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Abstract 
This article advocates a new model for inductive learning. 

Called sequential induction, it helps bridge classical 
fixed-sample learning techniques (which are efficient but dif- 
ficult to formally characterize), and worst-case approaches 
(which provide strong statistical guarantees but are too ineffi- 
cient for practical use). Learning proceeds as a sequence of 
decisions which are informed by training data. By analyzing 
induction at the level of these decisions, and by utilizing the 
only enough data to make each decision, sequential induction 
provides statistical guarantees but with substantially less data 
than worst-case methods require. The sequential inductive 
model is also useful as a method for determining a sufficient 
sample size for inductive learning and as such, is relevant to 
learning problems where the preponderance of data or the cost 
of gathering data precludes the use of traditional methods. 

Introduction 
Though inductive learning techniques have enjoyed remark- 
able success, most past work focused on “small” tasks where 
it is reasonable to use all available information when learning 
concept descriptions. Increased access to information, how- 
ever, raises the following question: how little data can be used 
without compromising the results of learning? This question 
is especially relevant for software agents (or softbots) that 
have access to endless supplies of data on the Internet but 
which must pay a cost both in terms raw numbers of examples 
but also in terms of the number of attributes that can be ob- 
served [Etzioni93]. Techniques in active learning [Cohn951 
and megainduction [Catlett91] attempt to manage this access 
to information. In other words,we must determine how much 
data is sufficient to learn, and how to limit the amount of data 
to that which is sufficient. 

Theoretical machine learning provides some guidance. 
Unfortunately, these results are generally inappropriate to 
guide practical learning. These methods are viewed as too 
costly (though see [Schuurmans95]). More problematic is the 
fact that these techniques assume the target concept is a mem- 
ber of some predefined class (such as k-DNF’). Recent work 
in agnostic PAC learning [Haussler92, Kearns92] relaxes this 
later complaint, but results of these studies are discouraging 
from the standpoint of learning eff1ciency.l 

1. Although Auer, et. al. successfully applied these methods 
to the learning of two-level decision trees [AuerW]. 

In this paper, I introduce an alternative inductive model that 
bridges the gap between practical and theoretical models of 
learning. After discussing a definition of sample sufficiency 
which more readily applies to the learning algorithms used in 
practice, I then describe Sequential ID3, a decision-tree algo- 
rithm based on this definition. The algorithm extends and 
generalizes the decision-theoretic subsampling of Musick, 
Catlett, and Russell [Musick93]. It can also be seen as an ana- 
lytic model that illuminates the statistical properties of deci- 
sion-tree algorithms. Finally, it embodies statistical methods 
that can be applied to other active learning tasks. I conclude 
this paper with a derivation of the algorithm’s theoretical 
properties and an an empirical evaluation over several learn- 
ing problems drawn from the Irvine repository. 

Sufficiency 
Practical learning algorithms are quite general, making few 
assumptions about the concept to be learned: data may con- 
tain noise; the concept need not be drawn from some pre-spe- 
cified class; the attributes may even be insufficient to describe 
the concept. To be of practical interest, a definition of data 
sufficiency must be of equal generality. The standard defini- 
tion of sufficiency from theoretical machine learning is what 
I call accuracy-based. According to this definition, a learning 
algorithm must output a concept description with minimal 
classification error [Kearns92]. Unfortunately, current re- 
sults suggest that learning in accordance with this definition 
is intractable, except for extremely simple concept descrip- 
tion languages (e.g., even when the concept description is re- 
stricted to a simple conjunction of binary attributes, Kearns 
shows that minimizing classification error is NP-Hard). 

In response, practical learning algorithms use what may be 
call a decision-bused definition of sufficiency. According to 
this definition, the process of learning is treated as a sequence 
of inductive decisions, or an inductive decision process. A 
sample is deemed sufficient (typically informally) if it ensur- 
es some minimum quality constraints on these decisions. As 
this article focuses on decision-tree learning algorithms, it is 
important to distinguish between decisions made while Zean- 
ing a decision tree, and decisions made while using a learned 
decision tree. Only the former are discussed in this article, 
which I will refer to as inductive decisions. 

Note that ensuring high inductive-decision quality does not 
necessarily ensure high accuracy for the induced concept; the 
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chief criticism of the decision-based view. Nonetheless, there 
are reasons for formalizing this perspective. First, decision 
criterion can serve as useful heuristics for achieving high clas- 
sification accuracy, as is well-documented for the entropy 
function. Such criteria are of little use, however, if they utilize 
an insufficient sample (as seen in over-fitting). Second, deci- 
sion criteria have been proposed to account for factors beyond 
classification error, such as conciseness of the concept de- 
scription [deMantaras92]. Unlike an accuracy-based defini- 
tion, a decision-based definition applies to these criteria as 
well. Finally, the decision-based view can be of use for active 
learning approaches (see [Cohn95]). 

