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Abstract 

The ideas of dependency directed backtracking (DDB) 
and explanation based learning (EBL) have developed 
independently in constraint satisfaction, planning and 
problem solving communities. In this paper, I formalize 
and unify these ideas under the task-independent frame- 
work of refinement search, which can model the search 
strategies used in both planning and constraint satisfac- 
tion. I show that both DDB and EBL depend upon the 
common theory ofexplaining search failuresand regress- 
ing them to higher levels of the search tree. The relevant 
issues of importance include (a) how the failures are 
explained and (b) how many failure explanations are re- 
membered. This task-independent understanding of DDB 
and EBL helps support cross-fertilization of ideas among 
Constraint Satisfaction, Planning and Explanation-Based 
Learning communities. 

I Introduction 
One of the main-stays of AI literature is the idea of “depen- 
dency directed backtracking” as an antidote for the inefficien- 
cies of chronological backtracking [16l. However, there is 
a considerable confusion and variation regarding the various 
implementations of dependency directed backtracking. Com- 
plicating the picture further is the fact that many “speedup 
learning” algorithms that learn from failure (cf. [ 10; 1; 
91), do analyses that are quite close to the type of anal- 
ysis done in the dependency directed backtracking algo- 
rithms. It is no wonder then that despite the long ac- 
knowledged utility of DDB, even the more comprehensive 
AI textbooks such as 1151 fail to provide a coherent ac- 
count of dependency directed backtracking. Lack of a 
coherent framework has had ramifications on the research 
efforts on DDB and EBL. For example, the DDB and 
speedup learning techniques employed in planning and prob- 
lem solving on one hand [lo], and CSP on the other 13; 
171, have hither-to been incomparable. 

My motivation in this paper is to put the different ideas and 
approaches related to DDB and EBL in a common perspective, 
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and thereby delineate the underlying commonalities between 
research efforts that have so far been seen as distinct. To this 
end, I consider all backtracking and learning algorithms within 
the context of general refinement search 171. Refinement 
search involves starting with the set of all potential solutions 
for the problem, and repeatedly splittingthe set until a solution 
for the problem can be extracted from one of the sets. The 
common algorithms used in both planning and CSP can be 
modeled in terms of refinement search. 

I show that within refinement search, both DDB and EBL 
depend upon the common theory of explaining search failures, 
and regressing them to higher levels of the search tree to 
compute explanations of failures of the interior nodes. DDB 
occurs any time the explanation of failure regresses unchanged 
over a refinement decision. EBL involves remembering the 
interior node failure explanations and using them in the future. 
The relevant issues of importance include how the failures 
are explained, and how many of them are stored for future 
use. I will show how the existing methods for DDB and EBL 
vary along these dimensions. I believe that this unified task- 
independent understanding of DDB and EBL helps support 
cross-fertilization of ideas among the CSP, planning and EBL 
communities. 

The rest of this paper is organized as follows. In Section 2 
I review refinement search and show how planning and con- 
straint satisfaction can be modeled in terms of refinement 
search. In Section 3, I provide a method for doing depen- 
dency directed backtracking and explanation based learning 
in refinement search. In Section 4, I discuss several variations 
of the basic DDB/EBL techniques. In Section 5, I relate 
this method to existing notions of dependency directed back- 
tracking and explanation based learning in CSP and planning. 
Section 6 summarizes our conclusions. 

2 efimement Search 
Refinement search can be visualized as a process of starting 
with the set of all potential solutions for the problem, and 
splitting the set repeatedly until a solution can be picked up 
from one of the sets in bounded time. Each search node n/ in 
the refinement search thus corresponds to a set of candidates. 
Syntactically, each search node is represented as a collection 
of task specific constraints. The candidate set of the node is 
implicitly defined as the set of candidates that satisfy the con- 
straints on the node. Figure 1 provides a generalized template 
for refinement search. A refinement search is specified by 
providing a set of refinement operators (strategies) R, and a 
solution constructor function sol. The search process starts 
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Algorithm Refine-Node(N) 
Parameters: (i) sol: Solution constructor function. 
(ii) R: Refinement operators. 
(ii) CE: fn. for computing the explanation of failure. 

