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Abstract 

The identification of metabolic systems is a com- 
plex task due to the complexity of the system 
and limited knowledge about the model. Math- 
ematical equations and ODE’s have been used 
to capture the structure of the model, and the 
conventional optimization techniques have been 
used to identify the parameters of the model. In 
general, however, a pure mathematical formula- 
tion of the model is difficult due to parametric 
uncertainty and incomplete knowledge of mech- 
anisms. In this paper, we propose a modeling 
approach that (1) uses fuzzy rule-based model 
to augment algebraic enzyme models that are in- 
complete, and (2) uses a hybrid genetic algorithm 
to identify uncertain parameters in the model. 
The hybrid genetic algorithm (GA) integrates a 
GA with the simplex method in functional opti- 
mization to improve the GA’s convergence rate. 
We have applied this approach to modeling the 
rate of three enzyme reactions in E. cola’ central 
metabolism. The proposed modeling strategy al- 
lows (1) easy incorporation of qualitative insights 
into a pure mathematical model and (2) adaptive 
identification and optimization of key parameters 
to fit system behaviors observed in biochemical 
experiments. 

Introduction 
Very often, chemical reactions happen as a series of 
steps instead of as a single basic action. Therefore, 
a chemical research problem has been to capture or 
describe the series of steps called pathway of a chem- 
ical reaction. To do this, chemical engineers perform 
experiments with the reaction: measure the overall sto- 
ichiometry, detect reaction intermediates, hypothesize 
relations among the products, plot concentrations over 
time, and so on. A classic example of this in biomod- 
eling is the pathway of glucose metabolic model which 
is shown in Figure 1. Each node describes a metabo- 
lite participating in the pathway, while each reaction 
is shown in the pathway as an arrow, which is labeled 
by the variable v denoting the rate of the reaction. 

Extensive studies have unveiled numerous functions 
crucial to living cells, such as metabolic pathways, en- 
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Figure 1: Pathway of glucose metabolic model 

zyme actions, gene regulations, and global physiolog- 
ical controls. Several attempts have been reported 
to simulate or predict system behavior based on in- 
dividual component models. For example, enzyme ki- 
netic equations have been derived and assembled to 
model metabolic pathways (Achs & Garfinkel 1977; 
Heinrich & Rapoport 1974; Liao et al. 1988); com- 
ponents of DNA replication and gene expression have 
been modeled to simulate the replication of plasmids 
(Lee & Baily 1984; Straus, Walter, & Gross 1988); 
and key aspects of cellular functions have been rep- 
resented mathematically to describe the overall cellu- 
lar behavior (Schuler & Domach 1983). On the other 
hand, descriptive models either unstructured, struc- 
tured, or based on optimization principles have been 
developed (Fredrickson 1976; Kompala, Ramkrishna, 
& Tsao 1984; Ramkrichna 1983). As a consequence 
of the reductionist approach and the fast progress 
of molecular biology, mechanisms at the molecular 
level are reasonably well established. These molecular 
mechanisms are combined to explain system behavior, 
most often in an intuitive manner. For example, reg- 
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ulation of enzyme activity has been used to explain 
the regulation of metabolic pathways, and the action 
of each component in a gene regulation network, or 
regulon, is used to explain the overall response of the 
network. 

This intuitive approach has been successful to the 
extent of first approximation, but has rapidly become 
unsatisfactory as one demands a detailed explanation 
of system behavior. Furthermore, when an explanation 
based on intuitive synthesis of molecular mechanisms 
fails, it is difficult to determine whether the observa- 
tion is a manifestation of novel molecular mechanism or 
is a complex interaction of known mechanisms. Some 
observations cannot be explained simply by intuitive 
synthesis of existing mechanisms. In general, complete 
mechanistic models are rare because of parametric un- 
certainty and incomplete knowledge of mechanisms, 
whereas descriptive models lack the ability to link com- 
ponent properties to system behavior. Moreover, when 
model prediction does not agree with experimental ob- 
servations, it is difficult to distinguish between errors 
in parameters and errors in model structures. 