In top-down decision-tree induction, learning is an induc- 
tive decision process consisting of two types of inductive de- 
cisions: stopping decisions determine if a node in the current 
decision tree should be further partitioned, and selection deci- 
sions identify attributes with which to partition nodes. Spe- 
cific algorithms differ in the particular criteria used to guide 
these inductive decisions. For example, ID3 uses information 
gain as a selection decision criterion, and class purity as a 
stopping decision criterion [Quinlan86]. These inductive de- 
cisions are statistical in that the criteria are defined in terms 
of unknown characteristics of the example distribution. Thus, 
when ID3 selects an attribute with highest information gain, 
the attribute is not necessarily the best (in this local sense), but 
only estimated to be best. Asymptotically (as the sample size 
goes to infinity), these estimates converge to the true score; 
when little data is available, however, the estimates and the re- 
sulting inductive decisions are essentially random.* 

I declare a sample to be sufficient if it ensures “probably ap- 
proximately correct” inductive decisions in the sense formal- 
ized below. By utilizing statistical theory, one can compute 
how much data is necessary to achieve this criteria. 

Sequential Induction 
Traditionally, one provides learning algorithms with a 
fixed-size sample of training data, all of which is used to in- 
duce a concept description. Consistent with this, a simple ap- 
proach to learning with a sufficient sample is to determine a 
sufficiently large sample prior to learning, and then use all of 
this data to induce a concept description. Following Musick 
et. al., I call this one-shot induction. Because inductive deci- 
sions are conditional on the data and the outcome of earlier de- 
cisions, the sample must be sufficient to learn under the worst 
possible configuration of inductive decisions. 

Prior Work. In statistics, it is well known that sequential 
sampling methods often require far less data than one-shot 
methods [Govindarajulu8 11. More recently such techniques 
have found their way into machine learning [Moore94, 
Schuurmans951. What distinguishes these approaches from 
what I am proposing here is that they are best characterized 
as “post-processors”: some learning algorithm such as ID3 

2. This is indirectly addressed by pruning trees after learning 
[Breiman84]. With a sufficient sample, one can dispense with 
pruning and “grow the tree correctly the first time.” 

conjectures hypotheses which are then validated by sequen- 
tial methods. Here I push the sequential testing “deeper” into 
the algorithm -to the level of inductive decisions - which al- 
lows greater control over the learning process. This is espe- 
cially important, for example, if there is a cost to obtain the 
values of certain attributes of the data (e.g., attributes might 
correspond to expensive sensing actions of a robot or softbot). 
Managing this cost requires reasoning at the level of inductive 
decisions. Additionally, the above approaches are restricted 
to estimating the classification accuracy of hypotheses, while 
the techniques I propose allow decision criteria to be ex- 
pressed as arbitrary functions of a set of random variables. 
The work of Schuurmans is also restricted to cases where the 
concept comes from a known class. 

Alternative Approach. Sequential induction is the method 
I propose for sequential learning at the level of inductive deci- 
sions, in particular for top-down decision-tree induction. The 
approach applies to a wide range of attribute selection criteria, 
including such measures as entropy [Quinlan86], gini index 
[Breiman84], and orthogonality [Fayyad92]. For simplicity, 
I restrict the discussion to learning problems with binary at- 
tributes and involving only two classes, although the ap- 
proach easily generalizes to attributes and classes of arbitrary 
cardinality. It is not, however, immediately obvious how to 
extend the approach to problems with continuous attributes. 

Before describing the technique, I must introduce the sta- 
tistical machinery needed for determining sufficient samples. 
First, I discuss how to model the statistical error in selection 
decisions and to determine a sufficient sample for them. I 
then present a stopping criterion that is well suited to the se- 
quential inductive model. Next, I discuss how to insure that 
the overall decision quality of the inductive decision process 
is above some threshold. Finally, I describe Sequential ID3, 
a sequential inductive technique for decision-tree learning, 
and present its formal properties. 

Selection decisions choose the most promising attribute with 
which to partition a decision-tree node. To make this deci- 
sion, the learning algorithm must estimate the merit of a set 
of attributes and choose that which is most likely to be the 
best. Because perfect selection cannot be achieved with a fi- 
nite sample of data, I follow the learning theory terminology 
and propose that each selection decision identify the “prob- 
ably approximately” best attribute. This means that when 
given some pre-specified constants a and E, the algorithm 
must select an attribute that is within E of the best with proba- 
bility l-a, taking as many examples sufficient to insure a de- 
cision of this quality. Although this goal is conceptually sim- 
ple, its satisfaction requires extensive statistical machinery. 

