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Abstract 
The role played by the inductive inference has been studied 
extensively in the field of Scientific Discovery. The work 
presented here tackles the problem of induction in medical 
research. The discovery of the causes of leprosy is analyzed 
and simulated using computational means. An inductive 
algorithm is proposed, which is successful in simulating 
some essential steps in the progress of the understanding of 
the disease. It also allows us to simulate the false reasoning 
of previous centuries through the introduction of some 
medical a priori inherited form archaic medicine. 
Corroborating previous research, this problem illustrates the 
importance of the social and cultural environment on the 
way the inductive inference is performed in medicine. 

Introduction 
In some previous work (Corruble & Ganascia 1993, 1994) 
we investigated the role of induction in an important 
medical discovery. It appeared that an algorithm could, 
through a simple pure induction, dicover the cause of 
scurvy using a number of cases from 191h century medical 
literature. In that respect, our work was in the direct line of 
the data-driven approach to the computational study of 
scientific discovery. Pat Langley and Jan Zytkow have 
summarized in (Langley & Zytkow 1989) some of the key 
systems based on this approach. They defined the 
commonality of these systems as << the use of data-driven 
heuristics to direct their searches through the space of 
theoretical terms and numeric laws x>. 

On the other hand, we also showed in this study that, in 
order to reconstruct rationally some of the false reasoning 
of the 18* and 19 century about scurvy, it was necessary 
to introduce some implicit background knowledge 
inherited from pre-clinical medicine that influenced the 
inductive reasoning of those physicians. Thus we 
questioned the validity of a purely data-driven induction 
for the rational reconstruction of medical discoveries and 
we introduced the concept of medical system, a body of 
knowledge that influences, in some cases implicitly, the 
inductive reasoning of physicians. 

In the study presented here, our original aim was to 
investigate whether the results obtained on the discovery of 
the causes of scurvy would also apply to the discovery of 
the causes of leprosy. The central role played by the 

cultural environment on the inductive process is illustrated 
with this example: it has been necessary to formalize some 
implicit background knowledge concerning the nature of 
the concept of disease to reach a plausible computational 
account of the Nineteenth century reasoning on leprosy 
cases. 

In addition, we are to show that the rational 
reconstruction of the reasoning on the leprosy cases 
available requires the use of a type of induction which 
allows for the representation of exceptions. We consider 
these exceptions as radically different from the noise 
traditionally studied in the fields of statistics and machine 
learning. Although medical science was not advanced 
enough in the Nineteenth century to elaborate a fully 
satisfactory etiology for the disease, we show that some 
crucial improvement in the understanding of leprosy could 
have been reached based on the data then available. The 
primary lesson drawn from our experiment is that induction 
in science needs to be considered as an inference taking 
place within a dynamic context influenced by the previous 
stages of the domain, and aiming at overcoming its 
limitations. 

We begin this paper by giving some perspective on the 
history of leprosy and of the research regarding, chiefly, its 
etiology. Then we analyze some specific issues concerning 
induction in this discovery. More specifically, we show 
that useful inductions were produced in history despite the 
presence of obvious counter-examples which were not 
caused by noise. We then use PASTEUR, a new inductive 
algorithm, in two simulations on leprosy data collected in 
Nineteenth century medical literature. First we get some 
surprising results which can be understood in the light of 
modern leprosy research. Second, we reproduce the false 
reasoning of the Nineteenth century by introducing a priori 
knowledge on the concept of disease. We then sketch the 
basics of PASTEUR, and highlight its advantages over other 
classical learning algorithms for the task considered. 

A Brief History of Leprosy 
History of leprosy dates back to ancient China and India. 
We will not dwell here upon its origins (readers interested 
can refer for example to (Skinsnes 1973)), but an important 
fact to notice is that the concept of leprosy was ill-defined 
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for many centuries because it seems to have been confused 
with some other diseases until more recent times. 