0. Termination Check: 
If sol (nf) returns a solution, return it, and terminate. 

If it returns *fail*, fail. 
Otherwise, select a flaw F in the node Jz/. 

1. Refinements: 
Pick a refinement operator R E R that can resolve F. 

(Not a backtrackpoint. ). 
Let 72 correspond to the n refinement decisions dl , dz, . . . , d,. 
For each refinement decision d; E d 1, d2 . - - d, do 

Af’ t d;(n/> 
If N’ is inconsistent 

fail. 
Compute CEfn/‘) the explanation offailure 
for JV * Propagate(M) 

Else, Refine:Node(n/‘). 

Figure 1: General template for Refinement search. The 
underlined portion provides DDB and EBL capabilities. 

with the initial node Ng, which corresponds to the set of all 
candidates. The search process involves splitting, and thereby 
narrowing the set of potential solutions until we are able to 
pick up a solution for the problem. The splitting process is 
formalized in terms of refinement operators. A refinement 
operator R takes a search node n/, and returns a set of search 
nodes (n/l, n/,, - - .JV~), called refinements of n/, such that 
the candidate set of each of the refinements is a subset of 
the candidate set of n/. Each complete refinement operator 
can be thought of as corresponding to a set of decisions 
ddw-, d, such that di(n/) = N’i. Each of these decisions 
can be seen as an operator which derives a new search node 
by adding some additional constraints to the current search 
node. 

To give a goal-directed flavor to the refinement search, 
we typically use the notion of “flaws” in a search node 
and think of individual refinements as resolving the flaws. 
Specifically, any node n/ from which we cannot extract a 
solution directly, is said to have a set of flaws. Flaws can 
be seen as the absence of certain constraints in the node JV. 
The search process thus involves picking a flaw, and using 
an appropriate refinement that will “resolve” that flaw by 
adding the missing constraints. Figure 2 shows how planning 
and CSP problems can be modeled in terms of refinement 
search. The next two subsections elaborate this formulation. 

2.1 Constraint Satisfaction as Refinement Search 
A constraint satisfaction problem (CSP) [171 is specified by 
a set of n variables, Xt , X;! - 0 -X,, their respective value 
domains, D1, D2. l . D, and a set of constraints. A constraint 
Cj(Xjj * ” 
*** X Di, 

, Xii) is a subset of the Cartesian production Di, x 
consisting of all tuples of values for a subset 

(Xi, 9 ’ ’ . Xi, ) of the variables which are compatible with 
each other. A solution is an assignment of values to all the 
variables such that all the constraints are satisfied. 

Seen as a refinement search problem, each search node in 
CSP contains constraints of the form Xi = Q, which together 
provide a partial assignment of values to variables. The 
candidate set of each such node can be seen as representing all 
complete assignments consistent with that partial assignment. 
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A solution is a complete assignment that is consistent with all 
the variable/value constraints of the CSP problem. 

Each unassigned variable in the current partial assignment 
is seen as a “flaw” to be resolved. There is a refinement 
operator Rxi corresponding to each variable Xi, which 
generates refinements of a node n/ (that does not assign a 
value to Xi) by assigning a value from Di to Xi. Rx; 
thus corresponds to an “OR” branch in the search space 
corresponding to decisions d\, d& . - -, diD _, . Each decision 
dj corresponds to adding the constraint Xi = Di[j], (where 
Di[j] is the jth value in the domain of the variable Xi). We 
can encode this as an operator with preconditions and effects 
as follows: 

assign@& Zij Vi”‘) 
Preconditions: xi is unassigned in A. 
Effects: A + A + (xi + ~7’) 

2.2 Planning as Refinement Search 
A planning problem is specified by an initial state description 
I, a goal state description G, and a set of actions A. The 
actions are described in terms of preconditions and effects. 
The solution is any sequence of actions such that executing 
those actions from the initial state, in that sequence, will lead 
us to goal state. 

Search nodes in planning can be represented (see 171) 
as 6-tuples (S, 0, L3, L, E, C), consisting of a set of steps, 
orderings, bindings, auxiliary constraints, step effects and step 
preconditions. These constraint sets, called partial plans, are 
shorthand notations for the set of ground operator sequences 
that are consistent with the constraints of the partial plan. 