A selection criterion is a measure of the quality of each at- 
tribute. Because the techniques I propose apply to a wide 
class of such criteria, I first define this class. In Figure 1, each 
node in the decision tree denotes some subset of the space of 
possible examples. This subset can be described by a proba- 
bility vector that specifies the probability that an example be- 
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Figure I. Examples are partitioned by attribute val- 
ues and class, described four probabilities. 

longs to a particular class. For example, the probability vector 
associated with the root node in the decision tree summarizes 
the base-line class distribution. For a given node N in the deci- 
sion tree, let PC denote the probability that an example de- 
scribed by the node falls in class c - P(A(x)=v, cZass(x)=c I x 
reaches N). Then for an attribute A, let PVC denote the proba- 
bility that an example belongs to node N, has A=v, and be- 
longs to class c. The effect of an attribute can be summarized 
by the attribute probabilities: Pzl, PQ, PEI, and PEG. In 
fact, three probabilities are sufficient as the fourth is deter- 
mined by the other three: PEG = I- P~~-P~~-PEI. 

The techniques I develop apply to selection criteria that are 
arbitrary differentiable functions of these three probabilities. 
For example, expected entropy is an acceptable criterion: 

4P7-,b PT,~, PJ) = 
- PlogP(pT,,) - PlogPU%,*l - PW(P,,) - pmJ(P,,) 
+ PbP(PT,, + P,,,) + P~ogP(PT.2 + P,,) 

Given a selection criterion, the merit of each attribute can 
be estimated by estimating the attribute probabilities from the 
data and substituting these estimates into the selection criteri- 
on. To determine a sufficient sample and select the best esti- 
mate, the learning system must be able to bound the uncertain- 
ty in the estimated merit of each attribute. Collectively, the 
merit estimates form a complex multivariate statistic. 

Fortunately, a generalization of the central limit theorem, 
the S-method, shows that the distribution of the multivariate 
merit statistic is approximately a multivariate normal distri- 
bution, regardless of the selection criterion’s form (assuming 
the constraints listed above) [Bishop75 p. 4871. The selection 
decision thus simplifies to the problem of selecting the &-max 
component of a multivariate normal distribution. In the statis- 
tics literature this type of problem is referred to as a correlated 
selection problem and there are known methods for solving 
it (see [Gratch94b] for a survey of methods). I use a procedure 
called McSPRT proposed in [Gratch94b]. BRACE 
[Moore94], and the work of Nelson [Nelson95], are similar to 
McSPRT and could be used in its place. One could also use 
a “rational” selection procedure to provide more flexible con- 
trol over the cost of learning [Fong95, Gratch94cl 

McSPRT takes examples one at a time until a sufficient 
number have been taken, whence it selects the attribute with 
the highest estimated merit. The procedure reduces the prob- 
lem of finding the best attribute to a number of pairwise com- 
parisons between attributes. An attribute is selected when, for 
each pair-wise comparison, its merit is significantly greater or 
indifferent to the alternative. To use the procedure (or the oth- 
ers mentioned) one must assess the variance in the estimated 

difference-in-merit between two attributes. Figure 2 helps il- 
lustrate how this estimate can be computed. 

The symbol Pa,b,c denotes P(Ai(x)=a, A&)=a, cZass(x)=c 
I x reache.sN). For a given pair of attributes, the difference-in- 
merit between the two is a function of seven probabilities (the 
eighth is determined by the other seven). For example, if the 
selection criterion is entropy, the difference in entropy be- 
tween two attributes is 

de(PT,T,19 pT,T.2v pT,F,lv pT,F.29 pF,T,lv p~,T,29 pF,F.19 pF,F,2) 

= Ae(P,, P2, P3, Pa, P,, P6, P7) 
= e(P, + P,, P, + P,, P, + P7) 

- Ml + P5,P2 + P6, P3 + P7) 
This difference is estimated by substituting estimates for 

the seven probabilities into the difference equation. The vari- 
ance of this difference estimate follows from the generalized 
version of the central limit theorem. Using the s-method, the 
variance of a difference estimatefis approximately 

where dflaPi is the partial derivative of the difference equa- 
tion with respect to the ith probability, and where the seven 
probabilities, Pi, are estimated from training data. This can 
be computed automatically by any standard symbolic mathe- 
matical system. (I use MapleTM, a system which generates C 
code to compute the estimate.) In the experimental evalua- 
tions this estimate appeared quite close to the true value. 

Stopping decisions determine when the growth of the deci- 
sion tree should be stopped. In the standard fixed-sample 
learning paradigm, the stopping criterion serves an almost in- 
cidental role because the size of the data set is the true deter- 
minant of the number of possible inductive decisions and, 
therefore, of the maximum size of the decision tree. In PAC 
approaches one typically bounds the size of the tree. Here I 
consider an alterative approach. I introduce a stopping criteri- 
on to bounding the number of possible inductive decisions, 
and thus indirectly determine the size of the learned concept. 

