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Abstract. Discovering hidden structure is a challeng- 
ing, universal research task in Physics, Chemistry, Biol- 
ogy, and other disciplines. Not only must the elements 
of hidden structure be postulated by the discoverer, 
but they can only be verified by indirect evidence, at 
the level of observable objects. In this paper we de- 
scribe a framework for hidden structure discovery, built 
on a constructive definition of hidden structure. This 
definition leads to operators that build models of hid- 
den structure step by step, postulating hidden objects, 
their combinations and properties, reactions described 
in terms of hidden objects, and mapping between the 
hidden and the observed structure. We introduce the 
operator dependency diagram, which shows the order 
of operator application and model evaluation. Different 
observational knowledge supports different evaluation 
criteria, which lead to different search systems with ver- 
ifiable sequences of operator applications. Isomorph- 
free structure generation is another issue critical for 
efficiency of search. We apply our framework in the 
system GELL-MANN, that hypothesizes hidden struc- 
ture for elementary particles and we present the results 
of a large scale search for quark models. 

Introduction 

Intense research in physics during the 1950s and early 
1960s centered on the discovery of elementary parti- 
cles. After more than one hundred elementary parti- 
cles were known, many arranged into groups with in- 
ternal symmetries (e.g., hadron octet shown in Figure 
la and meson octet in Figure 3), physicists in the 1960s 
started to postulate theories of smaller particles, called 
quarks, proposing their number, properties, and struc- 
tures they form. Eventually, the standard quark model 
became one of the foundations of physics. 

The discovery problem has been: “Given a set of 
observed objects and observational knowledge about 
them, postulate a hidden layer of objects and their 
structure that explains observed objects”. This prob- 
lem has been considered many times in the history of 
science. Examples of successful discoveries include ele- 
ments, atoms, ions, genes, and quarks. Today the same 
problem is being re-visited in particle physics, where 
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scientists search for the next layer of structure beneath 
quarks. 

Discovery of hidden structure has been the subject 
of various case studies, that led to a number of dis- 
covery systems. STAHL (Langley, Simon, Bradshaw, 
& Zytkow 1987) and STAHLp (Rose & Langley 1986) 
discover componential models, while DALTON (Lang- 
ley et. al 1987) d iscovers atomic models. REVOLVER 
(Rose 1989) d ea s 1 with revision of beliefs about hidden 
structure, MECHEM (Valdes-Perez 1992) infers plau- 
sible intermediate structure in chemical reactions, and 
BR-3 (Kocabas 1991) demonstrates how hidden proper- 
ties can be postulated for observable objects. Sleeman, 
Stacey, Edwards, and Gray (1989) have suggested a 
search space for hidden qualitative models of chemi- 
cal structure. Valdes-Perez, Simon, and Zytkow (1993) 
introduced a matrix representation of structure that 
works for many discovery systems. 

This paper presents a general framework which can 
be used to design various systems that search for hid- 
den structure in different domains. We discuss rep- 
resentation of hidden structure, operators which con- 
struct tentative solutions, and the solution evaluation. 
All these elements are combined in the operator de- 
pendency chart that is instrumental in construction 
of discovery systems. We then discuss GELL-MANN, 
a system which can postulate hidden structure of ele- 
mentary particles. It has produced the standard quark 
model, various alternatives to that model, and many 
other models of hidden structure. 

GELL-MANN is a case study in automated discovery. 
Instead of speculating on the nature of general purpose 
automated discoverers, we follow the program of scien- 
tific research which relies on an accumulation of case 
studies that can be used as facts of high order. Expe- 
rience of empirical science shows that accumulation of 
many such cases eventually leads to striking theories. 

Hidden structure 
Hidden structure can be described in the same way as 
visible structure. However, since hidden objects are 
not observed, a description of hidden structure must 
also include a mapping to the level of observation. We 
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define hidden structure by the following components: 

1. A set T = {tl , ,.., tN} of different types of hidden 
objects (elements). The number of objects within 
each type is not limited. 

2. A set C = {c 1 c = (tjl, . . . . tj,) & p(c)) of admissible 
microstructures (microcompounds), each defined as 
a bag (multiset) of objects tj, from T. y(c) is a 
constraint on admissible structures. For instance, 
the constraint used by GELL-MANN requires that 
each bag contains the same number M of hidden 
objects. 

