
ng to Take Actio 

oni Khardon 
Aiken Computation Laboratory, 

Harvard University, 
Cambridge, MA 02 13 8 
roni @das.harvard.edu 

Abstract and time. 

We formalize a model for supervised learning of action 
strategies in dynamic stochastic domains, and show 
that pat-learning results on Occam algorithms hold in 
this model as well. We then identify a particularly 
useful bias for action strategies based on production 
rule systems. We show that a subset of production rule 
systems, including rules in predicate calculus style, 
small hidden state, and unobserved support predicates, 
is properly learnable. The bias we introduce enables 
the learning algorithm to invent the recursive support 
predicates which are used in the action strategy, and 
to reconstruct the internal state of the strategy. It is 
also shown that hierarchical strategies are learnable if 
a helpful teacher is available, but that otherwise the 
problem is computationally hard. 

Explanation Based Learning (EBL) (DeJong & Mooney 
1986; Mitchell, Keller, & Kedar-Cabelli 1986) uses declar- 
ative knowledge and search, but learns from its experience, 
essentially compiling its knowledge into a more procedural 
form by saving generalized forms of the results of search 
as rules in the system. While arbitrary addition of rules 
may actually reduce the performance, utility based tests for 
added rules were found to be useful (Minton 1990). Note 
that, similar to reinforcement learning, EBL is an unsuper- 
vised process since no external guidance for the search is 
given, and that both approaches ultimately try to find the 
optimal solution to problems. 

Introduction 
Planning and acting have been mainly studied in AI with 
a logical perspective, where knowledge about the world is 
encoded in declarative form. In order to achieve goals, 
one proves that they are true in some world state, and 
as a side effect derives a plan for these goals (McCarthy 
1958). Similarly, in partial order planning declarative in- 
formation is given, and search in plan space is performed 
to find a plan (Weld 1994). However, the computational 
problems involved in these approaches are computationally 
hard (Cook 1971; Bylander 1994). Furthermore, these ap- 
proaches have difficulties in handling dynamic situations 
where “re-planning” is used, and situation where the world 
is non-deterministic, or partially observable. 

In this paper we follow the framework of learning to rea- 
son (Khardon & Roth 1994; 1995) and previous formaliza- 
tions of learning in deterministic domains (Tadepalli 1991; 
1992; ‘I’adepalli & Natarajan 1996) and suggest a new ap- 
proach to these problems. The new formalization, learning 
to act, combines various aspects of previous approaches. In 
particular we use the stochastic partially observable world 
model as in reinforcement learning, but on the other hand 
use symbolic representations and action strategies that are 
similar to the ones used in planning and explanation based 
learning. 

Our model is similar to the reinforcement learning ap- 
proach, in that the agent tries to learn action strategies which 
are successful in the world; namely, no explicit reasoning 
power is required from the agent. Rather, it is sufficient 
that an agent chooses its actions so that most of the time it 
succeeds. 

A different approach is taken by the reinforcement learn- 
ing paradigm where “reactive” action selection is used. In 
this model an agent wanders in a (partially observable) 
Markov decision process, and the only source of information 
is a (positive or negative) reinforcement signal given in re- 
sponse to its actions. The goal of the agent is to find a good 
mapping from situations to actions so as to maximize its 
future reinforcement. While interesting results on conver- 
gence to optimal strategies have been obtained (Sutton 1988; 
Fiechter 1994), the resulting strategies essentially enumer- 
ate the state space, and therefore require exponential space 

Our framework differs from previous approaches in a few 
aspects. First, no direct assumptions on the structure of the 
world are made. We do assume that the world behaves as 
a partially observable Markov process, but we do not make 
any restrictions on the size or structure of this process. 

On the other hand, in order to ensure tractability we as- 
sume that some simple strategy provides good behavior in 
the world, where simple is properly quantified. We also as- 
sume some form of supervised learning, where the learner 
observes a teacher acting in the world, and is trying to find 
a strategy that achieves comparable performance. 