Two sources of complexity motivate the need for a stop- 
ping criterion. First, as the size of the largest possible decision 
tree grows exponentially with the number of attributes, a trac- 
table algorithm cannot hope to construct a complete tree, nor 

j=F 

Figure 2. A comparison of two attributes is character- 
ized by eight probabilities. 
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does one always have the flexibility of allowing the algorithm 
to take data polynomial in the size of the best decision-tree (as 
in PAC approaches). Second, as the depth of the tree grows, 
the algorithm must draw increasingly more data to get reason- 
able numbers of examples at each decision-tree leaf: ifp is the 
probability of an example reaching a node, the algorithm must 
on average draw l/p examples for each example that reaches 
the node. Because the probability of a node can be arbitrarily 
small, the amount of data needed to obtain a sufficient sample 
at the node can be arbitrarily large. 

I advocate a novel stopping criterion that addresses both of 
these sources of complexity. The sequential algorithm should 
not partition a node if the probability of an example reaching 
it is less than some threshold parameter y. This probability 
can be estimated from the data and, as in selection decisions, 
the sequential algorithm need only be probably close to the 
right stopping decisions. In particular, with probability l-a, 
the algorithm should expand nodes with probability greater 
than ‘y, refuse to expand nodes of probability less than y/2, and 
perform arbitrarily for nodes of intermediate probability. A 
sufficient sample to make this decision can be determined 
with a statistical procedure called the sequential probability 
ratio test (SPRT) [Berger80]. 

Each leaf node of a tree can be assigned a probability equal 
to the probability of an example reaching that node, and the 
probability of all the leaves must sum to one. The stopping 
criterion implies that the number of the leaves in the learned 
decision tree will be roughly on the order of 2/yand therefore, 
this stopping criterion determines an upper bound on the com- 
plexity of the learned concept. 

Multiplicity Effect 
Together, stopping and selection decisions determine the be- 
havior of the inductive process, and I have proposed methods 
for taking sufficient data to approximate each of these induc- 
tive decisions. This is not, however, enough to bound the 
overall decision quality. When making multiple inductive de- 
cisions, the overall probability of making a mistake is greater 
than the probability of making a mistake on any individual de- 
cision (e.g., on a given roll of a die there is only a 1/6th chance 
of rolling a five, but after six rolls, there is a 35/35th chance 
of rolling at least one five). Called the multiplicity efSect 
[Hochberg87], this factor must be addressed in order to insure 
the overall quality of the inductive decision process. 

Using a statistical result known as Bonferroni’s inequality 
[Hochberg87 p. 3631, the overall decision error is bounded by 
dividing the acceptable error at each inductive decision by the 
number of decisions taken. As mentioned previously, I as- 
signed each decision an error level of a. Therefore, if one 
wishes to bound the overall decision error to below some con- 
stant, 6, it suffices to assign a=6/D where D is the expected 
number of inductive decisions. Although I do not know how 
to compute D directly, it is possible to bound the maximum 
possible number of decisions, which will suffice. Further- 
more - as will be shown - the expected sample complexity of 
sequential induction depends only on the log of the number 

Figure 3. A fringe tree that results from setting y to 0.40. 

of inductive decisions; consequently, the conservative nature 
of this bound does not unduly increase the sample size. 

Space precludes a complete derivation of the maximum 
possible number of inductive decisions, but this can be found 
in [Gratch94a]. To derive this number I first find the largest 
possible decision-tree that satisfies the stopping criterion. 
This tree has a particular form I refer to as afringe tree, which 
is a complete binary tree of L2/yj leaves that has been aug- 
mented with a “fringe” under each leaf that consumes the re- 
maining attributes. A fringe is a degenerate binary tree with 
each right-hand branch being a leaf with near-zero probabili- 
ty. A fringe trees is illustrated in Figure 3. 

The size of a fringe tree, T, depends on the number of attrib- 
utes, A, and the stopping parameter ‘y: 

T = F - 1 + (A - d,)(2+ - F) + (A - d2)(2F - 29 
I (A - dl + 1)F - 1 = O(A/y) 

where F=12/y], dl dlog22/yl, d2$-log22/y‘l. Each selection 
decision consists of a set of pairwise comparisons - one for 
each attribute. To properly bound the error, we must count the 
number of these pairwise comparisons across every selection 
decision in the fringe tree, which is 

S = (2A - 2dl + 1)2dl + $(d, - A)2 + 

$(d, - A) - A - 2 = 0 $ + $log2+ . 