In this paper, we propose a modeling approach that 
(1) uses fuzzy rule-based model to augment algebraic 
enzyme models that are incomplete, and (2) uses a 
hybrid genetic algorithm to identify uncertain param- 
eters in the model. We have applied this approach to 
modeling the rate of enzyme reactions in E. co/i cen- 
tral metabolism. The proposed modeling strategy al- 
lows (1) easy incorporation of qualitative insights into 
a pure mathematical model and (2) adaptive identifica- 
tion and optimization of key parameters to fit system 
behaviors observed in biochemical experiments. 

The next section describes the basics of fuzzy logic- 
based modeling and the hybrid genetic algorithm 
(GA), which integrates a GA with the simplex method 
in functional optimization to improve the GA’s conver- 
gence rate. We then describe the proposed modeling 
strategy and its application to modeling E. co/i central 
metabolism. Finally, we discuss issues to be addressed 
in our future research and make some concluding re- 
marks in section . 

Background 
Fuzzy Logic-based Modeling 
It has been demonstrated that fuzzy modeling can be 
used to model complex systems that are not well under- 
stood (Takagi & Sugeno 1985; Sugeno & Kang 1988). 
The main contribution of fuzzy logic to system model- 
ing is to introduce a new paradigm of modeling through 
three fundamental concepts that are closely related: 
fuzzy partition, fuzzy rules and interpolative reasoning. 
A fuzzy partition divides an input space to partially 
overlapping regions using fuzzy sets. Each subregion is 
associated with a local model for the region through a 
fuzzy rule. In areas where subregions partially overlap, 
the corresponding local models are combined to form 
a global model through a process (called interpolative 
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Figure 2: Fuzzy sets for VPPC modeling 

reasoning or fuzzy inference) that is analogous to linear 
interpolation. 

A fuzzy partition generalizes classical partitions and 
divides a space into-a collection of disjoint subspaces 
to allow smooth transitions from one subspace into 
a neighboring one. This is accomplished using fuzzy 
sets, which were developed by Lofti A. Zadeh to allow 
objects to take partial membership in a vague con- 
cept (i.e., a concept without sharp boundaries) (Zadeh 
1965). Th e e ree to which an object belongs to a d g 
fuzzy set, which is a real number between 0 and I, is 
called the membership value in the set. The meanink of 
a fuzzy set is thus characterized by a membership f&c- 
tion that maps elements in a universe of discourse (i.e., 
the domain of interest) to their corresponding member- 
ship values. Figure 2 shows the membership functions 
of the fuzzy sets for modeling enzyme PPC. CoA repre- 
sents acetyl-coA, and p denotes the membership value 
in the fuzzy sets. - 

Based oh fuzzy set theory, fuzzy logic generalizes 
modus ponens in classical logic to allow a conclusion 
to be drawn from a fuzzy if-then rule even when the 
rule’s condition is partially satisfied (Zadeh 1973). The 
strength of the conclusion is calculated based on the 
degree to which the antecedent is satisfied by the in- 
put data. Conclusions from multiple fuzzy rules are 
then combined to form a global conclusion. This is the 
essence of the interpolative reasoning. 

There are two kinds of fuzzy rule. The first kind 
of fuzzy model, referred to as the Sugeno-Takagi-Kang 
model in the literature, uses a linear equation to de- 
scribe a rule’s local model. An example of this type 
of rule is shown below for a system with two input 
variables (2, y) and one output-variable (z): - 

If 2 is A and y is B then z = a0 + alx + a2y 

where A and B denote fuzzy sets and as, al and a2 
denote constants. Let wi denotes the degree the input 
to the model matches the condition of thei-th rule, and 
yi denotes the conclusion of the i-th rule. The formula 
below combines the conclusion of all rules in a Sugeno- 
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Takagi-Kang model through interpolative reasoning: 