There are several types of complete refinement operators 
in planning 181, including plan space, state-space, and task 
reduction refinements. As an example, plan-space refinement 
proceeds by picking a goal condition and considering different 
ways of making that condition true in different branches. As 
in the case of CSP, each refinement operator can again be seen 
as consisting of a set of decisions, such that each decision 
produces a single refinement of the parent plan (by adding 
constraints). As an example, the establishment refinement or 
plan-space refinement corresponds to picking an unsatisfied 
goal/subgoal condition C that needs to be true at a step s in a 
partial plan P, and making a set of children plans Pt - . - P, 
such that in each Pi, there exists a step s’ that precedes s, 
which adds the condition C. P also contains, (optionally) 

a “causal link” constraint s’ 2 s to protect C between s’ 
and s. Each refinement Pi corresponds to an establishment 
decision di, such that di adds the requisite steps, orderings, 
bindings and causal link constraints to the parent plan to 
produce Pi. Once again, we can represent this decision as an 
operator with preconditions and effects. 

3 ask formulation of 
In this section, we will look at the formulation of DDB and 

EBL in refinement search. The refinement search template 
provided in Figure 1 implements chronological backtracking 
by default. There are two independent problems with chrono- 
logical backtracking. The first problem is that once a failure 
is encountered the chronological approach backtracks to the 
immediate parent and tries its unexplored children -- even 
if it is the case that the actual error was made much higher 
up in the search tree. The second is that the search process 



Problem 
CSP 

Planning 

Nodes 

Partial 
assignment A 

Partial plan P 

Candidate Set I Refinements Flaws Soln. Constructor 

Complete assign- Assigning values Unassigned vari- Checking if all 
ments consistent to variables ables in A variables are as- 
with A signed in A 
Ground operator Establishment, Open conditions, Checking if any 
sequences consis- Conflict Conflicts in P ground lineariza- 
tent with P resolution tion of P is a 

solution 

Figure 2: CSP and Planning Problems as instances of Refinement Search 

Procedure Propagate 

parent(n/;): The node that was refined to get ti. 
d(JiQ: decision leading to ~6 from its parent; 
E(a): explanation of failure at ti. 
F(S): The flaw that was resolved at this node. 

1. E’ t Regress(E(N;),d(.Ah) 
2. If E’ = E(Ni), then (dependency directed backtracking) 

E(paTent(N; )) c E’; Propagate(patent(N’i )) 
3. If E’ #E(g), then 

3.1. If there are unexplored siblings of A6 
3.1.1 Make a rejection rule R rejecting the decision d(N’; ), 

with E’ as the rule antecedent. Store R in rule set. 
3.1.2. E(parent(N;>) t E(paTent(N;)) A E’ 
3.1.3. Let Hi+, be the first unexplored sibling of node N’i . 

Refine-node(N’;+,) 
3.2. If there are no unexplored siblings of N’i, 

3.2.1. Set E(paTent(M;)) to 
E(paTent(Ni)) A E’ A F(paTent(hl; )) 

3.2.3. Propagate(paTent(ti)) 

Figure 3: The complete procedure for propagating failure 
explanations and doing dependency directed backtracking 

does not learn from its failures, and can thus repeat the same 
failures in other branches. DDB is seen as a solution for 
the first problem, while EBL is seen as the solution for the 
second problem. As we shall see below, both of them can be 
formalized in terms of failure explanations. The procedure 
Propagate in Figure 3 shows how this is done. In the fol- 
lowing we explain this procedure. Section 3.1 illustrates this 
procedure with an example from CSP. 

Suppose a search node nf is found to be failing by the 
refinement search template in Figure 1. To avoid pursuing 
refinements that are doomed to fail, we would like to backtrack 
not to the immediate parent of the failing node, but rather 
to an ancestor node n/’ of n/ such that the decision taken 
under nl’ has had some consequence on the detected failure. 
To implement this approach, we need to sort out the relation 
between the failure at N and the refinement decisions leading 
to it. We can do this by declaratively characterizing the failure 
at JV. 