Unlike previous models we do not require optimalpe$or- 
munce (which in many cases is hard to achieve), but rather 
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demand that the learner be able to reproduce things that have 
already been discovered. This can be seen as an attempt to 
model progress in some communities, where most agents 
only perform local discoveries or learning. However, once 
an important tool is found and established, it is transferred 
to the rest of the community relatively fast, and with no 
requirement that everyone understand the process properly, 
or reinvent it. 

Another important part of this work is the choice of 
knowledge representation. We concentrate on action strate- 
gies in the form of Production Rule Systems (PRS). This is a 
class of programs which has been widely studied (Anderson 
1983; Laird, Rosenbloom, & Newell 1986). A nice prop- 
erty of PRS is that it allows for a combination of condition 
action rules, and declarative knowledge that can be used for 
search, under the same framework. Previous studies have 
mainly used PRS in a manner similar to EBL emphasizing 
the effect of declarative representations. 

In this paper, the rules are mainly used as a functional rep- 
resentation, which chooses which actions to take. Learning 
of simple PRS strategies, is performed with the help of an 
external teacher. Our strategies have a flavor of reactive 
agents. However, they are goal based, have internal state, 
and use predicates which compute simple recursive func- 
tions of the input. 

We start by presenting the model of acting and learning in 
the world, and deriving a general learning result showing the 
utility of Occam algorithms. We then present a particular 
subset of PRS which we show learnable using this result, 
and briefly discuss the learnability of hierarchical strategies. 
We conclude with a discussion and some reference to future 
work. For lack of space, some details and proofs and further 
discussion are omitted from the paper; these can be found 
in (Khardon 1995). 

Technically, the framework presented here is similar to the 
one studied in (Tadepalli 199 1; Tadepalli & Natarajan 1996). 
The main difference is that we do not incorporate assump- 
tions about the deterministic structure of the world into the 
model. Intuitively, the world is modeled as a randomized 
state machine; in each step the agent takes an action, and the 
world changes its state depending on this action. The agent 
is trying to get to a state in which certain “goal” conditions 
hold. 

The interface of the agent to the world is composed of 
three components: 
0 The measurements of the learner are represented by a 

set of n literals, ~1,222, . . . , x,, each taking a value in’ 
(0, 1). The set X = (0, l}n is the domain of these 
measurements. 
For structural domains, similar to (Haussler 1989), the 
input, a multi-object scene, is composed of a list of objects 
and values of predicates instantiated with these objects. 

‘Our results also hold in a more general model, where a third 
value, *, is used, denoting that the value of some variable is not 
known or has not been observed (Valiant 1995). 

o The agent can be assigned a goal, from a previously fixed 
set of goals s. For simplicity we would assume that G is 
the class of conjunctions over the literals gi,g2, . . . , g,, 
and their negations, where gi represents the desired state 
of xi. (This is similar to conjunctive goals in STRIPS 
style planning problems.) 

o The agent has at its disposal a set of actions 0 = 
{a,..., on}. (The choice of n as the number of actions 
is simply intended to reduce the number of parameters 
used.) In the learning model, the agent is not given any 
information on the effects of the actions, or the precon- 
ditions for their application. In particular, there is no 
hidden assumption that the effects of the actions are de- 
terministic, or that they can be exactly specified. 

The protocol of acting in the world is modeled as a in- 
finitely repeated game. At each round, nature chooses an 
instance, (x, g), such that x E X and g E G. Then the agent 
is given some time, say N steps (where N is some fixed 
polynomial in the complexity parameters), to achieve the 
goal g starting with state x. In order to do this the learner 
has to apply its actions, one at a time, until its measurements 
have a value y which satisfies g (i.e. g(y) = 1). 

Intuitively, each action that is taken changes the state of 
the world, and at each time point the agent can take an action 
and then read the measurements after it. However, some of 
the actions may not be applicable in certain situations, so 
the state does not have to change when an action is taken. 
Furthermore, the state may change even when no action is 
taken. 

Definition 1 (strategy) A strategy s is composed of a state 
machine (I, io, 6, ), and a mapping s : X x 5: x I --+ 0 
from instances and states into actions. An agent is follow- 
ing a strategy s if before starting a run it is in state in, 
and whenever it is in state i E I, and on input (x, g), the 
agent chooses the action s(x, g, i), and changes its state to 
b(x, 9, i). 
Most of the strategies we consider are stationary, namely 
no internal state is used. In this case a strategy is simply a 
mapping s : X x G -+ 0 from instances into actions. 

