
oosting, a C4.5 

J. R. Quinlan 
University of Sydney 

Sydney, Australia 2006 
quinlan@cs.su.oz.au 

Abstract 

Breiman’s bagging and Freund and Schapire’s 
boosting are recent methods for improving the 
predictive power of classifier learning systems. 
Both form a set of classifiers that are combined 
by voting, bagging by generating replicated boot- 
strap samples of the data, and boosting by ad- 
justing the weights of training instances. This 
paper reports results of applying both techniques 
to a system that learns decision trees and testing 
on a representative collection of datasets. While 
both approaches substantially improve predictive 
accuracy, boosting shows the greater benefit. On 
the other hand, boosting also produces severe 
degradation on some datasets. A small change 
to the way that boosting combines the votes of 
learned classifiers reduces this downside and also 
leads to slightly better results on most of the 
datasets considered. 

Introduction 
Designers of empirical machine learning systems are 
concerned with such issues as the computational cost 
of the learning method and the accuracy and intel- 
ligibility of the theories that it constructs. Much of 
the research in learning has tended to focus on im- 
proved predictive accuracy, so that the performance of 
new systems is often reported from this perspective. 
It is easy to understand why this is so - accuracy is a 
primary concern in all applications of learning and is 
easily measured (as opposed to intelligibility, which is 
more subjective), while the rapid increase in comput- 
ers’ performance/cost ratio has de-emphasized compu- 
t ational issues in most applications.’ 

In the active subarea of learning decision tree classi- 
fiers, examples of methods that improve accuracy are: 

o Construction of multi-attribute tests using log- 
ical combinations (Ragavan and Rendell 1993)) 
arithmetic combinations (Utgoff and Brodley 1990; 

‘For extremely large datasets, however, learning time 
can remain the dominant issue (Catlett 1991; Chan and 
Stolfo 1995). 

Heath, Kasif, and Salzberg 1993), and counting op- 
erations (Murphy and Pazzani 1991; Zheng 1995). 

e Use of error-correcting codes when there are more 
than two classes (Dietterich and Bakiri 1995). 

o Decision trees that incorporate classifiers of other 
kinds (Brodley 1993; Ting 1994). 

e Automatic methods for setting learning system pa- 
rameters (Kohavi and John 1995). 

On typical datasets, all have been shown to lead to 
more accurate classifiers at the cost of additional com- 
putation that ranges from modest to substantial. 

There has recently been renewed interest in increas- 
ing accuracy by generating and aggregating multiple 
classifiers. Although the idea of growing multiple trees 
is not new (see, for instance, (Quinlan 1987; Buntine 
1991)), the justification for such methods is often em- 
pirical. In contrast, two new approaches for producing 
and using several classifiers are applicable to a wide va- 
riety of learning systems and are based on theoretical 
analyses of the behavior of the composite classifier. 

The data for classifier learning systems consists of 
attribute-value vectors or instances. Both bootstrap 
aggregating or bagging (Breiman 1996) and boosting 
(F’reund and Schapire 1996a) manipulate the training 
data in order to generate different classifiers. Bagging 
produces replicate training sets by sampling with re- 
placement from the training instances. Roosting uses 
all instances at each repetition, but maintains a weight 
for each instance in the training set that reflects its 
importance; adjusting the weights causes the learner 
to focus on different instances and so leads to differ- 
ent classifiers. In either case, the multiple classifiers are 
then combined by voting to form a composite classifier. 
In bagging, each component classifier has the same 
vote, while boosting assigns different voting strengths 
to component classifiers on the basis of their accuracy. 

This paper examines the application of bagging and 
boosting to C4.5 (Quinlan 1993), a system that learns 
decision tree classifiers. After a brief summary of both 
methods, comparative results on a substantial num- 
ber of datasets are reported. Although boosting gen- 
erally increases accuracy, it leads to a deterioration on 

Decision Trees 725 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



some datasets; further experiments probe the reason 
for this. A small change to boosting in which the vot- 
ing strengths of component classifiers are allowed to 
vary from instance to instance shows still further im- 
provement . The final section summarizes the (some- 
times tentative) conclusions reached in this work and 
outlines directions for further research. 