Explaining Failures: From the refinement search point of 
view, a search node N is said to be failing if its candidate set 
provably does not contain any solution. This can happen in 
two ways-- the more obvious way is when the candidate set of 
n/ is empty (because of an inconsistency among the constraints 
of n/), or because the constraints of N together with the 
global constraints of the problem, and the requirements of 
the solution, are inconsistent. For example, in CSP, a partial 
assignment A may be failing because A assigns two values 

to the same variable, or because the values that A assigns 
to its variables are inconsistent with the some of the specific 
constraints. Similarly, in the case of planning, a partial plan P 
may be inconsistent either because the ordering and binding 
constraints comprising it are inconsistent by themselves, or 
violate the domain axioms. In either case, we can associate 
the failure at n/ with a subset of constraints in Af, say E, 
which. possibly together with some domain constraints 6, 
causes the inconsistency (i.e., 6 A E k False). E is called 
the explanation of failure of n/. 

Suppose n/ is the search node at which backtracking was 
necessitated. Suppose further that the explanation for the 
failure at nl is given by the set of constraints E (where E 
is a subset of the constraints in N). Let J$, be the parent 
of search node n/ and let d be the search decision taken at 
h$, that lead to n/. We want to know whether o! played any 
part in the failure of n/, and what part of n/p was responsible 
for the failure of N (remember that the constraints in n/ are 
subset of the constraints of its parent). We can answer these 
questions through the process of regression. 
Regression: Formally, regression of a constraint c over a 
decision d is the set of constraints that must be present in 
the partial plan before the decision d, such that c is present 
after taking the decision. * Regression of this type is typically 
studied in planning in conjunction with backward application 
of STRIPS-type operators (with add, delete, and precondition 
lists), and is quite well-understood (see 1121). Here I adapt 
the same notion to refinement decisions as follows: 

Regress(c, d) 
= True if c E effects(d) 

I =c if c” E effects(d) and (c” A c’) I- c 
=c Otherwise 

Regress(cl A c2 - + - A cn, d) 
= RegTess(cl, d) A RegTess(c2, d) -. - A RegTess(c,, d) 

Dependency Directed Backtracking: Returning to our ear- 
lier discussion, suppose the result of regressing the explana- 
tion of failure E of node M, over the decision d leading to R/, 
d-‘(E), be E’. Suppose E’ = E. In such acase, we know that 
the decision d did not play any role in causing this failure.2 
Thus, there is no point in backtracking and trying another al- 
ternative at A&. This is because our reasoning shows that the 

‘Note that in regressing a constraint c over a decision d, we 
are interested in the weakest constraints that need to be true before 
the decision so that c will be true after the decision is taken. The 
preconditions of the decisions must hold in order for the decision to 
have been taken any way, and thus do not play a part in regression. 

‘Equivalently, DDB can also be done by backtracking to the 
highest ancestor node of n/ which still contains all the constraints 
in E. I use the regression based model since it foregrounds the 
similarity between DDB and EBL. 
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Failure Exp: Et Failure Exp: E2 Failure Exp: E, 

Figure 4: Computing Failure Explanations of Interior Nodes 

constraints comprising the failure explanation E are present 
in N;, also, and since by definition E is a set of inconsistent 
constraints, n/p is also a failing node. This reasoning forms 
the basis of dependency directed backtracking. Specifically, 
in such cases, we can consider J$, as failing and continue 
backtracking upward using the propagate procedure, and 
using E as the failure explanation of h$. 

Computing Explanations of failures of Interior Nodes: 
If the explanation of failure changes after regression, i.e., 
E’ = d-‘(E) # E, then we know that the decision leading to 
n/ did have an effect on the failure in Af. At this point, we 
need to consider the sibling decisions of d under N;, . If there 
are no unexplored sibling decisions, this again means that all 
the refinements of J$, have failed. The failure explanation 
for J$, can be computed in terms of the failure explanations 
of its children, and the flaw that was resolved from node ,$, 
as shown in Figure 4. 