The second type of fuzzy rule maps a 
to a fuzzy conclusion as shown below: 

fuzzy subregion 

If 2 is A and y is B then z is G 

The interpolative reasoning process for this kind of 
rule is analogous to that of Sugeno-Takagi-Kang fuzzy 
model. Degree of matching in the premise of a rule 
is propagated to the consequent to form an inferred 
fuzzy subsets. These fuzzy subsets are combined and 
defuzzified if necessary. Both types of fuzzy rule is used 
in the proposed modeling approach. 

Compared to other approximation technique (e.g., 
piecewise linear approximation, spline, etc.), a fuzzy 
model is simpler to develop, easier to understand, and 
more flexible in providing a smooth approximation to 
a complex nonlinear relationship. 

Genetic Algorithms 
Genetic algorithms are global search and optimization 
techniques modeled from natural genetics, exploring 
search space by incorporating a set of candidate solu- 
tions in parallel (Holland 1975). A genetic algorithm 
(GA) maintains a population of candidate solutions 
where each solution is usually coded as a binary string 
called a chromosome. A chromosome - also referred to 
as a genotype - encodes a parameter set (i.e., a can- 
didate solution) for a set of variables being optimized. 
Each encoded parameter in a chromosome is called a 
gene. A decoded parameter set is called a phenotype. 
A set of chromosomes forms a population, which is 
evaluated and ranked by a fitness evaluation function. 
The initial population is usually generated at random. 

The evolution from one generation to the next one 
involves mainly three steps. First, the current popula- 
tion is evaluated using the fitness evaluation function, 
then ranked based on their fitness values. Second, GA 
stochastically select “parents” from the current popu- 
lation with a bias that better chromosomes are more 
likely to be selected. This is accomplished using a selec- 
tion probability that is determined by the fitness value 
or the ranking of a chromosome. Third, the GA re- 
produces “children” from selected “parents” using two 
genetic operations: crossover and mutation. This cy- 
cle of evaluation, selection, and reproduction termi- 
nates when an acceptable solution is found, when a 
convergence criterion is met, or when a predetermined 
limit on the number of iterations is reached. The GA 
has been shown to be an effective search techniques on 
a wide range of difficult optimization problems (De- 
jong 1975; Holland 1975). The randomness and paral- 
lelism of GA often enable it to find a global optimum 
without being trapped in a local optimum. The GA 
has been proved to outperform conventional gradient 

search technique on difficult problems involving dis- 
continuous, noisy, high dimensional, and multimodal 
objective functions (Goldberg 1989). 

However, the computational cost of a GA to find 
a global optimum is typically very high. That is, it 
usually requires a large number of generations before 
it converges to an acceptable solution. This issue is 
especially important for applying a GA to the param- 
eter identification of metabolic and physiological sys- 
tems due to the high computational cost of the fitness 
evaluation function. To evaluate a particular guess for 
a set of parameters in a model for such systems, one 
needs to (1) simulate the model based on the guessed 
parameters, and (2) calculate the error between simu- 
lation result and the experimental data. Even though 
efficient simulation packages are available, the compu- 
tational cost of simulating many (e.g., a hundred) com- 
plex models for thousands of generations is extremely 
high. 

To reduce the computational cost of GA-based 
approaches to the identification of parameters for 
metabolic systems, we have developed a hybrid ap- 
proach that integrates the GA and the simplex method 
to speed up the rate of convergence while avoiding be- 
ing easily entrapped at a local optimum (Yen et al. 
1995). This is described in the next two sections in 
detail. 