Research on leprosy has followed a particularly 
interesting path. Modern western medicine was 
increasingly confronted with the disease during the 
development of colonialism in the Nineteenth century. In 
the past century, the main theory on the etiology of leprosy 
referred to heredity as the main and often only explanation 
of the disease (see for example (Royal College of 
Physicians 1867)). It made a lot of sense since the disease 
would often affect many members of the same families. 
The other hypothesis, the one of contagion, was also 
proposed early (Drognat-Landrk 1869), but was 
contradicted by the fact that many people (for example 
some nurses) in close contact with lepers were not affected, 
so that, for a long time, this hypothesis was considered 
unscientific. 

However insightful these theories were, they were not 
confirmed by laboratory experiments and were thus merely 
hypotheses. It is not until 1872 with Hansen’s discovery of 
the infectious agent causing leprosy (Hansen 1875) that the 
theory of contagion gained significant ground. The 
question was not solved though because this discovery did 
not, explain how the agent was transmitted. Heredity and 
contagion were still opposed as two distinct potential 
explanations. One reason for this debate was the 
impossibility of in vivo experimentation on animals: the 
only environment in which Hansen’s bacillus could survive 
was the human body. Hansen went as far as trying to 
contaminate some healthy patients in his hospital by 
pricking their eyes with a contaminated object, but he was 
not successful in obtaining any result (except that of being 
found guilty of unethical medical practice by a Danish 
court). 

As shown in (Waters 1993), the most radical advances in 
our century in the understanding of leprosy were produced 
in the early 60’s by, on the one hand, the discovery of the 
possibility of in vivo experimentation in the mouse footpad, 
and on the other hand, the progress of immunology and the 
new classification of leprosy proposed in (Ridley & Jopling 
1966), which focuses on individuals’ immune reaction. The 
new main axis of research on leprosy then became the 
study of the human immune system’s reaction to the 
leprosy bacillus. 

Induction and Leprosy Research 
To summarize the history of leprosy and focus on the 
development of hypotheses, we can isolate three major 
theories: the theory of heredity, the theory of contagion, 
and the theory of immunity. What was the role of induction 
on the formation of these theories? It is clear from reading 
the works of physicians that these hypotheses result from 
the observation of patients. However, the underlying 
inductive reasoning was not described precisely so that it 
could be directly formalized. Nevertheless, the previous 
account of the history of the disease tells us that the 
induction performed in the 19 century did not abide by the 

rules of the type of logical inference which proved useful 
in simulating other medical discoveries (Corruble & 
Ganascia 1993, 1994). 
Both theories, the one of heredity and the one of contagion 
obviously had some counter-examples known to most 
physicians. Some people got ill even though none of their 
ascendants had been diagnosed as a leper, so that, in fact, 
the hypothesis of heredity was directly invalidated. Some 
health workers or close relatives had been in contact with 
lepers for the major part of their lives and were still in 
perfect health. This << fact >> invalidated the contagion 
theory. Despite these limitations, the hypotheses were 
produced, and proved useful, because they constituted 
significant steps towards the next breakthroughs. 

We have designed a new algorithm in order to permit a 
computational account of the reasoning performed last 
century. Also, the same algorithm is used to study whether 
the same computational techniques could have been of 
significant help to the physicians. 

The Need for Indulgent 

Here we introduce a new inductive inference, indulgent 
induction, which departs significantly from the classical 
generalization-based induction in its ability to model 
explicitly exceptions. We will then present an algorithm 
which performs this inference, and which has been used in 
our experiments on leprosy. 

One of the most widely recognized frameworks for the 
study of induction, in the field of Machine Learning, is the 
Version Space approach (Mitchell 1982). In this 
framework, induction is seen as a search for an hypothesis 
which is consistent with the pre-classified set of examples 
and counter-examples. This constraint is generally 
accepted in the community as a primary requirement. 
However, (Mitchell 1982) recognizes the limitations of the 
approach in the case of inconsistency, which can be of two 
kinds: inconsistency can result from (1) an insufficient 
description language, or (2) error in the training instances. 