Intuitively, this says that as long as the flaw exists in 
the node, we will consider the refinement operator again 
to resolve the flaw, and will fail in all branches. The 
failure explanation thus computed can be used to continue 
propagation and backtracking further up the search tree. Of 
course, if any of the explanations of the children nodes of 
n/p regress unchanged over the corresponding decision, then 
the explanation of failure of n/p will be set by DDB as that 
child’s failure explanation. 

Explanation Based Learning: Until now, we talked about 
the idea of using failure explanations to assist in dependency 
directed backtracking. The same mechanism can however 
also be used to facilitate what has traditionally been called 
EBL. Specifically, suppose we found out that an interior node 
Na is failing (possibly because all its children are failing), and 
we have computed its explanation of failure J$,. Suppose we 
remember Ep as a “learned failure explanation.” Later on, if 
we find a search node n/’ in another search branch such that 
EP is a subset of N’, then we can consider n/’ to be failing 
with EP as its failure explanation. A variation of this approach 
involves learning search control rules 1101 which recommend 
rejection of individual decisions of a refinement operator if 
they will lead to failure. When the child Nt of the search node 
&, failed with failure explanation El, and E’ = d- 1 (El ), we 
can learn a rule which recommends rejection of the decision 
d whenever E’ is present in the current node.3 
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) 

1 lA.Bl Nl: x=A 
Colrstmlllts: 

x=Az> w’=E 

)=B => u ‘= D 
X2: w-A&y= B 

u=C=>lkA 

N3: Y= / 

DDE resrnrrs 

,I <- c stwrch qter N6 

v=D=>l’=B 
,y=B, v=D 

I 
\ J 

/ 
I <-D 

.E!p: f.1 = A & \=B I N4:x=A.y=B.u=C.v=D 
& wiassrgnedl I& ) 

J 

-. 
-. 

)L C-E -. .-\I <-D 

--a 

NS:x=A, y=B,u=C,v=D,w=E N~:x=A,~=B.u=C,V=D.W=D 

E.tp.Cx=A &&=&l E.rp I> = 3 & \L = DI 

Figure 5: A CSP example to illustrate DDB and EBL 

Unlike DDB, whose overheads are generally negligible 
compared to chronological backtracking, learning failure ex- 
planations through EBL has two types of hidden costs. First, 
there is the storage cost. If we were to remember every 
learned failure explanation, the storage requirements can be 
exponential. Next, there is the cost of using the learned 
failure explanations. Since in general, using failure expla- 
nations will involve matching the failure explanations (or 
the antecedents of the search control rules) to the current 
node, the match cost increases as the number of stored ex- 
planations increase. This problem has been termed the EBL 
Utility Problem in the Machine learning community 111; 
61. We shall review various approaches to it later. 

3.1 Example 
Let me illustrate the DDB and EBL process above with 
a simple CSP example shown in Figure 6 (for a planning 
example that follows the same formalism, see the discussion 
of UCPOP-EBL in 191). The problem contains five variables, 
1, z,y,u,~ and 20. The domains of the variables and the 
constraints on the variable values are shown in the figure. 
The figure shows a series of refinements culminating in node 
N5, which is a failure node. An explanation of failure of 
N5 is x = A A zu = E (since this winds up violating the 
first constraint). This explanation, when regressed over the 
decision 20 t E that leads to N5, becomes x = A (since 
w = E is the only constraint that is added by the decision). 
Since the explanation changed after regression, we restart 
search under N4, and generate N6. N6 is also a failing node, 
and its explanation of failure is y = B A 20 = D. When 
this explanation is regressed over the corresponding decision, 
we get y = B. This is then conjoined with the regressed 
explanation from N5, and the flaw description at N5 to give 
the explanation of failure of N4 as E(N4) : x = A A y = 
BAunassigned(w). At this point E(N4) can be remembered 
as a learned failure explanation (aka nogood [161), and used 
to prune nodes in other parts of the search tree. Propagation 
progresses upwards. The decision v +- D does not affect the 
explanation N4, and thus we backtrack over the node N3, 
without refining it further. Similarly, we also backtrack over 
N2. E(N4) does change when regressed over y t- B and 
thus we restart search under N 1. 