Bagging and Boosting 
We assume a given set of N instances, each belong- 
ing to one of K classes, and a learning system that 
constructs a classifier from a training set of instances. 
Bagging and boosting both construct multiple classi- 
fiers from the instances; the number T of repetitions 
or trials will be treated as fixed, although Freund and 
Schapire (1996a) note that this parameter could be de- 
termined automatically by cross-validation. The clas- 
sifier learned on trial t will be denoted as Ct while C* 
is the composite (bagged or boosted) classifier. For any 
instance x, Ct(x) and C*(x) are the classes predicted 
by Ct and C* respectively. 

Bagging 
For each trial t = 1,2,... ,T, a training set of size N 
is sampled (with replacement) from the original in- 
stances. This training set is the same size as the orig- 
inal data, but some instances may not appear in it 
while others appear more than once. The learning sys- 
tem generates a classifier Ct from the sample and the 
final classifier C* is formed by aggregating the T clas- 
sifiers from these trials. To classify an instance x, a 
vote for class k is recorded by every classifier for which 
C”(Z) = k and C*(x) is then the class with the most 
votes (ties being resolved arbitrarily). 

Using CART (Breiman, Friedman, Olshen, and 
Stone 1984) as the learning system, Breiman (1996) 
reports results of bagging on seven moderate-sized 
datasets. With the number of replicates T set at 50, 
the average error of the bagged classifier C* ranges 
from 0.57 to 0.94 of the corresponding error when a 
single classifier is learned. Breiman introduces the con- 
cept of an order-correct classifier-learning system as 
one that, over many training sets, tends to predict the 
correct class of a test instance more frequently than 
any other class. An order-correct learner may not pro- 
duce optimal classifiers, but Breiman shows that aggre- 
gating classifiers produced by an order-correct learner 
results in an optimal classifier. Breiman notes: 

“The vital element is the instability of the pre- 
diction method. If perturbing the learning set 
can cause significant changes in the predictor con- 
structed, then bagging can improve accuracy.” 

Boosting 
The version of boosting investigated in this paper is 
AdaBoost.Ml (F’reund and Schapire 1996a). Instead 
of drawing a succession of independent bootstrap sam- 
ples from the original instances, boosting maintains a 

weight for each instance - the higher the weight, the 
more the instance influences the classifier learned. At 
each trial, the vector of weights is adjusted to reflect 
the performance of the corresponding classifier, with 
the result that the weight of misclassified instances 
is increased. The final classifier also aggregates the 
learned classifiers by voting, but each classifier’s vote 
is a function of its accuracy. 

Let ZV: denote the weight of instance x at trial t 
where, for every x, wi = l/N. At each trial t = 
1,2,. . . ,T, a classifier Ct is constructed from the given in- 
stances under the distribution wt (i.e., as if the weight 
wz of instance x reflects its probability of occurrence). 
The error et of this classifier is also measured with re- 
spect to the weights, and consists of the sum of the 
weights of the instances that it misclassifies. If et 
is greater than 0.5, the trials are terminated and T 
is altered to t-l. Conversely, if Ct correctly classi- 
fies all instances so that et is zero, the trials termi- 
nate and T becomes t. Otherwise, the weight vec- 
tor wt+’ for the next trial is generated by multiply- 
ing the weights of instances that Ct classifies correctly 
by the factor ,# = et/(1 - et) and then renormaliz- 
ing so that C, wg+r equals 1. The boosted classifier 
C* is obtained by summing the votes of the classifiers 
c1,c2,..., CT, where the vote for classifier Ct is worth 
log(l/pL) units. 

Provided that et is always less than 0.5, Freund and 
Schapire prove that the error rate of C* on the given 
examples under the original (uniform) distribution w1 
approaches zero exponentially quickly as T increases. 
A succession of “weak” classifiers {C”} can thus be 
boosted to a “strong” classifier C* that is at least as 
accurate as, and usually much more accurate than, the 
best weak classifier on the training data, Of course, this 
gives no guarantee of C*‘s generalization performance 
on unseen instances; Freund and Schapire suggest the 
use of mechanisms such as Vapnik’s (1983) structural 
risk minimization to maximize accuracy on new data. 