3. A set of attributes P = {PI, . . . . pk} for objects in T 
and in 6. 

4. A set E of admissible values for each attribute in P. 
5. Specific attribute values for each object type and 

eachattribute,Pi:TbVi,i=l,..., Ic. 
The properties of admissible combinations in C are 
related to the attribute values of the components by 
additivity: 
For each property Pi, each object c, and all compo- 
nents cl, . . . . CM Of C in C: Pi(C) = Cj”=, Pi(Cj). 

6. A set R of reaction schemes (cil, . . . . ci,) I+ 
(C 011 “‘> car), in terms of inputs and outputs on the 
microlevel. 

7. Partial mapping $ : C --+ R between microstruc- 
tures and the set Q of observable objects. 

Not all components l-7 must be present in each model. 
On the other hand, this definition can be augmented 
by further relationships between hidden objects, such 
as chemical bonds and spatial proximity. A computer 
model of hidden structure is a data structure that fits 
our definition. 

iscovery of hidden structure 
We will concentrate on the architecture of GELL- 
MANN, but to illustrate the generality of our frame- 
work, we will also use examples from DALTON, a sys- 
tem that simulates discovery of atoms and molecules 
(Langley et al. 1987). DALTON uses components l-2 
and 6-7 of our definition; 1 and 7 are trivial: one type 
of atom corresponds to each chemical element, and one 
type of molecule to each substance. GELL-MANN has 
been developed to explore quark models in the domain 
of elementary particles. GELL-MANN uses components 
l-5 and 7 of our definition. 

The search for hidden structure should propose as 
much of the data structure as fits our definition, as can 
be tested by the evidence at the observable level. 
Input and output of model construction. The in- 
put to GELL-MANN is a family of elementary particles, 
their properties, and values for each property of each 
particle. Figure lb gives an example of input (parti- 
cle family of hadrons), from which GELL-MANN infers, 
as output, two models of underlying structure shown 
in Figure 2. These two quark models postulate three 
types of hidden objects (a, b, c) occurring in triplets, 
which are mapped to the input particles. For instance, 

in Model 1 the quark cs has a charge of 2/3, a third com- 
ponent of isospin of l/2 and a strangeness of 0. In this 
model, proton p consists of two quarks a and one quark 
b. Figure 3 provides another example of GELL-MANN’s 
input and output: the meson family. 

-~ 

particle charpepr~~v~ssm~~’ 

P 1 l/2 0 
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Symmetry in the hadron octet 

Figure 1: (a) symmetry in the hadron octet family; (b) hadron octet as 
ir,put given to GELL-MANN 

quark 

iTi 
C 

aaa 
aab 
sac 
abb 
abc 
act 
bbb 
bbc 
bCC 

properties 

ccc i-1 1 0 I-3 

mapping 
to particles 

lModel 2 

a 
b 
C 

bag 01 
quark 
aaa 

aab 
sac 

abb 
abc 
act 
bbb 
bbc 
bCC 

ccc 

properties 
ch 
-i 

1 
0 
1 
0 

-1 
1 
0 

-1 
-2 

Figure 2: Output of CELL-MANN for the hadmn octet. Both models are equally simple. Model 
1 LS the standard quark model m physvs. Quarks u.d.s are CELL-MANN’s quarks a.b.c. 

ode1 evaluation. Philosophers since IDemocritus 
have speculated about the makeup of atomic structure, 
but they could justify neither concrete properties of 
atoms nor concrete atom combinations, because it was 
difficult to find observational consequences of specific 
claims about hidden structure. At certain times, how- 
ever, the knowledge about hidden structure has pro- 
gressed remarkably. Historically, such progress has oc- 
curred when simple symmetries or combination laws 
expressed in terms of small integers have been de- 
tected at the observable level. At the beginning of 
the 19th century, the law of constant proportions in 
chemical reactions and Gay-Lussac’s law of combin- 
ing volumes created such an opportunity. Later, the 
Prout’s hypothesis on atomic numbers of elements and 
the periodic table stimulated models of the atom and 
its nucleus. After Mendel discovered simple combina- 
tion rules for properties of the pea, he postulated the 
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gene model. Similarly, Murray Gell-Mann proposed 
the quark model after grouping elementary particles 
into small families. 