The total number of inductive decisions is 7’+S (S dominates). 
The Bonferroni is a straightforward but somewhat ineffi- - 

cient approach to bounding the overall decision error. For ex- 
ample, at the root of a decision tree, one has the most data 
available. A more efficient method would allocate a smaller 
error level to the root decision than later decisions. More so- 
phisticated methods could be incorporated into this scheme, 
although they will not be considered in this article. 

Sequential ID3 embodies the notions described above. To 
learn a concept description, one must specify a selection crite- 
rion (such as entropy) and three parameters: a confidence, 6; 
an indifference interval, E; and a stopping probability, y. Giv- 
en a set of binary attributes of size A and access to classified 
training data, the algorithm constructs, with probability l-6, 
a decision tree of size O(A/y) in which each partition is made 
with the E-best attribute. The algorithm does a breadth-first 
expansion of the decision tree, using McSPRT to choose the 
E-best attribute at each node while SPRT tests the probability 

782 Learning 



an example reaching a decision node.3 If a node is shown to 
have probability less than y, its descendants are not expanded. 
McSPRT and SPRT require the specification of a minimum 
sample size on which to base inductive decisions; by default, 
this size is set to fifteen. Given a selection criterion, MapleTM 
generates C code to compute the variance estimate. To date 
Sequential ID3 has been tested with entropy and orthogonal- 
ity [Fayyad92] as the selection criterion. 

Sequential ID3 extends the decision theoretic subsampling 
approach of Musick et. aZ. : it applies to arbitrary selection cri- 
teria and relaxes the untenable assumption that attributes are 
independent. Furthermore, the subsampling approach was 
only applied to inductive decisions at the root node, and does 
not account for the multiplicity effect. Sequential ID3 ad- 
dresses both of these limitations. The subsampling approach 
handles one issue that is not addressed by Sequential ID3: the 
balance between the size of a sufficient sample and the time 
needed to determine this size. Sequential ID3 attempts only 
to minimize the sample size, without regard to the time cost 
(except to ensure that this cost is polynomial), whereas sub- 
sampling approach strikes a balance between these factors. 

I have determined a worst-case upper bound on the com- 
plexity of Sequential ID3 (the derivations are in [Gratch94a]). 
Expressed in terms of A, 6, y, and E, the complexity also de- 
pends on B, which denotes the range of the selection criterion 
(for entropy, B=log(2)). In the worst case, the amount of data 
required by Sequential ID3, (i.e., its sample complexity) is 

9 [log(1/8 l l/y 0 A)]’ (2) 

The sample complexity grows rapidly with tighter esti- 
mates on the selection decisions (quadratic in l/c), and with 
more liberal stopping criterion (l/y[log l/y]*), In this worst 
case, the algorithm completes in time 

0 (A2 + log2 l/y) * $ l 
☯lo& / d  - l/y l A)]� 

For most practical learning problems, Sequential ID3 will 
take far less data than these bounds suggest. Nevertheless, it 
is interesting to compare this worst-case sample complexity 
with the amount of data needed by a one-shot induction tech- 
nique (which, as noted earlier, determines a sufficient sample 
size before learning begins). Using Hoeffding’s inequality 
(see [Maron94]), one can show that one-shot induction re- 
quires a sample size on the order of 

- log(1/6 . l/y . A) 

which is less by a factor of a log than the amount of data need- 
ed by Sequential ID3 (Equation 2). This potential disadvan- 
tage to sequential induction highlights the need for empirical 
evaluations over actual learning problems. 

3. A node is not partitioned if it (probably) contains exarn- 
ples of only one class, or if all attributes (probably) yield trivial One criticism of this method is that the learning algorithm 
partitions. I ignore these caveats in the following discussion. can potentially memorize all of the original examples, allow- 

valuation 
The statistical theory underlying Sequential ID3 provides 
only limited insight into the expected performance of the al- 
gorithm on actual learning problems. One can expect the al- 
gorithm to appropriately bound the quality of its inductive de- 
cisions, and the worst-case sample and time complexity to be 
less than the specified bounds. One cannot, however, state 
how much data is required for a particular learning problem 
a priori. More importantly, one cannot analytically charac- 
terize the relationship between decision quality and classifi- 
cation accuracy, because this relationship depends on the 
structure of specific learning problems. Knowledge of this re- 
lationship is essential, though, for if Sequential ID3 is to be 
a useful tool, an increase in decision quality must lead to a de- 
crease in classification error. 

I test two central claims. First, decision quality should be 
closely related to classification accuracy in actual learning 
problems. More specifically, classification error should de- 
crease as the stopping parameter, y, decreases or as the indif- 
ference parameter, E, decreases. Second, the expected sample 
complexity of sequential induction should be less than a 
one-shot method which chooses a fixed-size sufficient sam- 
ple apriori. I first describe the testing methodology and then 
examine each of these claims in turn. Although Sequential 

3 can incorporate arbitrary selection criteria, this evalua- 
tion only considers entropy, the most widely used criterion. 