Requirements for Boosting and Bagging 
These two methods for utilizing multiple classifiers 
make different assumptions about the learning system. 
As above, bagging requires that the learning system 
should not be “stable”, so that small changes to the 
training set should lead to different classifiers. Breiman 
also notes that “poor predictors can be transformed 
into worse ones” by bagging. 

Boosting, on the other hand, does not preclude the 
use of learning systems that produce poor predictors, 
provided that their error on the given distribution can 
be kept below 50%. However, boosting implicitly re- 
quires the same instability as bagging; if Ct is the same 
as Ct-‘, the weight adjustment scheme has the prop- 
erty that et = 0.5. Although Freund and Schapire’s 
specification of AdaBoost.Ml does not force termina- 
tion when et = 0.5, ,@ = 1 in this case so that wt+l = 
wt and all classifiers from Ct on have votes with zero 

726 Learning 



anneal 
audiology 
auto 
breast-w 
chess 
colic 
credit-a 
credit-g 
diabetes 
glass 
heart-c 
heart-h 
hepatitis 
hYP0 
iris 
labor 
letter 
lymphography 
phoneme 
segment 
sick 
sonar 
soybean 
splice 
vehicle 
vote 
waveform 

average 

c4.5 

EqYJ 
7.67 
22.12 
17.66 
5.28 
8.55 

14.92 
14.70 
28.44 
25.39 
32.48 
22.94 
21.53 
20.39 

.48 
4.80 

19.12 
11.99 
21.69 
19.44 
3.21 
1.34 

25.62 
7.73 
5.91 

27.09 
5.06 

27.33 
--lzm- 

Table 1 Comparison of C4.5 and its bagged and boosted versions. 

vs c4.5 
err (Yo) w-l ratio 

6.25 10-O .814 
19.29 
19.66 
4.23 
8.33 

15.19 
14.13 
25.81 
23.63 
27.01 
21.52 
20.31 
18.52 

.45 
5.13 

14.39 
7.51 

20.41 
18.73 
2.74 
1.22 

23.80 
7.58 
5.58 

25.54 
4.37 

9-o 
2-8 
9-o 
6-2 
O-6 
8-2 

10-O 
9-l 

10-O 
7-2 
8-l 
9-o 
7-2 
2-6 

10-O 
10-O 
8-2 

10-O 
9-l 
7-1 
7-l 
6-3 
9-l 

10-O 
9-o 

.872 
1.113 

.802 

.975 
1.018 
.962 
.908 
.931 
.832 
.938 
.943 
.908 
.928 

1.069 
.752 
.626 
.941 
.964 
.853 
.907 
.929 
.981 
.943 
.943 
.864 

19.77 10-O .723 
14.11 .905 

vs c4.5 
err YO w-l ratio 

4.73 10-O .617 
15.71 
15.22 
4.09 
4.59 

18.83 
15.64 
29.14 
28.18 
23.55 
21.39 
21.05 
17.68 

.36 
6.53 

13.86 
4.66 

17.43 
16.36 

1.87 
1.05 

19.62 
7.16 
5.43 

22.72 
5.29 

18.53 

10-O .710 
9-l .862 
9-o .775 

10-O .537 
O-10 1.262 
1-9 1.064 
2-8 1.025 
O-10 1.110 

10-O .725 
8-O .932 
5-4 .978 

10-O .867 
9-1 .746 
O-10 1.361 
9-l .725 

10-O .389 
10-O .804 
10-O .842 
10-O .583 
10-O .781 
10-O .766 
8-2 .926 
9-o .919 

10-O .839 
3-6 1.046 

10-O .678 
13.36 247 

weight in the final classification. Similarly, an overfit- 
ting learner that produces classifiers in total agreement 
with the training data would cause boosting to termi- 
nate at the first trial. 

Experiments 

bought by a single order of magnitude increase in com- 
putation. All C4.5 parameters had their default values, 
and pruned rather than unpruned trees were used to 
reduce the chance that boosting would terminate pre- 
maturely with 8 equal to zero. Ten complete IO-fold 
cross-validations were carried out with each dataset. 