; Symmetry in the meson octfzt I 

CELL-MANN’s input 

CELL-iMxUN’s output 
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Figure 3: when given tbe meson Octet as input. CELL-MANN finds one model 
which consists of four quarks in combinations of two. 

Facts useful for evaluation come from two basic 
sources: attributes of the observed objects, and de- 
scriptions of observed reactions. In GELL-MANN, eval- 
uation is based on properties of elementary particles, 
whereas DALTON tests its models against knowledge 
of macro-reactions. GELL-MANN uses each property 
P of each observed object 0 in the input to verify a 
model, after it proposes a mapping between 0 and a 
microstructure c, and applies the additivity principle 
(cf. component 5 of hidden structure definition) to hid- 
den components cl, . . . , CM of c. The model is confirmed 
if P(c) is equal to the observed value P(0). 

Reactions can be used in a similar manner. DALTON 
uses knowledge of combining volumes in a reaction on 
the observable level and the postulated microstructure 
of each substance in the input of the reaction. Then the 
micro-output is computed based on the conservation of 
elementary parts, so that the number of atoms of each 
type is equal before and after reaction. Finally the out- 
put is interpreted in terms of volumes on the observable 
level, and compared with the observed output. 

It is not sufficient to confirm a model by observa- 
tional consequences. If there are many models, all jus- 
tified by their observational consequences, what are the 
reasons to claim that one of them is true. Each model 
is questionable because they make mutually inconsis- 
tent claims about the hidden level. We cannot require 
absolute uniqueness, because for each model there are 
many models which are more complex and observation- 
ally equivalent. We can accept model A4 when all other 
models are more complex, that is, when M is unique 
in the simplest class in which a model exists. 

When the search is arranged in the order of grow- 
ing complexity, if it is successful, it finds the simplest 
model. Complexity is measured by model parameters, 
such as the number of elements postulated and the 
number of elements in each microcompound. 

perator ependency Chart 
Each model can be constructed gradually in steps that 
correspond to items l-7 in our hidden structure defi- 
nition in Section . Each item in the definition can be 
represented by operators that build the corresponding 
parts of the model: add objects to T, postulate their 
properties, their structures, and so forth. 

Operator selection. Not all components of hidden 
structure are discovered by every system. It does not 
make sense to propose components which cannot be 
verified. For instance, the observational data for DAL- 
TON do not include properties of molecules and there- 
fore, do not permit verification of hypotheses about 
properties of atoms. No data on reactions can be used 
by CELL-MANN, so the inference of hidden structure 
of reactions is not feasible. 

Dependencies among operator application. The 
order of model construction must satisfy the precon- 
ditions at each step. The preconditions can be in- 
ferred from the definition. For instance, assigning an 
attribute value to an object requires an object, an at- 
tribute, and a candidate value. Similarly, one cannot 
create structures without having postulated objects. 
Activities which lead to model generation and their 
preconditions can be arranged in a chart, depicted in 
figure 4a. 

Operator dependency chart and search. Differ- 
ent components of hidden structure are postulated by 
operators. Alternative models are constructed by fol- 
lowing alternative paths; that is, by different operator 
instantiations. Figure 4b shows the subset of all oper- 
ators used in GELL-MANN, while figure 4c shows the 
subsets of operators used by DALTON. Only the oper- 
ators that lead to observational evaluation have been 
left in Figures 4b and 4c. 

The constraints imposed by preconditions leave a 
great deal of freedom in arranging the search control, 
so that additional requirements of efficiency can be sat- 
isfied. To construct efficient search for hidden structure 
in a given domain we can use the operator dependency 
chart and several principles: 

I. All operators which do not contribute components 
of structure which can be evaluated by the existing 
evidence should be removed. 

2. The evaluators must be used as early as possible. 
3. Consider each possible model exactly once. The 

search should be systematic, so that no model is over- 
looked, but also isomorph-free (non-redundant). 

4. Try models in the order of increasing complexity. 
5. Use depth first search within each simplicity class. 
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(b) GELL-MANN 

reate micro-element 

(c) DALTON 

Figure 4: Operator dependency chart for discovery of hidden structure. It shows preconditions for each operator. Labeled, 
solid arcs represent operators. Unlabeled, dashed arcs show preconditions which must be satisfied before the subsequent 
operator can apply. (a) general case, (b) GELL-MANN, (c) DALTON. Only the operators that lead to available tests have 
been retained in (b) and (c). 