A secondary consideration is how to set the various learn- 
ing parameters. If the first claim holds, one should expect a 
monotonic tradeoff between the amount of data taken (as con- 
trolled by y and E) and classification error. The ideal setting 
will depend on factors specific to the particular application 
(e.g., the cost of data and the accuracy demands) and the rela- 
tionship between the parameter settings and classification er- 
ror, which unfortunately, can only be guessed at. In the evalu- 
ation I investigate the performance of Sequential ID3 over 
several parameter settings to give at least a preliminary idea 
of how these factors relate. 

Sequential ID3 is intended for megainduction tasks involving 
vast amounts of data. Unfortunately, the current implementa- 
tion of the algorithm is restricted to two-class problems with 
categorical attributes, and I do not currently have access to 
large-sized problems of this type. Nevertheless, by a simple 
transformation of a smaller-sized data set, I can construct a 
reasonably realistic evaluation. The idea is to assume that a 
set of classified examples completely defines the example 
distribution. Given a set of n training examples, I assume that 
each example in the set occurs with probability l/n, and that 
each example not in the set occurs with zero probability. An 
arbitrarily large sample can then be generated according to 
this example distribution. Furthermore, as the example distri- 
bution is now exactly known, I can compute the exact classifi- 
cation error of a given decision tree. 
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ing perfect accuracy when the original data is noise-free. 
However, this criticism is mitigated by the fact that the deci- 
sion trees learned by Sequential ID3 are limited in size. I en- 
sure that the learned decision trees have substantially fewer 
leaves than the number of original unique examples. 

I test Sequential ID3 on nine learning problems. Eight are 
drawn from the Irvine repository, including the DNA promot- 
er dataset, a two class version of the gene splicing dataset 
(made by collapsing EI and IE into a single class), the 
tic-tat-toe dataset, the three monks problems, a chess end- 
game dataset, and the soybean dataset. The ninth dataset is 
a second DNA promoter dataset provide by Hirsh and Noor- 
dewier [Hirsh94]. When the problems contain non-binary at- 
tributes, they are converted to binary attributes in the obvious 
manner. In all trials I set the level of decision error, 6, to 10%. 
Both the stopping parameter, y, and the indifference parame- 
ter, E, are varied over a wide range of values. To insure statisti- 
cal significance, I repeat all learning trials 50 times and report 
the average result. All of the tests are based on entropy as a 
selection criterion. Due to space limitations, I consider only 
the evaluations for the gene splicing dataset and the third 
monks dataset (monks-3) in detail here. 

Classification Accuracy vs. Decision 
Sequential ID3 bases decision quality on indifference, E, and 
stoppingy, parameters. As E shrinks, the learning algorithm 
is forced to obey more closely the entropy selection criterion. 
Assuming that entropy is a good criterion for selecting attrib- 
utes, classification error should diminish as selection deci- 
sions follow more closely the true entropy of the attributes. 
As y shrinks, concept descriptions can become more complex, 
thus allowing a more faithful model of the underlying concept 
and consequently, lower classification error.5 Additionally, 
an interaction may occur between these parameters: allowing 
a larger concept description may compensate for a poor selec- 
tion criterion, as a bad initial split can be rectified lower in the 
decision-tree (provided the tree is large enough). 

Figure 4 summarizes the empirical results for the splicing 
and monks-3 datasets. The results of the splicing evaluation 
is typical and supports the claim that classification accuracy 
and decision quality are linked: classification error dimi- 
nishes as decision quality increases. The chess, both promot- 
er, and monks-2 datasets all show the same basic trend, lend- 
ing further support to the claim. (The soybean dataset shows 
near zero error for all parameter settings) The results of the 
monks-3 and, to a lesser extent, the monks- 1 evaluations raise 
a note of caution, however: here classification error increases 
as quality increased. These later findings suggests that, at 
least for these two problem sets, entropy is a poor selection 
criterion. This is perhaps not surprising, as the monks prob- 
lems are artificial problems designed to cause difficulties for 

top-down decision-tree algorithms. The tic-tat-toe dataset, 
interestingly, showed almost no change in classification error 
as a result of changes in E. 

Sample Complexity 
Sequential ID3 must draw sufficient data to satisfy the speci- 
fied level of decision quality. The complex statistical machin- 
ery of sequential induction is justified to the extent that it re- 
quires less data than simpler one-shot inductive approaches. 
It is also interesting to consider just how much data is neces- 
sary to arrive at statistically sound inductive decisions while 
inducing decision trees. 

In addition to the decision quality parameters, the size of a 
sufficient sample depends on the number of attributes asso- 
ciated with the induction problem. The splicing problem uses 
480 binary attributes, whereas the monks-3 problem uses fif- 
teen. One-shot sample sizes follow from Equation 4. Figure 
5 illustrates these sample sizes for the corresponding parame- 
ter values. Because it has more attributes, the splicing prob- 
lem requires more data than the monks-3 problem. 