C4.5 was modified to produce new versions incorpo- 
rating bagging and boosting as above. (C4.5’~ facil- 
ity to deal with fractional instances, required when 
some attributes have missing values, is easily adapted 
to handle the instance weights wi used by boosting.) 
These versions, referred to below as bugged C4.5 and 
boosted C4.5, have been evaluated on a representative 
collection of datasets from the UC1 Machine Learning 
Repository. The 27 datasets, summarized in the Ap- 
pendix, show considerable diversity in size, number of 
classes, and number and type of attributes. 

The results of these trials appear in Table 1. For 
each dataset, the first column shows C4.5’~ mean er- 
ror rate over the ten cross-validations. The second 
section contains similar results for bagging, i.e., the 
class of a test instance is determined by voting multi- 
ple C4.5 trees, each obtained from a bootstrap sample 
as above. The next figures are the number of com- 
plete cross-validations in which bagging gives better or 
worse results respectively than C4.5, ties being omit- 
ted. This section also shows the ratio of the error rate 
using bagging to the error rate using C4.5 - a value 

The parameter T governing the number of classifiers 
generated was set at 10 for these experiments. Breiman 

21n a lo-fold (stratified) cross-validation, the training 

(1996) notes that most of the improvement from bag- 
instances are partitioned into 10 equal-sized blocks with 
similar class distributions. Each block in turn is then used 

ging is evident within ten replications, and it is inter- as test data for the classifier generated from the remaining 
esting to see the performance improvement that can be nine blocks. 

J 

vs Bagging 
w-l ratio 
o-o .758 
o-o .814 
9-l .774 
7-2 .966 
o-o .551 
O-10 1.240 
O-10 1.107 
O-10 1.129 
O-10 1.192 
9-l .872 
5-4 .994 
3-6 1.037 
6-l .955 
9-l .804 
O-8 1.273 
5-3 .963 
o-o .621 
o-o .854 
.0-o .873 
.0-o .684 
9-l .861 
.0-o .824 
8-l .944 
6-4 .974 
.0-o .889 
l-9 1.211 
8-2 .938 

.930 

Decision Trees 727 



g-9 
-8 
f3 7 
1 6 

chess 

g 18 
v 
6 17 
ii Q, 16 

colic 
- boosting 
- bagging 

3 141. 
10 20 30 40 50 1 10 20 30 40 50 

number of trials 2’ number of trials 2’ 

Figure 1: Comparison of bagging and boosting on two datasets 

less than 1 represents an improvement due to bagging. 
Similar results for boosting are compared to C4.5 in 
the third section and to bagging in the fourth. 

It is clear that, over these 27 datasets, both bagging 
and boosting lead to markedly more accurate classi- 
fiers. Bagging reduces C4.5’~ classification error by 
approximately 10% on average and is superior to C4.5 
on 24 of the 27 datasets. Boosting reduces error by 
15%) but improves performance on 21 datasets and 
degrades performance on six. Using a two-tailed sign 
test, both bagging and boosting are superior to C4.5 
at a significance level better than 1%. 

When bagging and boosting are compared head to 
head, boosting leads to greater reduction in error and is 
superior to bagging on 20 of the’27 datasets (significant 
at the 2% level). The effect of boosting is more erratic, 
however, and leads to a 36% increase in error on the 
iris dataset and 26% on colic. Bagging is less risky: its 
worst performance is on the auto dataset, where the 
error rate of the bagged classifier is 11% higher than 
that of C4.5. 

The difference is highlighted in Figure 1, which com- 
pares bagging and boosting on two datasets, chess and 
colic, as a function of the number of trials 2’. For 
T=l, boosting is identical to C4.5 and both are al- 
most always better than bagging - they use all the 
given instances while bagging employs a sample of 
them with some omissions and some repetitions. As 
2’ increases, the performance of bagging usually im- 
proves, but boosting can lead to a rapid degradation 
(as in the colic dataset). 

Why Does Boosting Sometimes Fail? 
A further experiment was carried out in order to bet- 
ter understand why boosting sometimes leads to a de- 
terioration in generalization performance. Freund and 
Schapire (1996a) put this down to overfitting - a large 
number of trials 2’ allows the composite classifier C* 
to become very complex. 