Simplex Method 
Simplex method is a local search technique that ueses 
the evaluation of the current data set to determine the 
promising direction of search. The simplex method was 
first introduced by Spendley et. al (Spendley, Hext, 
& Himsworth 1962) and later modified by Nelder and 
Mead (Nelder & Mead 1965). A simplex is defined by 
N + 1 points where N is the dimension of the search 
space. The method continuously forms new simplices 
by replacing the worst point in the simplex with a new 
point generated by reflecting the worst point over the 
centroid of the remaining points. This cycle of evalua- 
tion and reflection iterates until the simplex converges 
to an optimum. 

We chose the simplex method rather than a gradient- 
based method (e.g., steepest descent, Newton strate- 
gies) as the local search technique for our hybrid GA 
because the relationships between the modeling param- 
eters and the modeling objectives (i.e., close fitness be- 
tween the model prediction and the experimental data) 
are too complex to be formulated. Consequently, it 
is difficult to compute the derivatives needed by the 
gradient-based methods. 

A Hybrid Genetic Algorithm Using 
Simplex Met hod 
We developed a hybrid GA method by introducing the 
simplex method as an additional local search operator 
in the genetic algorithm (Yen et al. 1995). The hy- 
brid of the simplex method and the genetic algorithm 
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Figure 3: Reproduction in simplex-GA hybrid 

applies the simplex method to the top S chromosomes 
in the GA population to produce S - N children. The 
top N chromosomes are copied to the next generation. 
The remaining P - S chromosomes are generated using 
the GA’s reproduction sheme (i.e., selection, crossover, 
and mutation) where P is the population size in the 
GA. Figure 3 depicts the reproduction stage of the hy- 
brid approach. 

Empirical results obtained by applying the hybrid 
method to a subset of the biomodeling problem showed 
that the hybrid method outperformed the GA in terms 
of the speed of convergence and the quality of solution 
(Yen et al. 1995). 

Metabolic Modeling 
The Proposed Modeling Strategy 
The proposed modeling strategy treats the system 
at two levels: a component (molecular) level such 
as enzyme reactions, protein-protein interactions and 
protein-DNA binding, and a system level such as 
metabolic networks, signal transduction pathways, ge- 
netic regulation systems, and global responses. In 
the component level, behavior of the components is 
described by algebraic equations derived from known 
molecular mechanisms and/or fuzzy logic models based 
on descriptive and/or incomplete information. Model 
parameters at this level are typically estimated from 
component data using the hybrid GA. 

A component level model describes the rate of a re- 
action as an algebraic equation, whose structure re- 
flects a known molecular mechanism. Several basic 
types of component level models are described in the 
next section. Parameters in these nonlinear models can 
be identified using a nonlinear optimization technique 
in system identification (e.g., extended Kalman filter, 
GA). We used the hybrid Simplex-GA to identify these 
parameters. 

Although extensively investigated, mechanisms of 
many enzymes of interest are still only partially under- 
-L--J n------l-L 1 1. 1 * 1 sboou. complete enzyme regulation mecnanisms, sucn 
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as inhibition or activation, are often undetermined, ex- 
cept for a few enzymes with known crystal structure. 
Therefore, mechanisms describing substrate binding 
(e.g., random/ordered BiBi or Ping Pong BiBi) may 
be available, but mechanisms for inhibitor or activator 
actions are often incompletely known. We use fuzzy 
logic-based modeling to model the aspects of enzyme 
reactions that are not characterized mechanistically. 
More specifically, when experi mental data suggests in- 
hibition or activation factors not accounted for by a 
component model, we use fuzzy logic rules to augment 
the model by describing a mapping from the inhibit- 
ing or activation factors to their effects on the model. 
These rules are designed by first analyzing the inhibi- 
tion and/or activation effects for identifying parame- 
ters in the original model whose values seem to change 
when inhibition or activation occurs. A set of fuzzy 
rules is then designed, each of which maps a specific 
inhibition or activation situation to a linear equ ation or 
a fuzzy set that ch .aracterizes the desired value of the 
parameter for the situation. Parameters in the alge- 
braic equation as well as parameters in the fuzzy logic 
rules are identified using the hybrid GA. 