6. The operators should be used in the most efficient 
order that satisfies all other principles. 

Non-redundancy and exhaustiveness (cf. 3, above) 
have been used by DENDRAL developers, Lindsay, 
Buchanan, Feigenbaum, and Lederberg (1980) as re- 
quirements for their structure generator. 

GELE-MANN’s search 
According to these principles, GELL-MANN has been 
arranged in a three phase search (Figure 5abc), imple- 
mented in common lisp. Each phase generates a part of 
hidden structure and verifies it by specific evaluators. 

In Phase I (Figure 5a) CELL-MANN searches for ad- 
missible classes of microcompounds. It postulates hid- 
den object types in T (operator Or, “Create Micro El- 
ements”), then the number of objects in a microcom- 
pound (Operator 02~ “Create Micro-Compounds”). 
For a given set of hidden types and a given number of 
elements in a microcombination, GELL-MANN creates 
all their combinations (Operator 02~ “Create Micro- 
Compounds”). Those combinations are often called 
bags. The same object can occur several times in a 
bag, but the order in a bag does not matter. 

The isomorph-free bag generator uses the order of 
elements in T and creates each bag in that order, with 
possible repetition or omission of some elements. 

CELL-MANN starts its search from one hidden ob- 
ject and keeps adding objects until a solution is found, 

or the number N of objects in T reaches the number 
of objects in the input family, so that the model fails 
to simplify the input. Operator 02~ starts from two 
elements per bag, as one element would make the struc- 
ture identical with a single part. OaA increments the 
number M of elements in a bag by one. For a given 
N and M, a set of bags is admitted to the next phase 
when the number of bags is not smaller than the num- 
ber of particles in the input family, but no greater than 
three times the number of observed objects. Indeed, we 
want different observable particles explained by differ- 
ent quark combinations. We also do not want to postu- 
late a much larger number of hidden structures than is 
supported by the number of observed objects. The lim- 
its on quark combinations will cause the search to stop 
even if no model has been found. This makes sense, 
not because more complex models are impossible, but 
because the available data do not support speculations 
about them. 

The next tasks, according to the dependency chart 
are to determine: (1) what attributes will occur in the 
model, (2) what attribute values are admissible. GELL- 
MANN uses all attributes provided in the input (op- 
erator 03 “Create Properties”). The more attributes 
used, the more demanding is the evaluation. GELL- 
MANN starts Phase II by postulating candidate val- 
ues for each attribute (04, “Determine Possible Val- 
ues”). Too many values would result in huge search 

Discovery 753 



spaces. Too few values may exclude valid solutions. 
We turned to the observed objects for guidance. Let Q 
be the largest absolute value exhibited at the observed 
layer for attribute Pi. GELL-MANN takes as admis- 
sible values Vi of Pi all positive and negative integers 
between -ui and vi. In addition, GELL-MANN pos- 
tulates rationals compatible with those in the input, 
and rationals with denominators equal to the number 
of hidden objects currently postulated per bag. For ex- 
ample, if three hidden objects are postulated per bag, 
values down to thirds are used. 

The exhaustive search must try all assignments of 
values to hidden objects. However, such a search is 
typically too complex. For 3 quarks, 3 attributes, and 
10 admissible values per attribute, a straightforward 
search would try 10’ models. Can we eliminate invalid 
partial solutions ? GELL-MANN’s Phase II of search is 
an answer. GELL-MANN considers each attribute Pi 
separately trying all assignments of values in Vi to N 
elements. This is another application of isomorph-free 
bag generator, this time generating bags of size N. For 
each assignment of candidate values, GELL-MANN uses 
the additivity principle to compute the value of Pi for 
each combination generated by the first phase of the 
search. An assignment is admissible if a mapping exists 
from each observed particle to a microcompound with 
the same Pi value. Figure 5b depicts that phase. The 
output is typically a small set of admissible N-tuples 
of values for each attribute. 

In Phase III, these separate solutions for each at- 
tribute are combined to form a solution which works 
across all attributes and all objects in T. At the same 
time, to enable evaluation, concrete mappings II, are 
tried between particles and quark combinations (oper- 
ator 07 “Map Micro Objects to Macro Level”). Phase 
III is depicted in figure 5c. If GELL-MANN finds a solu- 
tion valid for the given N and M, it continues, search- 
ing for all solutions for the same N and A4 and halts. 
If it cannot find a solution, the search returns to phase 
one and increments N or M. 