As discussed earlier, the objective of boosting is to 

728 Learning 

construct a classifier C* that performs well on the 
training data even when its constituent classifiers Ct 
are weak. A simple alteration attempts to avoid over- 
fitting by keeping T as small as possible without im- 
pacting this objective. AdaBoostMl stops when the 
error of any Ct drops to zero, but does not address 
the possibility that C* might correctly classify all the 
training data even though no Ct does. Further trials 
in this situation would seem to offer no gain - they will 
increase the complexity of C* but cannot improve its 
performance on the training data. 

The experiments of the previous section were re- 
peated with T=lO as before, but adding this further 
condition for stopping before all trials are complete. 
In many cases, C4.5 requires only three boosted trials 
to produce a classifier C* that performs perfectly on 
the training data; the average number of trials over 
all datasets is now 4.9. Despite using fewer trials, and 
thus being less prone to overfitting, C4.5’~ generaliza- 
tion performance is worse. The overfitting avoidance 
strategy results in lower cross-validation accuracy on 
17 of the datasets, higher on six, and unchanged on 
four, a degradation significant at better than the 5% 
level. Average error over the 27 datasets is 13% higher 
than that reported for boosting in Table 1. 

These results suggest that the undeniable benefits of 
boosting are not attributable just to producing a com- 
posite classifier C* that performs well on the training 
data. It also calls into question the hypothesis that 
overfitting is sufficient to explain boosting’s failure on 
some datasets, since much of the benefit realized by 
boosting seems to be caused by overfitting. 

Changing the Voting Weights 
Freund and Schapire (1996a) explicitly consider the use 
by AdaBoost.Ml of confidence estimates provided by 
some learning systems. When instance x is classified 
by Ct, let Ht (x) be a number between 0 and 1 that 
represents some informal measure of the reliability of 
the prediction Ct (x). Freund and Schapire suggest us- 



ing this estimate 
classifier error. 

to give a more flexible measure of 

An alternative use of the confidence estimate Ht is in 
combining the predictions of the classifiers { Ct } to give 
the final prediction C*(z) of the class of instance 2. 
Instead of using the fixed weight log(l/Pt) for the vote 
of classifier Ct, it seems plausible to allow the voting 
weight of Ct to vary in response to the confidence with 
which x is classified. 

64.5 can be “tweaked” to yield such a confidence 
estimate. If a single leaf is used by Ct to classify an 
instance x as belonging to class k=Ct (x), let S denote 
the set of training&stances that are’ mapped to the 
leaf, and Sk the subset of them that belong to class 
L. The confidence of the prediction that instance x 
belongs to class Ic can then be estimated by the Laplace 
ratio 

Ht(x) = 
N x CiESk w; + 1 
Nx&~w; -I- 2’ 

(When x has unknown values for some attributes, C4.5 
can use several leaves in making a prediction. A similar 
confidence estimate can be constructed for such situa- 
tions.) Note that the confidence measure Ht (x) is still 
determined relative to the boosted distribution wt, not 
to the original uniform distribution of the instances. 

The above experiments were repeated with a mod- 
ified form of boosting, the only change being the use 
of Ht(x) rather than log(l/Pt) as the voting weight of 
Ct when classifying instance x. Results show improve- 
ment on 25 of the 27 datasets, the same error rate on 
one dataset, and a higher error rate on only one of 
the 27 datasets (chess)‘: Average error rate is approx- 
imately 3% less than that obtained with the original 
voting weights. 

This modification is necessarily ad-hoc, since the 
confidence estimate Ht has only an intuitive meaning. 
However, it will be interesting to experiment with other 
voting schemes, and to see whether any of them can 
be used to give error bounds similar to those proved 
for the original boosting method. 