The component models are then synthesized into 
system models based on known or hypothesized path- 
ways. Models at this level consist of ordinary differ- 
ential equations (ODE’s). The system level introduces 
additional parameters into the model which are esti- 
mated from system behavior. The hypothesized mech- 
anism usually defines the structure of model while leav- 
ing model parameters unspecified. We use the hybrid 
GA to identify the unspecified system parameters. The 
hybrid GA’s fitness evaluation involves simulating the 
system-level model for each candidate system param- 
eter set in the population. To simulate the behavior 
of the system, we used an existing simulation software, 
DDASAC (Caracotsios & Stewart 1984), for solving 
non-linear ODE’s numerically. 

In the two remaining section, we focus our discussion 
on the component level modeling. A more detailed 
discussion on our system level modeling approach can 
be found in (Yen et al. 1995). 

Mechanistic Modeling of Enzyme Kinetics 
In this section, we introduce four types of mechanisms 
and the structure of their corresponding mathematical 
models derived from the mechanisms. 

Since enzymes form complexes with their substrates, 
the rate of reaction is limited by the concentration of 
enzyme-substrate complex . When the level of a sub- 
strate is varied, the initial velocity with which the re- 
action begins is generally given by an equation. If the 
reversibility of the reaction is considered, the equation 
has the following form: 

where S and P are the substrate and product, respec- 



tively, and K, , I$,, and V&l, and VP are kinetic param- 
eters. 

If the reaction involves two substrates and two prod- 
ucts (BiBi reaction), as in many metabolic systems, 
the kinetic mechanism may involve ternary-complexes 
or binary complexes. In the former case, the binding 
may be either random or ordered, and the reaction rate 
can be expressed as: 

(A)(B) 
’ = Vmas IC1 + &(B) + &(A) + (A)(B) 

where A and B are the concentrations of the two sub- 
strates, and Vnaaz, I<i, I<A, and I<B are parameters 

determined from the initial reaction rate experiments. 
The binary-complex mechanism involves a covalent 

intermediate-as the enzyme goes to a modified form. In 
this case, substrate A first reacts and modifies the en- 
zyme, producing the first product P. Then the second 
substrate B reacts with the modified enzyme, produc- 
ing the second product Q. This mechanism is termed 
Pz%g-Pony BiBi reaction-and the reaction rate can be 
expressed as: 

(A)(B) 
’ = vmas KA(B) + .KB(A) + (A)(B) 

Very often, the reaction rates are inhibited or ac- 
tivated by products, substrates, or other metabolites 
not participating in the reaction, When such allosteric 
effects exist, the Monod- Wyman-Chungeux (MWC) 
model or its variations can be used. The rection rates 
involving inhibition and activation are described by: 

v = A(1 +.),-l+ LcA(1 + cA)~--‘, L = &(I+ B)” 

(I+ A)” + L( 1+ CA)” (I+ 6)” 

We will refer to some of these models in the next sec- 
tion 

Integrating Fuzzy Logic with Mechanistic 
Modeling 
For enzymes with incomplete mechanisms, fuzzy mod- 
els are incorporated to mend the deficiency ofthe in- 
complete mechanistic model. An example is the PPC 
reaction. The dots in Figure 4 summarized the ex- 
perimental data in the literature about the reaction 
rate of PPC in different PEP concentration with dif- 
ferent activators (Izui et al. 1981). The following ob- 
servations can be made from the figure. (1) With- 
out any activator, the reaction proceeds at a very low 
rate. (2) Acetyl-CoA is a very powerful activator. (3) 
FDP exhibits no activation alone. (4) FDP produced a 
strong synertistic activation with acetyl-CoA. Because 
these activations change the saturation reaction rate 
(V,,,), we modify the 
with a fuzzy logic factor 
nent model: 

original mechanistic equation 
(0) into the following compo- 

V - ~vraat 
PEP 

WC - Km + PEP 
The fuzzy factor cy is modeled by the following four 
fuzzy rules: 

If CoA is LOW and FDP is LOW then LY is VERY-LOW 
If CoA is LOW and FDP is HIGH then LY is LOW 
If CoA is HIGH and FDP is LOW then LY is MEDIUM 
If CoA is HIGH and FDP is HIGH then a is HIGH 

where VERY-LOW, LOW, MEDIUM, HIGH are fuzzy 
sets. The membership functions of these fuzzy sets are 
shown in Figure 2. 