4 Variations on the 
The basic approach to DDB and EBL that we described in 
the previous section admits several variations based on how 



the explanations are represented, 
discuss these variations below. 

selected and remembered. I 

4.1 Selecting a Failure Explanation 
In our discussion of DDB and EBL in the previous section, 
we did not go into the details of how a failure explanation is 
selected for a dead-end leaf node. Often, there are multiple 
explanations of failure for a dead-end node, and the explana- 
tion that is selected can have an impact on the extent of DDB, 
and the utility of the EBL rules learned. The most obvious 
explanation of failure of a dead-end node n/ is the set of 
constraints comprising ni itself. In the example in Figure 5, 
E(1V5)canthusbea=AAy=BAu=CAv=DAw=E. 
It is not hard to see that using M as the explanation of its 
own failure makes DDB degenerate into chronological back- 
tracking (since the node nl’ must have been affected by every 
decision that lead to it’). Furthermore, given the way the ex- 
planations of failure of the interior nodes are computed (see 
Figure 4), no ancestor JV’ of JV can ever have an explanation 
of failure simpler than n/’ itself. Thus, no useful learning can 
take place. 

A better approach is thus to select a smaller subset of the 
constraints comprising the node, which by themselves are 
inconsistent. For example, in CSP, a domain constraint is 
violated by a part of the current assignment, then that part 
of the assignment can be taken as an explanation of failure. 
Similarly, ordering and binding inconsistencies can be used 
as starting failure explanations in planning. 

Often, there may be multiple possible failures of expla- 
nation for a given node. For example, in the example in 
Figure 5, suppose we had another constraint saying that 
u = C j W $ E. In such a case, the node N5 would 
have violated two different constraints, and would have had 
two failure explanations -- Et : z = A A W = E and 
EZ : u = c A zu = E. In general, it is useful to prefer expla- 
nations that are smaller in size, or explanations that refer to 
constraints that have been introduced into the node by earlier 
refinements (since this will allow us to backtrack farther up 
the tree). By this argument Et above is preferable to & 
since E2 would have made us backtrack only to N2, while 
Et allows us to backtrack up to n/l. These are however only 
heuristics. It is possible to come up with scenarios where 
picking the lower level explanation would have helped more. 

4.2 Remembering 
Explanations 

(and using) Learned Failure 

Another issue that is left open by our DDB/EBL algorithm is 
exactly how many learned failures should be stored. Although 
this decision does not affect the soundness and completeness 
of the search, it can affect the efficiency. Specifically, there 
is a tradeoff in storage and matching costs on one hand and 
search reductions on the other. Storing the failure explanations 
and/or search control rules learned at all interior nodes could 
be very expensive from the storage and matching cost points 
of view. CSP, and machine learning literatures took differing 
approaches to this problem. Researchers in CSP (e.g. 13; 171) 
concentrated on the syntactic characteristics of the nogoods, 
such as their size and minimality, to decide whether or 
not they should be stored. Researchers in machine learning 
concentrated instead on approaches that use the distributionof 

‘we are assuming that none of the refinement decisions are 
degenerate; each of the add at least one new constraint to the node. 

the encountered problems to dynamically modify the stored 
rules (e.g. by forgetting ineffective rules) [ 11; 61. These 
differences are to some extent caused by the differences in 
CSP and planning problems. The nogoods learned in CSP 
problems have traditionally only been used in intra-problem 
learning, to cut down search in the other branches of the same 
problem. In contrast, work in machine learning concentrated 
more on inter-problem learning. (There is no reaon for 
this practice to continue however, and it is hoped that the 
comparative analysis here may in fact catalyze inter-problem 
learning efforts in CSP). 

5 Relations to existing work 
Figure 6 provides a rough conceptual flow chart of the 
existing approaches to DDB and EBL in the context of our 
formalization. In the following we will discuss differences 
between our formalization and some of the implemented 
approaches. Most CSP techniques do not explicitly talk 
about regression as a part of either the backtracking or 
learning. This is because in CSP there is a direct one-to-one 
correspondence between the current partial assignment in a 
search node and the decisions responsible for each component 
of the partial assignment. For example, a constraint x = a 
must have been added by the decision x t a. Thus, in the 
example in Figure 5 it would have been easy enough to see 
that we can “jump back” to Nl as soon as we computed the 
failure explanation at N4. This sort of direct correspondence 
has facilitated specialized versions of DDB algorithm that 
use “constraint graphs” and other syntactic characterizations 
of a CSP problem to help in deciding which decision to 
backtrack to 1171. Regression is however important in other 
refinement search scenarios including planning where there 
is no one-to-one correspondence between decisions and the 
constraints in the node. 