The second case has lead to a huge amount of work, 
from statistics to machine learning, on induction from 
noisy data. However, in medical research, it is common to 
reason within a framework characterized by an insufficient 
description language. Furthermore, even though Mitchell 
suggests that other approaches are needed in the case of the 
impossibility of hypotheses consistent with all the 
examples, it seems that they should also be considered if 
consistent hypotheses are available. This opinion is directly 
linked to the theory of satisficing developed in (Simon 
1980): confronted with a complex phenomenon, a scientist 
has to come up with an hypothesis which favors simplicity 
over pure logic or optimality. The theories of heredity, and 
of contagion are two examples of << satisficing theories >), 
which are both wrong, but yet simple enough to enable the 
researcher to structure his reasoning toward more elaborate 
and accurate theories. 

Therefore, we need to define another type of induction 
for which strict consistency with the data is not considered 
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as a prerequisite. We have named this new inference 
indulgent induction, because, as an indulgent father in real 
life, an indulgent hypothesis will make exceptions for its 
children. Also, it is through the violation of the consistency 
constraint that innovative hypotheses which depart 
radically from the current theory (implicitly encoded in the 
data) can be suggested. The interest and the validity of 
these hypotheses are of course not guaranteed, but it is the 
role of the search heuristics to maximize the chances that 
they be so. In the next section, we present our experiments 
on the discovery of leprosy with PASTEUR, an algorithm 
that implements the principle of indulgent induction. 
PASTEUR is presented in some detail in the last section of 
this article. 

Experimentation on leprosy 
In this section, we present our experiments with PASTEUR 
on inductive reasoning on the causes of leprosy. The study 
is based on a compilation of cases carried out in an Indian 
leprosy asylum in the 1880’s reported and analyzed in 
(Phineas 1889). This study came at a time when the theory 
of contagion was beginning to challenge the prevalent 
theory of heredity, but it is worth noticing that, in this 
specific study, as Phineas mentions, the investigator seems 
to favor the theory of heredity. An evidence of this bias lies 
in the care taken in researching the list of relatives affected 
by the disease. The question that we ask ourselves in these 
experiments is: can we, given observational data on the 
disease acquired and reported with a pro-heredity bias, 
obtain through automated induction the suggestion of other 
interesting hypotheses. The first X< other hypothesis B that 
could be expected is the contagion theory. We will 
however see in the following that our experimental results 
are quite surprising in that respect. 

The material used for the experiments 
.Most of the cases available are supposed to have leprosy 
even though, for some, the diagnosis seems more than 
doubtful (for example, one patient is said to have no 
symptom of the disease, but is convinced of having it). 
However, all these cases are of a great interest because of 
the care taken to research a number of features potentially 
relevant to the etiology of the disease. Among them, we 
have available the sex, the caste, the age of the patient, the 
variety and duration of the disease, then the relatives 
affected, some information on the children and spouse, a 
description of how the disease started, and also the fish diet 
(considered by some as a key factor in the Nineteenth 
century). These features are summarized in Figure 1. The 
more specific question asked in this experiment is: Can the 
system propose an exploratory model linking the 
description of the patient and of his/her environment to the 
health of his/her children ? In other words, can it predict (in 
an exploratory mode) whether some of the patient’s 
children will be sick or whether all of them will be healthy. 

The 61 cases selected have been used in two 
experiments using PASTEUR. The first experiment aims at 
testing which hypotheses can be induced on the cause of 
the disease. The second one is concerned with the 
reconstruction of Nineteenth century reasoning as it 
happened in history. 

Attribute 
name 
sex 
caste 

Type 
string 
unordered set 
unordered set 

age 
disease-type 
duration 
father-affected 
mother-affected 
father-side 
mother-side 
spouse 
children 
fish-diet 

integer 
unordered set 
integer 
unordered set 
unordered set 
unordered set 
unordered set 
hierarchy 
unordered set 
ordered set 

initial-location unordered set 

Domain 
NA 
m, f 
Mussulman Sweeper Jheur 
Kohle Jat Rajpoot Musician 
Do-potter Doteli Bahte 
NA 
mixed do- anaesthetic tuberc 

yes, no 
yes, no 
yes, no 
yes, no 
no yes (healthy, sick) 
some-sick, all-healthy 
never, rarely, sometimes, 
often, very-often plenty, 
in-excess 
body, arm, leg, hand, foot, 
hints. face 

Figure 1. List of attributes with their characteristics 

dulgent induction on leprosy 
In this experiment, we give to PASTEUR the description of 
the 61 patients available. The question posed is formulated 
as such: given the description of a patient and his/her 
family, the system is asked to build an exploratory model 
predicting the health of the children on the basis of other 
observable features. In this experiment, the results which 
we would find interesting are of two kinds, as for our 
experiments on scurvy: 

e from a descriptive point of view, do the hypotheses 
produced account for the theories proposed at the time 
of the observations ? 