In Phase III, the isomorph-free generation faces the 
biggest challenge. Consider different mappings for pro- 
ton p, the particle which opens the search depicted in 
Figure 5c. It could be assigned ten different bags for 
N = 3 (let us call the three quarks a, b, c) and M = 3. 
But, for instance, the bags (a a a), (b b b), and (c c c) 
lead to isomorphic solutions. Only one of them should 
be considered. The situation becomes more compli- 
cated after partial solutions have been proposed, but 
some quarks are still indistinguishable from others by 
their attribute values. Here GELL-MANN’s generator 
uses three principles: (1) use the order in which the 
elements in T are listed; (2) do not skip any elements; 
(3) each next element can be listed no more times than 
the previous one. For N = 3 and M = 3, only the bags 
(a a a), (a a b), (a b c) will be generated. 

GELL-MANN can search for a model of a single in- 
put family. However, many families of particles exist. 
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(a) Phase I 

01 F&Y 

02A Group 
size 

02B Combinations 

Evaluation: # of particles <= # of combinations <= 
3 times # of particles. 

(b) Phase II 
03 Properties 

04 Admissible valu 
eg. (-1 -2/3 -l/3 0 l/3 2/3 1 

05 Value N-tuples 

Zvaluation: Frequency of quark combinatiqn val- 
les >= observed particle family values. 

for all models 

Finished 
for one model 

{valuation: Predicted quark combination value = 
observed particle value for all properties. 

Figure 5: The three phases of search in GELL-MANN. 
Phase I generates quark types, bag sizes and quark combi- 
nations. Phase II generates attributes of quarks and val- 
ues for each attribute. Phase III maps attribute values to 
quarks and quark combinations to particles. 

Is a joint solution possible? Can it be reached incre- 
mentally? GELL-MANN handles multiple families by 
working with each in succession. For each next family 
it tries a solution based on the quarks used in the mod- 
els that worked for all previous families, and adding 
new quarks only if necessary. Although the same set 
of quarks is used for all families, the bag size for each 
family can be different. 

Incremental search. GELL-MANN proceeds to the 
second family, using the same three search phases. It 
first tries the known quarks, adding new ones only if 



no solution has been reached for the existing ones. 
The order of input families can be historical, but we 

can also try different orders of processing the same set 
of input families. In that case, we want GELL-MANN 
to seek the simplest global solution for all families. 

Generalizations. Attributes such as spin can be com- 
bined by vector addition of quantum numbers. The rule 
of vector addition and other combinatorial rules can be 
plugged into GELL-MANN. Phase II can be eliminated 
altogether when attribute values are found by solv- 
ing matrix equations (Valdes-Perez, Zytkow & Simon, 
1993). This approach has been implemented by Valdes- 
Perez in YUVAL (Valdes-Perez & Zytkow, 1996). For 
small sets of values it turns out that GELL-MANN’s 
generating and testing value combinations works faster 
than solving equations. 

esults of Experiments 

Early historical data. Initially, three families of ele- 
mentary particles, postulated by Murray Gell-Mann, 
formed the theoretical basis for the quark model: 
hadron octet, meson octet, and baryon decuplet. Fig- 
ures 2 and 3 present results of GELL-MANN’s non- 
incremental search on the inputs of hadrons and 
mesons. Later, we applied our incremental search for 
the joint quark model to these three families, in all six 
permutations. Figure 6 depicts our experiment. Each 
solid arc is labeled with the particle family given as 
input to GELL-MANN. Each node in the tree, except 
for START, represents the output of GELL-MANN: the 
number of quark models found and the complexity of 
the quark models (N * M) in terms of the number N 
of quarks postulated and the number M of quarks per 
bag. GELL-MANN incrementally builds on the previous 
quark models on the direct path from the root. 

The initial hadron octet run produced two models of 
complexity 3*3 (three quarks in groups of three; Fig- 
ure 2). Of these two models, one was postulated by 
the physicist Gell-Mann. The other was a new model. 
The meson octet run yielded one model of complexity 
4*2 (Figure 3), much simpler than the 6*2 model ac- 
cepted in physics. The baryon decuplet family yielded 
one model 3*3, the model postulated by Gell-Mann. 
All these models are shown in Figure 6 as direct de- 
scendents of the START node. 