Most CSP systems do not add the flaw description to 
the interior node explanations. This makes sense given that 
most CSP systems use learned explanations only within the 
same problem, and the same flaws have to be resolved in 
every branch. The flaw description needs to be added to 
preserve soundness of the learned nogoods, if these were 
to be used across problems. The flaw description is also 
important in planning problems, even in the case of intra- 
problem learning. where different search branches may 
involve different subgoaling structures and thus different 
flaws. 

Traditionally learning of nogoods in CSP is done by sim- 
ply analyzing the dead-end node and enumerating all small 
subsets of the node assignment that are by themselves in- 
consistent. The resultant explanations may not correspond to 
any single explicit violated constraint, but may correspond to 
the violation of an entailed constraint. For example, in the 
example in Figure 5, it is possible to compute u = C A IJ = D 
as an explanation of failure of N5, since with those values 
in place, I cannot be given a value (even though 2 has not 
yet been considered until now). Dechter 131 shows that com- 
puting the minimal explanations does not necessarily pay off 
in terms of improved performance. The approach that we 
described in this paper allows us to start with any reasonable 
explanation of failure of the node -- e.g. a learned nogood 
or domain constraint that is violated by the node -- and learn 
similar minimal explanations through propagation. It seems 
plausible that the interior node failure explanations learned in 
this way are more likely to be applicable in other branches 
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Figure 6: A schematic flow chart tracing the connections 
beiween implemented approaches to DDB and EBL 

and problems since they resulted from the default behavior of 
the underlying search engine. 

Intelligent backtracking techniques in planning include the 
“context” based backtracking search used in Wilkin’s SIPE 
[ 181, and the decision graphs used by Daniels et. al. to support 
intelligent backtracking in Nonlin [21. The decision graphs 
and contexts explicitly keep track of the dependencies be- 
tween the constr-aints in the-plan, and the decisions that were 
taken on the plan. These structures are then used to facilitate 
DDB. In a way, decision graphs attempt to solve the same 
problem that is solved by regression. However, the semantics 
of decision graphs are often problem dependent, and storing 
and maintaining them can be quite complex 1141. In contrast, 
the notion of regression and propagation is problem indepen- 
dent and explicates the dependencies between decisions on an 
as-needed basis. On the flip side, regression and propagation 
work only when we have a declarative representation of deci- 
sions and failure explanations, while dependency graphs may 
be constructed through procedural or semi-automatic means. 

6 Summary 
In this paper, we characterized two long standing ideas - 
- dependency directed backtracking and explanation based 
learning -- in the general task-independent framework of 
refinement search. I showed that at the heart of both DDB and 
EBL is a process of explaining failures at leaf nodes of a search 
tree, and regressing them through the refinement decisions to 
compute failure explanations at interior nodes. DDB occurs 
when the explanation of failure regresses unchanged over a 
refinement decision, while EBL involves storing and applying 
failure explanations of the interior nodes in other branches 
of the search tree or other problems. I showed that the way 
in which the initial failure explanation is selected can have a 
significant impact on the extent and utility of DDB and EBL. 
The utility of EBL is also dependent on the strategies used to 
manage the stored failure explanations. I have also explained 
the relations between our formalization of DDB and EBL and 
the existing work in planning and CSP areas. It is hoped that 

this task-independent formalization of DDB/EBL approaches 
will clarify the deep connections between the two ideas, and 
also facilitate a greater cross-fertilization of approaches from 
the CSP, planning and problem solving communities. For 
example, CSP approaches could benefit from the results of 
research on utility of EBL, and planning research could benefit 
from the improved backtracking algorithms being developed 
for CSP [51. 
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