Figure 6 illustrates the sample sizes required for sequential 
induction. The benefit is dramatic for the monks-3 problem: 
sequential induction requires 1/32th the data needed by 
one-shot induction. In the case of the splicing data set, smaller 
but still significant improvement is observed: sequential ID3 
used one third the data needed by the one-shot approach. A 
closer examination of the splicing dataset reveals that many 
of the selection decisions have several attributes tied for the 
best. In this situation, McSPRT has difficulty selecting a win- 
ner and is forced closer to its worst-case complexity. 

Machine learning researchers may be surprised by the large 
sample sizes required for learning because standard algo- 
rithms can acquire comparably accurate decision trees with 
far less data. This can in part be explained by the fact that the 
concepts being learned are fairly simple: most of the concepts 
are deterministic with noise-free data. There is also the fact 
that “making good decisions” and “being sure one is making 
good decisions,” are not necessarily equivalent: the later re- 
quires more data and, when most inductive decisions lead to 
good results (as can be the case in simple concepts), “being 
sure” can be overly conservative. Nevertheless, in many 
learning applications one can make a strong case for conser- 
vatism, especially when the results of our algorithms inform 
important judgements, and when these judgements are made 
automatically, without human oversight. 

Table 1 summarizes the results of all datasets for two se- 
lected values of y and E (complete graphs can be found in 
[Gratch94a]). In all but one case, Sequential ID3 required sig- 
nificantly less data than one-shot learning. This advantage 
should become even more dramatic with smaller settings for 
the indifference and stopping parameters. 

4. Available via anonymous FTP: ftp.ics.uci.edu/pub/ma- 
chine-learning-databases 

5. Claims that smaller trees have lower error [Breiman84] 
only apply when there is a fixed amount of data. 

Summary an nclusion 
Sequential induction shows promise for efficient learning in 
problems involving large quantities of data, but there are sev- 
eral limitations to Sequential ID3 and many areas of future re- 
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Figure 4. Classification error of Sequential ID3 as a function of y an 
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Id E. Decision error is 10%. 

Figure 5. One-shot sufficient sample as a function of y and E. Decision error is 10%. 

%i 

Figure 6. Average sample size of Sequential ID3 as a function of y and E. Decision error is 10%. 
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search. A limitation is that ensuring statistical rigor comes at 
a significant computational expense. Furthermore, the empir- 

ical results suggest that the current statistical model may be 
too conservative for many problems. For example, in many 
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problems the concept is deterministic and the data noise-free. 
It is unclear how to incorporate such knowledge into the mod- 
els. Additionally, the Bonferroni method tends to be an overly 
conservative method for bounding the overall error level. 

There are some practical limits to what kinds of problems 
can be handled by the sequential model. Whereas one could 
easily extend the approach to multiple classes and non-binary 
attributes, it is less clear how to address continuous attributes. 
Another practical limitation is that although the approach 
generalizes to arbitrary selection criteria, round-off error in 
computing selection and variance estimates may be a signifi- 
cant problem for some selection functions. Round-off error 
contributes to excessive sample sizes on some of my evalua- 
tions of the orthogonality criterion. 

Probably the most significant limitation of Sequential ID3 
(and of all standard inductive learning approaches) is the ten- 
uous relationship between decision error and classification 
error. Improving decision quality can reduce classification 
accuracy due to the hillclimbing nature of decision-tree in- 
duction (this was clearly evident in the monks-3 evaluation). 
In fact, standard accuracy improving techniques exploit the 
randomness caused by insufficient sampling to break out of 
local maxima; by generating several trees and selecting one 
through cross-validation. An advantage of the sequential in- 
duction model, however, is that it clarifies the relationship be- 
tween decision quality and classification accuracy, and sug- 
gests more principled methods for improving classification 
accuracy. For example, the generate-and-cross-validate ap- 
proach mainly varies the inductive decisions at the leaves of 
learned trees (because the initial partitions are based on large 
samples and thus, are less likely to change), whereas it seems 
more important to vary inductive decisions closer to the root 
of the tree. A sequential approach could easily make initial 
inductive decisions more randomly than later ones. Further- 
more, the sequential model allows the easy implementation of 
more complex search strategies, such as multi-step 
look-ahead. More importantly, the statistical framework en- 
ables one to determine easily how these strategies affect the 
expected sample time. For example, performing k-step 
look-ahead search requires on the order of k times as much 
data as a non-look-ahead strategy to maintain the same level 
of decision quality [Gratch94a]. Therefore, sequential induc- 
tion is suitable not only as amegainduction approach, but also 
as an analytic tool for exploring and characterizing alternative 
methods for induction. 