The second example is PYK reaction. It is acti- 
vated by FDP and inhibited by CoA and ATP (dot 
data in Figure 6, 7, and 8). This reaction is again 
modeled with the following mechanistic equation with 
fuzzy numbers F, L, and c which are determined by 
fuzzy if-t hen rules. 

V mk = 
F PEP( 1+ Pmq3 + L x c x PEP( 1+ c x PJ?q3 

PEP(1+ PEP)* + L(1+ c x PEP)4 

Modeling of ATP, CoA inhibition is described by the 
fuzzy factor F which is determined by the following 
fuzzy rules. 

If FDP ia LOW and ATP is LOW and CoA is LOW then F = F1 
If FDP is LOW and ATP is LOW and CoA is HIGH then F = F2 
If FDP is LOW and ATP is HIGH and CoA is LOW then F = F3 
If FDP is LOW and ATP is HIGH and CoA is HIGH then F = F4 
If FDP is HIGH and ATP is LOW and CoA is LOW then F = F5 
If FDP is HIGH and ATP is LOW and CoA is HIGH then F = Fe 
If FDP is HIGH and ATP is HIGH and CoA is LOW then F = Fy 
If FDP is HIGH and ATP is HIGH and CoA is HIGH then F = Fs 

where Fl, F2, F3, F4, F5, F6, Fr, and F5 are parame- 
ters in the fuzzy model. Modeling of FDP activation 
is achieved by introducing two fuzzy numbers c and L 
in the MWC equation. L and c are used for changing 
the shape of the curve in a MWC model (Cantor & 
Schimmel 1980). 

IfFDPisLOWthenc=ci,L=Li 
If FDP is HIGH then c = ~2, L = L2 

where cl, ~2, Ll, and L2 constants. 

Results 
We applied the hybrid genetic algorithm to identify 
the parameters in the proposed model. The fitness of 
a candidate parameter set is the root means square er- 
ror between the real experimental data reported in the 
literature and the candidate model by the GA. Figure 
5 plots the fitness versus trials for modeling the reac- 
tion rate Vppc. The behavior of the identified model is 
shown in Figure 4. The figure shows a good fit between 
dots representing real experimental data and the lines 
representing the prediction of the model identified. 

Similarly, the behavior of the identified model for 
Vpslk and corresponding experimental data is shown in 
the figures 6, 7, and 8. 

Summary 
In this paper, we have proposed a novel methodology 
to integrate fuzzy logic techniques with mechanistic 
modeling method to model the component level and 
system level structures of metabolic systems. We also 
use a hybrid genetic algorithm to identify the key pa- 
rameters of the model. The strategy here allows one 
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to easily incorporate incomplete information and qual- 
itative description into a mathematical formulation of 
the model. The modeling approach is promising for 
the elucidation of the unknown interactions between 
central metabolism and global regulation, which is es- 
sential for understanding biological signal transduction 
and rational design of metabolic systems for a desired 
purpose. 

One of the most important issues remained to be 
addressed in our future research is to develop a scal- 
able approach for dealing with the large search space at 
the system level, for the number of system parameters 
that may need to be adjusted to fit experimental data 
are typically very large. We are currently developing a 
supervisory architecture for dynamically selecting pa- 
rameters to be optimized based on heuristics, insights 
about the model, and sensitivity analysis. 
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