Conclusion 
Trials over a diverse collection of datasets have con- 
firmed that boosted and bagged versions of C4.5 pro- 
duce noticeably more accurate classifiers than the stan- 
dard version. Boosting and bagging both have a sound 
theoretical base and also have the advantage that the 
extra computation they require is known in advance 
- if T classifiers are generated, then both require T 
times the computational effort of C4.5. In these ex- 
periments, a lo-fold increase in computation buys an 
average reduction of between 10% and 19% of the clas- 
sification error. In many applications, improvements of 
this magnitude would be well worth the computational 
cost. In some cases the improvement is dramatic - for 
the largest dataset (letter) with 20,000 instances, mod- 
ified boosting reduces C4.5’~ classification error from 
12% to 4.5%. 

Boosting seems to be more effective than bagging 
when applied to C4.5, although the performance of the 
bagged C4.5 is less variable that its boosted counter- 
part. If the voting weights used to aggregate compo- 
nent classifiers into a boosted classifier are altered to 
reflect the confidence with which individual instances 
are classified, better results are obtained on almost all 
the datasets investigated. This adjustment is decid- 
edly ad-hoc, however, and undermines the theoretical 
foundations of boosting to some extent. 

A better understanding of why boosting sometimes 
fails is a clear desideratum at this point. F’reund and 
Schapire put this down to overfitting, although the 
degradation can occur at very low values of T as shown 
in Figure 1. In some cases in which boosting increases 
error, I have noticed that the class distributions across 
the weight vectors wt become very skewed. With the 
iris dataset, for example, the initial weights of the three 
classes are equal, but the weight vector w5 of the fifth 
trial has them as setosa=2%, versicolor=75%, and vir- 
ginica=23%. Such skewed weights seem likely to lead 
to an undesirable bias towards or against predicting 
some classes, with a concomitant increase in error on 
unseen instances. This is especially damaging when, 
as in this case, the classifier derived from the skewed 
distribution has a high voting weight. It may be possi- 
ble to modify the boosting approach and its associated 
proofs so that weights are adjusted separately within 
each class without changing overall class weights. 

Since this paper was written, F’reund and Schapire 
(1996b) have also applied AdaBoost.Ml and bagging 
to C4.5 on 27 datasets, 18 of which are used in this 
paper. Their results confirm that the error rates of 
boosted and bagged classifiers are significantly lower 
than those of single classifiers. However, they find bag- 
ging much more competitive with boosting, being su- 
perior on 11 datasets, equal on four, and inferior on 12. 
Two important differences between their experiments 
and those reported here might account for this discrep- 
ancy. First, F’reund and Schapire use a much higher 
number T=lOO of boosting and bagging trials than 
the T=lO of this paper. Second, they did not mod- 
ify C4.5 to use weighted instances, instead resampling 
the training data in a manner analogous to bagging, 
but using wk as the probability of selecting instance x 
at each draw on trial t. This resampling negates a ma- 
jor advantage enjoyed by boosting over bagging, viz. 
that all training instances are used to produce each 
constituent classifier. 

Acknowledgements 
Thanks to Manfred Warmuth and Rob Schapire for a 
stimulating tutorial on Winnow and boosting. This 
research has been supported by a grant from the Aus- 
tralian Research Council. 

Decision Trees 729 



Appendix: Description of Datasets 

audiology 
zuto 
breast-w 
chess 
colic 
credit-a 
“redit-g 
diabetes 
glass 
heart-c 
heart-h 
hepatitis 
hYP0 
iris 
labor 
letter 
lymph 
phoneme 
segment 
sick 
sonar 
soybean 
splice 
vehicle 
vote 
waveform 