The remaining two families of particles were added, 
one at a time, to the initial models. Building on the 
meson octet unconventional 4’2 model, 5 models have 
been found for the baryon decuplet in the 7*3 category, 
which is more complex than the standard 6*3 model. 
The hadron octet family led to a 6*2 model, but adding 
the baryon decuplet produced no solution, so this path 
was discarded. 

Building on the unconventional hadron octet model 
(Model 2 in Figure 2), the baryon decuplet family pro- 
duced no solution. For the standard model (Model 1 in 
Figure 2), a 3’3 solution was found. When the meson 

octet family was added to the remaining model, two 
solutions of 6*2 were produced. 

Building on the single baryon decuplet model de- 
picted as the rightmost child of START in Figure 6, no 
new quarks were needed to explain the hadron octet. 
Then adding the meson octet produced the same two 
6*2 solutions found following the hadron octet path 
from the root. 

Additional results. Expanding the models built 
for each of the three particle families, we added two 
additional families, the charmed mesons and charmed 
hadrons, also depicted in Figure 6. Each 6*2 model 
has been expanded to a 8*2 model for charmed mesons. 
When the charmed hadrons were added, only one 8*2 
model could be adapted to handle the new class. The 
output was one 8’3 model, known by physicists as the 
standard model. We could not further expand our 
search because too few particles are known to con- 
tain the bottom quark, so the search is not constrained 
enough. 

The other paths in the tree end with either no solu- 
tion, or solutions of greater complexity than the stan- 
dard model. This implies that in the space examined 
by our incremental search without backtracking, the 
standard model is indeed unique in its simplicity class. 

As the complexity of the quark model grows, so does 
the size of the search space and the program execution. 
For instance, the initial run on the hadron octet found 
two 3*3 solutions in approximately 4 set of CPU time 
at GMIPS. But more complex searches took days and 
even weeks, as indicated in Figure 6. 

Many other results have been reported by Fischer & 
Zytkow (1990) and by Valdes-Perez & Zytkow (1996). 

Conclusions and future work 
We have presented a theoretical framework for the dis- 
covery of hidden structure and have demonstrated how 
the discovery system GELL-MANN fits that framework. 
We presented results of a large-scale exploration in the 
space of quark models. The same operators, similar 
knowledge representation, and the same elements of 
search are used by many systems that discover hidden 
structure. This unification suggests a unified computer 
system which would be able to discover hidden struc- 
ture in different domains. 

Two problems must be solved before we can build 
an autonomous system capable of discovering hidden 
structure in various domains. First, we lack a gen- 
eral algorithm that would use domain knowledge on 
the observational level to set up the search for hid- 
den structure. Using the experience accumulated by 
construction of several systems, it is relatively easy to 
manually generate all elements of search: to select op- 
erators, to define operator instantiation and evaluation 
criteria, and to organize them in a simple, “bottom- 
line” system: simple in structure and able to search 
exhaustively, yet entirely inefficient. Thus, the second 
problem is concerned with the automated generation of 
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no solution 

no solution 

Figure 6: This tree summarizes our experiment in incremental construction of quark models by GELL-MANN. Each solid 
arc represents an input family of elementary particles. Each node represents the solutions to the family indicated on the arc 
below the node (they are also solution for all families on the path from the START node). The dashed arcs are used to trace 
individual models if more than one model exists at a given node. The left half of the tree depicts the search for non-standard 
models. The right half depicts the search for the standard model. 

an efficient search control. It is possible to increase ef- 
ficiency by changing the order of operators, by placing 
the evaluators as early as possible, and by designing 
isomorph-free generators for different sub-tasks. We 
believe that the whole task can be eventually auto- 
mated. Automation may be more and more obvious 
as new case studies are completed. 

Hidden structure is very similar to visible structure, 
so that our definition can be expanded and applied to 
other machine discovery work on structure (Karp 1990, 
Sleeman et al. 1989). A search similar to ours can be 
useful for visible structures, for instance, on experiment 
design problems (Rajamoney 1990). 

Acknowledgments: Many thanks to Malcolm 
Perry and Mary Edgington for their suggestions. 
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