AcknowIedgements 
I am indebted to Jason Hsu, Barry Nelson, and John Marden 
for sharing their statistical knowledge. Carla Brodly for pro- 
vided comments on an earlier draft. This work was supported 
by NSF under grant NSF IRI-92-09394. 

References 
[Auer95] P Auer, R. C. Holte, and W. Maass, “Theory and Ap- 
plications of Agnostic PAC-Learning with Small Decision Trees,” 
Proceedings ML95,1995, pp. 21-29. 

[BergergO] J. 0. Berger, Statistical Decision Theory and Baye- 
siun Analysis, Springer Verlag, 1980. 
[Bishop751 Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, 
Discrete Multivariate Analysis: Theory and Practice, The MIT 
Press, Cambridge, MA, 1975. 
[Breiman84] L. Breiman, J. H. Friedman, R. A. Olshen and C. 9. 
Stone, Classification and Regression Trees, Wadsworth, 1984. 
[Catlettgl] J. Catlett, “Megainduction: a test flight,” Proceed- 
ings of ML91, Evanston, IL, 1991, pp. 596-599. 
[Cohn951 D. Cohn, D. Lewis, K. Chaloner, L. Kaelbling, R. 
Schapire, S. Thrun, and F? Utgoff, Proceedings of the AAAI95 Sym- 
posium on Active Learning, Boston, MA, 1995. 
[deMantaras92] R. L. deMantaras, “A Distance-Based Attribute 
Selection Measure for Decision Tree Induction,” Machine Learning 
6, (1992), pp. 81-92. 
[Etzioni93] 0. Etzioni, N. Lesh and R. Segal, “Building Softbots 
for UNIX,” Technical Report 93-09-01, 1993. 

[Fayyad92] U. M. Fayyad and K. B. Irani, “The Attribute Selec- 
tion Problem in Decision Tree Generation,” Proceedings of 
AAAZ92, San Jose, CA, July 1992, pp. 104-110. 
[Fong95] P W. L. Fong, “A Quntitative Study of Hypothesis 
Selection,” Proceedings of the Zntemutional Conference on Ma- 
chine Learning, Tahoe City, CA, 1995, pp. 226-234 
[Govindarajulu81] Z. Govindarajulu, The Sequential 
Analysis, American Sciences Press, INC., 198 1. 

Statistical 

[Gratch94a] “On-line Addendum to Sequential Inductive 
Learning,” anonymous ftp to beethoven.cs.uiuc.edu/pub/gratch/ 
sid3-ad.ps. 

[Gratch94b] J. Gratch, “An Effective Method for Correlated Se- 
lection Problems,” Tech Rep UIUCDCS-R-94- 1898, 1994. 
[Gratch94c] J. Gratch, S. Chien, and G. Dejong, “Improving 
Learning Performance Through Rational Resource Allocation,” 
Proceedings of AAA194, Seattle, WA, pp 576-581. 
[Haussler92] D. Haussler, “Decision Theoretic Generalizations of 
the PAC Model for Neural Net and Other Applications,” bzforma- 
tion and Computation 100, 1 (1992) 
[Hirsh94] H. Hirsh and M. Noordewier, “Using Background 
Knowledge to Improve Learning of DNA Sequences,” Proceedings 
of the IEEE Conference on AI for Applications, pp. 35 l-357. 
[Hochberg87] Y. Hochberg and A. C. Tamhane, Multiple Compuri- 
son Procedures, John Wiley and Sons, 1987. 
[Kearns92] M. J. Kearns, R. E. Schapire and L. M. Sellie, “To- 
ward Efficient Agnostic Learning,” Proceedings COLT92, Pitts- 
burgh, PA, July 1992, pp. 341-352. 
[Maron94] 0. Maron and A. W. Moore, “Hoeffding Races: Ac- 
celerating Model Selection Search for Classification and Function 
Approximation,” Advances in Neural Information Processing Sys- 
tems 6, 1994. 
[Moore941 A. W. Moore and M. S. Lee, “Efficient Algorithms 
for Minimizing Cross Validation Error,” Proceedings of ML94, New 
Brunswick, MA, July 1994. 
[Musick93] R. Musick, J. Catlett and S. Russell, “Decision Theo- 
retic Subsampling for Induction on Large Databases,” Proceedings 
of ML93, Amherst, MA, 1993, pp. 212-219. 
[Nelson951 B. L. Nelson and F. J. Matejcik, “Using Common 
Random Numbers for Indifference-Zone Selection and Multiple 
Comparisions in Simulation,” Management Science, 1995. 
[Quinlan86] J. R. Quinlan, “Induction of decision trees,” Ma- 
chine Learning I, 1 (1986), pp. 81-106. 

786 Learning 