0 from a normative point of view, do the hypotheses 
produced suggest a more advanced theory than the ones 
from the Nineteenth century ? 

In this latter case, the kind of theory that we would expect 
to be suggested is, considering the medical debate of the 
Nineteenth century, the theory of contagion. It would be 
interesting if the simulation suggested contagion from the 
material available since these observations were acquired 

o-heredity bias. 
The results are shown in Figure 2 (the decision 

graphs proposed by the algorithm have been translated into 
an equivalent set of rules). Rl and R2, the two main rules 
proposed (out of 5) are given. R2 solves some exceptions 
resulting from the general rule Rl. 
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R2: IF [father-affected = No THEN children = some-sick 
Mother-side = yes 
age > 35 
disease-type = aneasthetic 

Figure 2. Model induced by PASTEUR 

Analysis. The model tells us that in the general case, it is 
sufficient to know that the father of the patient is NOT ill 
to conclude that his children are healthy (rule Rl). This 
general rule has exceptions however, and these are partly 
resolved by the more specific rule (R2), which says that 
among these patients with a healthy father, the ones having 
ill relatives on the mother’s side, being ill with the 
anesthetic type of disease, and being over 35 years old, 
have ill children. 

The theory of heredity appears in the model induced, 
since the first feature of interest appears to be the health of 
a direct ascendant. In that respect, our simulation is close to 
the models proposed in the Nineteenth century. There are 
however two major differences. The first one is that the 
theory of contagion does not appear directly in the 
hypothesis. The second difference appears critical in the 
light of modern research on leprosy: What the model 
proposes is to reason on the absence of the disease. The 
first rule, RI, tells us that it is relevant to consider that the 
fact that somebody is healthy tells us something about the 
disease. We have to put ourselves back in the context of the 
Nineteenth century to realize how this idea would have 
been revolutionary then, and we have to use our knowledge 
of contemporary leprosy research to understand how 
relevant this revolution could have been. Before studying 
why this hypothesis was not proposed at the time, let us 
examine why it would have been particularly relevant. 

Modern leprosy research, as we suggested earlier, aims 
at understanding the immune system’s reaction to the 
bacillus, so that the current accepted classification of the 
disease is based mainly on the characteristics of this 
reaction, even though it is initiated by an infectious agent. 
The absence of the disease is, in that context, an active 
process in which the human metabolism is fully involved. 

This point of view could not be articulated in the 
Nineteenth century for two main reasons: The first, 
obvious one, is that the domain language did not include 
the vocabulary needed to describe adequately the 
phenomenon of immunity. The second one requires the 
help of history of medicine 

Historical reconstruction 
A study in the history of medicine helps us to understand 
this phenomenon. In [Grmek 19951, a history of the 
concept of disease is attempted. In archaic western 
medicine (before Hippocrates, 6th cent. BC), Grmek 
isolates the primitive ontological conceptualization. In this 
framework, a disease is identified as one entity which 
penetrates the organism. This “thing” can be inanimate 
(corpuscular theory), a material living being (parasite 

theory) or an immaterial being (demon theory). The disease 
and its cause are thus naturally confounded. 

Hippocratic medicine introduced a new concept of 
disease. Being brought back into the field of nature, 
diseases are then considered as resulting from a bad mix of 
some essential humors. Indeed the passing from fitness to 
illness takes place through the change from a fair mix’ 
(symmetria) to a bad one (dyskrasia). What is important to 
notice is that, even after this new dominant framework was 
introduced, the original view on the nature of diseases 
remained in the background, and was sometimes 
particularly vivid. 