226 
205 
699 
551 
368 
690 

1,000 
768 
214 
303 
294 
155 

3,772 
150 
57 

20,000 
148 

5,438 
2,310 
3,772 

208 
683 

3,190 
846 
435 
300 

vame 

anneal 

Cases Classes Attributes 
Cont Discr 

898 9 6 
6 
6 
2 
2 
2 
2 
2 
2 
6 
2 
2 
2 
5 
3 
2 

26 
4 

47 
7 
2 
2 

19 
3 
4 
2 
3 

- 
15 
9 

- 
10 
6 
7 
8 
9 
8 
8 
6 
7 
4 
8 

16 

29 
69 
10 
- 
39 
12 
9 

13 
- 

- 
- 
19 
7 

60 
- 

- 
5 
5 

13 
22 
- 
8 

- 
18 
7 

- 
22 

- 
18 
- 
21 

35 
62 
- 
16 
- 

References 

Breiman, L. 1996. Bagging predictors. Machine 
Learning, forthcoming. 
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, 
C.J. 1984. Classification and regression trees. Bel- 
mont, CA: Wadsworth. 
Brodley, C. E. 1993. Addressing the selective supe- 
riority problem: automatic algorithm/model class se- 
lection. In Proceedings 10th International Conference 
on Machine Learning, 17-24. San Francisco: Morgan 
Kaufmann. 
Buntine, W. L. 1991. Learning classification trees. In 
Hand, D. J. (ed), Artificial Intelligence Frontiers in 
Statistics, 182-201. London: Chapman & Hall. 
Catlett, J. 1991. Megainduction: a test flight. In 
Proceedings 8th International Workshop on Machine 
Learning, 596-599. San Francisco: Morgan Kaufmann. 
Chan, P. K. and Stolfo, S. J. 1995. A comparative eval- 
uation of voting and meta-learning on partitioned data. 
In Proceedings 12th International Conference on Ma- 
chine Learning, 90-98. San Francisco: Morgan Kauf- 
mann. 

Dietterich, T. G., and Bakiri, G. 1995. Solving mul- 
ticlass learning problems via error-correcting output 
codes. Journal of Artificial Intelligence Research 2: 
263-286. 
Freund, Y., and Schapire, R. E. 1996a. A decision- 
theoretic generalization of on-line learning and an app- 
lication to boosting.Unpublished manuscript, available 
from the authors’ home pages (“http://www.research. 
att.com/orgs/ssr/people/{yoav,schapire}”). An ex- 
tended abstract appears in Computational Learning 
Theory: Second European Conference, EuroCOLT ‘95, 
23-27, Springer-Verlag, 1995. 
Freund, Y., and Schapire, R. E. 199613. Experi- 
ments with a new boosting algorithm. Unpublished 
manuscript. 
Heath, D., Kasif, S., and Salzberg, S. 1993. Learning 
oblique decision trees. In Proceedings 13th Interna- 
tional Joint Conference on Artificial Intelligence, 1002- 
1007. San Francisco: Morgan Kaufmann. 
Kohavi, R., and John, G. H. 1995. Automatic pa- 
rameter selection by minimizing estimated error. In 
Proceedings 12th International Conference on Machine 
Learning, 304-311. San Francisco: Morgan Kaufmann, 
Murphy, P. M., and Pazzani, M. 3. 1991. ID2-of-3: 
constructive induction of M-of-N concepts for discrim- 
inators in decision trees. In Proceedings 8th Interna- 
tional Workshop on Machine Learning, 183-187. San 
Francisco: Morgan Kaufmann. 
Quinlan, J. R. 1987. Inductive knowledge acquisition: 
a case study. In Quinlan, J. R. (ed), Applications of 
Expert Systems. Wokingham, UK: Addison Wesley. 
Quinlan, J. R. 1993. C4.5: Programs for Machine 
Learning. San Mateo: Morgan Kaufmann. 
Ragavan, H., and Rendell, L. 1993. Lookahead feature 
construction for learning hard concepts. In Proceedings 
10th International Conference on Machine Learning, 
252-259. San Francisco: Morgan Kaufmann. 
Ting, K. M. 1994. The problem of small disjuncts: its 
remedy in decision trees. In Proceedings 10th Canadian 
Conference on Artificial Intelligence, 91-97. 
Utgoff, P. E., and Brodley, C. E. 1990. An incre- 
mental method for finding multivariate splits for deci- 
sion trees. In Proceedings ‘7th International Conference 
on Machine Learning, 58-65. San Francisco: Morgan 
Kaufmann. 
Vapnik, V. 1983. Estimation of Dependences Based on 
Empirical Data. New York: Springer-Verlag. 
Zheng, Z. 1995. Constructing nominal X-of-N at- 
tributes. In Proceedings 14th International Joint Con- 
ference on Artificial Intelligence, 1064-1070. San Fran- 
cisco: Morgan Kaufmann. 

730 Learning 


