Sp(C*) -

For any cut C, it is true that E&(S) > MI(C). There-
fore, al is a legitimate value for a since it is greater
than or equal to 0. At this particular value for o,

Score, 1 (C”) = MI(c*) + @qjg!pJ x sP(c*)

= Ent(S). - ’ ’

On the other hand, for any i, 1 5 i 5 r - 1,

Score,,(G) = MI(Ci) + v x sp(ci)

>
id

WG) + ,=$&$Q x Sp(C,) - .

= Ent(S).
(from (1))

The above means that at oi we have Score,, (C”) <
Score,, (Ci) for all Ci in {Cl, C2, C’s, +. a C.-i}. This is
a contradiction since for any value of cy > 0, one of the
cuts in { Ci, Cz, C3, . . . C,- 1) must minimize Score,, .O

The above theorem leads to the following final step.

Step V: Compute the gain-ratio for each Ci, 1 5
i 5 r - 1 and return the cut with maximum gain-
ratio among these.’

Various details have been omitted in the above out-
line of our algorithm in order to simplify the discussion.
In an actual implementation, Steps III and IV (find-
ing the sequence of cuts) and Step V (computing the
gain-ratio scores) can be run concurrently-each time
a cut is generated, its gain-ratio is computed, and the
cut is kept if its gain-ratio is the highest so far. In the
appendix, we give a full pseudo-code description of the
algorithm in which the weakest-link cutting algorithm
of Breiman et al. is embedded.

Time Complexity Analysis
Let m be the number of examples and q the number
of classes. Let the number of leaves of x-tree be s and
let its height be d. Assume that each node in x-tree
has at m&t k children. Then, it can be shown that
the implementation given in the appendix runs in time
O(dm + (q + kd)s). We can, however, assume that
s 5 m, since if this is not the case, then this means
that some of the leaf categories in x-tree never show up
in any example in S. In such a case, one can reduce
the hierarchy by just ignoring these. More precisely, a
category in x-tree is considered if and only if it is an
ancestor of some leaf category that appears in at least
one example in S. Reducing x-tree in this manner re-
sults in a hierarchy of at most m leaves. Thus, the time

‘Note that the test corresponding to C, is not interest-
ing since it has only a single outcome and does no splitting.

complexity of our algorithm is in fact O((q + kd)m) in
the worst case.

It is interesting to note that the above bound is
only linear in the height of the hierarchy. Therefore,
when dealing with somewhat balanced hierarchies, d
becomes in the order of logs, which is in turn in
the order of log m. This then gives time complexity
of O((q+ klogm)m). S ince the number of classes,
q is usually small compared to klog m, this can be
viewed as 0 (km log m). Interestingly enough, this is
similar to the time complexity of 0(m log m) for the
task of handling continuous attributes (Quinlan 1986;
Fayyad & Irani 1992).

Conclusion and
For a given tree-structured attribute, the goal of this
work is to find a multiple-split test that maximizes
Quinlan’s gain-ratio measure with respect to a given
set of training examples. We presented an algorithm
that achieves this goal and runs in time linear in the
number of training examples times the depth of the
hierarchy associated with the tree-structured attribute.

In no way one can claim any superiority of multiple-
split tests in generalization performance over other
kinds of tests, such as binary tests that are based
on a single value of the attribute (See Figure 3). In
fact, multiple-split tests and binary tests should not
be viewed as mutually exclusive choices. One indeed
can find the best multiple-split test using our method,
and in parallel, find the best binary split test using the
method of (Almuallim, Akiba & Kaneda 1995), and
finally choose from these the test with higher score.

The gain-ratio criterion of Quinlan is “hard-wired”
in our algorithm. It would be interesting to generalize
the algorithm to cover other similar measures as well.
It is also interesting to consider tests that group dif-
ferent values of a tree-structured attribute in a single
outcome. This kind of tests is studied in (Fayyad 1994;
Fayyad & Irani 1993; Quinlan 1993) for other attribute
types. Finally, in certain applications, attributes may
be associated with directed acyclic graphs (DAG’s)
rather than trees as assumed in our work. Studying
this generalized problem is an important future re-
search direction.

Acknowledgment
Hussein Almuallim thanks King Fahd University of
Petroleum & Minerals for their support. This work was
partially conducted during his visit to Prof. Shimura
Lab. of Tokyo Institute of Technology, sponsored by
Japan’s Petroleum Energy Center. Thanks also to
Hideki Tanaka of NHK, Japan for a useful discussion.

Appendix
Our algorithm is described below in pseudo code. All
the variables are assumed global. i[g] and s[g] are com-
puted for each node g in line 2.1 of FindBestCut. At
each node g, o[g] stores the value of (Y above which

Decision Trees 707

the subtree rooted at g is pruned. This is initialized
at lines 2.2.4 and 2.3.4 of FindBestCut. Each call to
PruneOnce results in pruning the subtree rooted at g
for which ab] is minimum over all (unpruned) nodes
of T. At that time, the flag Pruned[g] becomes True
and cy[s] is updated for all ancestors s of g.