If we hypothesize that these two views on the nature of 
diseases coexisted and could have influenced the reasoning 
on leprosy, we need to find a formalization for each of 
them in order to carry out an experimentation. The archaic 
concept of disease is best represented by a predicate. In the 
case of leprosy, “patient X has the disease” is considered as 
a property that can be expressed as the predicate leper (x) . 
On the other hand, if the disease is defined by a bad mix 
(Hippocratic concept), a good representation is an attribute- 
value one expressing that mix-X = bad if X is ill, and 
mix-X = if X is healthy. 

The choice of a formalism over the other one can be 
considered as an a priori on the nature of the disease. As 
such, we can formalize it by constructing the features 
describing if a relative is affected instead of considering 
them as given in the description. What the description tells 
us concerns only symptoms (or syndromes). The disease 
itself is defined by the axioms of Figure 3 (archaic 
ontological concept) or of Figure 4 (Hippocratic dynamic 
concept) for father-ufSected. The same axioms apply also 
for the other attributes (mother-uflected, father-side, 
mother-side, and spouse). 

Figure 3. Axioms constructing the concept of leprosy (1) 

IF leprosy-symptom-father = yes THEN mix-father = bad 
IF leprosy-symptom-father = no THEN mix-father = good 
IF mix-father = bad THEN father-affected = yes 
IF mix THEN father affected = no 

Figure 4. Axioms constructing the concept of leprosy (2) 

In our first experiment, through a naive representation of 
our examples, we eluded a major a priori inherited from 
archaic medicine. By representing the health status of a 
family member as a Boolean feature (yes or no, for healthy 
or ill), we gave as much importance to the presence and to 
the absence of the disease, implicitly using the Hippocratic 
dynamic concept of disease. This hypothesis of the 
importance of the representation chosen is tested in our 
next experiment. 

’ What the elements of this mix are remained ill-defined, but took 
a more precise shape within the humor theory which defined two 
pairs of humorus as its four basic elements. 
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Induction with a priori medical knowledge 
This experiment aims at testing our hypothesis about the 
role of the conceptualization of disease. We are interested 
in testing the impact on induction of the use of the archaic 
concept of disease, and its correspondance with history. 
This is simulated in this experiment by constructing the 
attributes describing the health of relatives according to the 
axioms of Figure 3. 

Results. With this description language, PASTEUR induces 
the following model: 

,R2: IF disease-type = do. THEN children = all-healthy 
R4: IF [ disease-type = do THEN children = some-sick 
I \ mother-affected = yes 
iR5: IF [ disease-type = do THEN children = some-sick 

I father-affected = yes 

Figure 5. Model induced by PASTEUR given the archaic 
concept of disease 

Analysis. These results are interesting because they 
account for the theory proposed in the Nineteenth century 
on the etiology of leprosy. The two main characteristics 
are, on the one hand, the importance of the disease type 
which appears here as a key feature to explain the disease 
(so that, this classification in types of leprosy finds some 
kind of posterior justification in the context of Nineteenth 
century medicine). On the other hand, the heredity theory 
appears in full force to claim that the ill children are, 
among the children of those patients having the “do.” type 
of disease, the children of patients also having a parent 
affected by the disease. 

In this experiment, we see that by introducing some 
appropriate bias concerning the nature of the concept of 
disease, we can induce a model which is very similar to the 
one proposed in the Nineteenth century. 

PASTEUR, algorithm for indulgent induction 
Indulgent induction has been recognized as important to 
overcome the limitations of a domain language within the 
dynamic context of a science in the making such as 
medicine confronted with the etiology of leprosy. 
PASTEUR is a new inductive algorithm based on 
CHARADE (Ganascia 1991), which implements the 
principles of indulgent induction. It introduces a new 
hypothesis space and new heuristics for searching the 
description space. Here, we will only give an idea of the 
functioning of the algorithm, insisting on the way 
hypothesis space and search heuristics are both geared 
toward the design of exploratory satisficing theories, and 
toward an explicit modeling of exceptions. 

A basic idea behind the new hypothesis space is to use 
the properties of the description space. All the nodes of the 

description space are connected according to a general to 
specific relation, and this relation is used to ensure a top- 
down search. 

All the rules induced by the algorithm can therefore be 
represented as a set of directed graphs of rules connected 
by a specialization relation. We call these graphs decision 
graphs by reference to the more constrained decision lists 
and decision trees. Decision graphs are acyclic graphs 
made of a rule at each one of their nodes. Two rules are 
connected if the premise of one rule is more specific than 
the premise of the other rule. Among all the rules whose 
premises are satisfied by an example, only the most 
specific ones, are activated. A voting scheme among these 
rules is then used to assign a class to the example. 

Structures similar to decision graphs have been proposed 
recently in (Gaines 1995) to address the same kind of 
problem through a post-processing of existing rule bases 
induced by various algorithms. The decision graphs used 
here are however in spirit closer to the “ripple-down rules” 
proposed in (Compton 1991). 

‘rocedure PASTEUR(E) 
Set nodeset to D, initialize fuel to fuelmax 
PASTEUR-aux(E,nodeset,(a) 

‘rocedure PASTEUR-aux(E,nodeset,Rset) 
If nodeset is empty or If fuel=0 then return Rset 
decrement fuel 
Select node N in Inf(nodeset) that maximizes 

B(fuel,N,Rset).H 1 (N,Rset,E) 
Construct R from N 
If H2(E, Rset, Rset u R) > X, 

then insert R in Rset and reset fuel to fuelmax 
Specialize N 

Set nodeset to nodeset \ 

Figure 6. PASTEUR algorithm (2-class case) 

Some simple heuristics have been developed to explore the 
space of decision graphs. The description space is explored 
according to a best-first top-down search. Two elements 
are taken into account when selecting a new node for 
evaluation. The first element (Hl) measures the interest of 
a node taking into account the examples it covers from a 
global perspective, selecting the one that maximizes the 
number of cases that will be correctly classified, minus the 
number of cases that will be misclassified. 

The second element (B) is a bias toward graph 
construction: the exceptions created by a rule are corrected 
in priority by refinement of the decision graph. This bias 
decreases linearly so that after repeated failures, the 
algorithm is given more flexibility so that it can explore 
other parts of the description space to initiate new graphs. 
This flexibility is a distinctive feature of PASTEUR whose 
search is directed by exceptions and coverage. 

Each candidate rule is evaluated, and inserted in the 
current decision graph if it satisfies a criterion (H2) based 
on the global improvement of the coverage of the learning 
cases. This criterion takes into account that what seems to 
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be at first an approximation 
of more specific rules. 

can be refined by the insertion 

eferences 
PASTEUR in our experiments 
Here, we briefly justify the use of PASTEUR in our 
experiments by comparison with other standard inductive 
algorithms. We do this by showing that the hypotheses 
proposed by PASTEUR are not in the search spaces of other 
classical algorithms. This appears best in the model 
proposed in Figure 5. This model uses a combination of 
properties which is not shared by other approaches. 

Figure 7 summarizes three properties needed to induce 
this model, which are characteristic of PASTEUR but not 
shared by other classical learning algorithms. The 
properties reviewed are the “Separate and Conquer” feature 
(SC) characteristic of algorithms learning Disjnuctive 
Normal Form (DNF) hypotheses, the ability to learn 
default hypotheses (characteristic marginally shown by 
algorithms designed to handle noisy data), and the ability 
to model explicitly exceptions to default rules. PASTEUR is 
compared to approaches learning Decision Trees (e.g. C4.5 
(Quinlan 1992)), Decision Lists (e.g. CN2 (Clark & Niblett 
1989)), and DNF (e.g. CHARADE) hypotheses. 

Figure 7. Properties needed to induce the model of Figure 
5 and comparison with other algorithms 

Conclusion 
Our experiments on the discovery of the causes of leprosy 
have shown that a general inductive algorithm being given 
patients’ descriptions collected in the 19th century could 
produce hypotheses corroborated by 20th century medicine 
on the etiology of the disease. Even though last century’s 
descriptions were incomplete and collected with a pro- 
heredity bias, PASTEUR detects the importance of the 
absence of the disease, and hence, of immunity to predict 
the children’s health. Our second experiment, confirming 
previous research, shows that computational simulations 
can be used to give a dynamic account of the Nineteenth 
century medical reasoning by taking into account some 
knowledge on the nature of the concept of disease. 
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