The variable SmaZZest.a.BeZow[g] stores the small-
est Q value over all descendant of g. This variable
is stored in order to efficiently locate the node with
minimum o in the current tree in each pruning iter-
ation. SubTreeMl[g] and SubTnzeSp[g] store the sum
of i[e] and s[!!], respectively, for all leaves l of the cur-
rent subtree rooted at g. These are initialized in step 2
of FindBestCut, and then updated in step 10 of Pru-
neOnce each time pruning occurs at a descendant of
g. The current best cut is kept track of by the flag
InBestCut[g]. A node g is in the current best cut if
this flag is True for g and False for all its ancestors.

Algorithm FindBestCut
Input: A sample S, an attribute x, its hierarchy T
1. Initialize the arrays CD as in STEP I.
2. Traverse T in post-order. For each g in T:
2.1. Compute i[s] and s[s] as in STEP II.
2.2. If g is a leaf then
2.2.1. Pruned[g] = True
2.2.2. Sub TreeMflg] = i[s]
2.2.3. SubTreeSp[g] =s[g]
2.2.4. 491 =CX3
2.2.5. Smallesta. BeZow[g] = 00
2.2.6. InBestCut[g] = True
2.3. else
2.3.1. Pruned[g] = False
2.3.2. SubTreeMl[g] = Cy:=hild of 9 SubTreeMl[y]
2.3.3. SubTreeS&] = Cy:child of g SubT~eSz&d
2.3.4.
2.3.5.

2.3.6.

[
491 = k;-+;::$geF-$;] -
SmaZZest.cr.BeZow g] 1 = min {a[g],
min{ SmaZZest.a.BeZow[y] jy is a child of g}}
InBestCut[g] = False

4. p = PruneOnce -- -
5. While p # root of T:

5.1.
5.2.

ThisGR= i[root of T]-SubTreeMqroot of T1
SubTreeSp[root of T]

If ThisGR 2 BestGR then
5.2.1. BestGR = ThisGR
5.2.2. InBestCutb] = True
5.2.3. p = PruneOnce
6. Report BestGR as the best gain-ratio over all

cuts of T
7. Report the set {g 1 InBestCut[g] = True and for

every ancestor g’ of g, InBestCut[g’] =FuZse} as
the best cut.

Procedure PruneOnce Quinlan, J. R. 1986. Induction of Decision Trees. Mu-
1. Let g = root of T chine Learning, 1(1):81-106.
2. While a[g] > SmuZZest.cr.BeZow[g] : Quinlan, J. R. 1993. C4.5: Programs for Machine
2.1. g’ = child of g such that Learning, p. 104. San Mateo, CA: Morgan Kaufmann.

SnluZZest.a. BeZow[g’] is minimum
2.2. I

3. Pru$;{] = True
4. 491 co
5. Sm ZZest.cr.BeZow[g] = 00
6. Su f- TreeMl[g] = i[g]
7. Sub TreeSp[s] = s[g]
8. p=g
9. Ifp= root of T, return p
10. Repeat
10.1. g = parent of g
10.2.
10.3.

10.4.
10.5.

>ub?reeMl[g] i Cy:child of 9 SubTreeMfly]
SubTr=%[gl = &.child of g SubTreeSlobl

@[sl = ~~-$~eJ$~!~~~
SmuZZest.a.BeZow g] 1 = min{ob],
min{ SmuZZest.ar.BeZow[g’]] g’ is a kid of g}}

10.6. until g = the root of T
11. Return p

References
Almuallim, H.; Akiba, Y.; and Kaneda, S. 1995. On
Handling Tree-Structured Attributes in Decision Tree
Learning. In Proceedings of the 12th International
Conference on Machine Learning, p. 12-20. San Fran-
cisco, California: Morgan Kaufmann.
Bohanec, M.; and Bratko, I. 1994. Trading Accuracy
for Simplicity in Decision Trees. Machine Leurning,
15~223-250.
Breiman, L.; Friedman, J.H.; Olshen, R.A.; and
Stone, C.J. 1984. Classification and Regression Trees.
Belmont: Wadsworth.
Fayyad, U. M.; and Irani, K. B. 1992. On the Han-
dling of Continuous Valued Attributes in Decision
Tree Generation. Machine Learning, 8:87-102.
Fayyad, U. M.; and Irani, K. B. 1993. Multi-Interval
Discretization of Continuous-Valued Attributes for
Classification Learning. In Proceedings of the 13th In-
ternational Joint Conference on Artificial Intelligence,
p. 1022-1027.
Fayyad, U. M. 1994. Branching on Attribute Values
in Decision Tree Generation. In Proceedings of the
12th National Conference on Artificial Intelligence,
p. 601-606.
Haussler, D. 1988. Quantifying Inductive Bias: AI
Learning Algorithms and Valiant’s Learning Frame-
work. A rtificiul Intelligence, 36: 177-22 1.
Nunez, M. 1991. The Use of Background Knowl-
edge in Decision Tree Induction. Machine Learning,
6: 231-250.
Pagallo, G.; and Haussler, D. 1990. Boolean Feature
Discovery in Empirical Learning. Machine Learning,
5(1):71-100.

708 Learning