Definition 2 (Ron) A run of a strategy s on instance (x, g), 
is a sequence resulting from repeated applications of the 
strategy s, 

R(s, x, 9) = x, s(x, 9, io), x1, s(d 9, $7 x2, * * * > 

until g has been achieved or N steps have passed, where 
foreach j 2 1, ij = S,(x’-‘,g,ij-t). 

Definition 3 (successful run) A run is successful if for 
some i 5 N, 9(x2) = 1. 

Notice that, depending on the world, a run might be a fixed 
value or a random variable. 

Definition 4 (world) The world W is modeled as a par- 
tially observable Markov decision process whose transitions 
are effected by the actions of the agent. 

Given this definition, for any fixed starting state, a proba- 
bility distribution is induced on the values that the run may 
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take. It should be noted that we do not make any assump- depends on the actions it takes. Therefore the states visited 
tions on the size or structure of W. Furthermore, in contrast are not independent random variables, and PAC results are 
with reinforcement learning, we do not expect an agent to not directly applicable. Nevertheless, the examples runs are 
have complete knowledge of W. Instead, an agent needs independent of each other. The proof of the next theorem 
to have a strategy that copes with its task when interacting follows by showing that most of the good runs of the teacher 
with W. are also covered by a consistent strategy.2 

When interacting with the world the agent has some form 
of a reset button which draws a new problem to be solved. 
We assume that, at the beginning of a random run, a state of 
the Markov process is randomly chosen according to some 
fixed probability distribution D. This distribution induces 
a probability distribution D over the measurements X x G 
that the learner observes at a start of a run. 

Definition 5 (random run) A random run of a strategy s 
with respect to a world W, and probability distribution 
D, denoted R(s, D), is a run R(s, x, g) where (x, g) are 
induced by a random draw of D, and the successor states 
are chosen according to the transition matrix of W. 

We say that a strategy is consistent with a run R = 
X,Oil,X 1 joi~,~ 2 

tOi - - .I oil, x1 if for all j, the action cho- 
sen by the strategy in step j, given the history on the first 
j - 1 steps (which determine the internal state of the strat- 
egy) is equal to oi, . 

Theorem 1 Let H be a class of strategies, and let L be an 
algorithm such that for any t E H, and on any set of runs 
{R(h D)h L fi n d s a strategy h E H which is consistent 
with all the runs. Then L is a learn to act algorithm for H 
when given m = + log(F) independent example runs. 

The above definition ensures that a random run is indeed 
a random variable. Finally, 
Definition 6 (quality of a strategy) The quality Q(s, D) 
of a strategy s, with respect to a world W, and probability 
distribution D, is 

IJsing the above theorem we can immediately conclude 
that several learning results developed in the model with a 
deterministic world hold in our model as well. In particular 
macro tables (Tadepalli 1991), and action strategies which 
are intersection closed and have a priority encoding over 
actions (Tadepalli & Natarajan 1996) are learnable in our 
model. 

Q(s, D) = Prob[R(s, D) issuccessful] resentation of Strategies 
where the probability is taken over the random variable R 
(which is determined by D and W). 

We study a supervised learning scenario, where the 
learner can observe a teacher acting in the environment. 
We assume that a teacher has some strategy t according to 
which it chooses its actions. 
Definition 7 The oracle example(t) when accessed, re- 
turns a random sample of R(t, 0). 

A learning algorithm will get access to the oracle 
example and will try to find a strategy which is almost 
as good as the teacher’s strategy. 
Definition 8 (learning) An algorithm A is a Learn to Act 
algorithm, with respect to a class of strategies S, class 
of worlds W, and class of distributions lJ, if there exists 
a polynomial p(), such that on input 0 < E, 6 < 1, for 
all t E S, for all W E W, and for all D E V, and 
when given access to example(t), the algorithm A runs 
in time p(n, I/E, 1/S), w h ere n is the number of attributes 
A observes, and with probability at least 1 - S outputs a 
strategy s such that Q(t, D) - Q(s, D) < E. 

Production rule systems (Anderson 1983; Laird, Rosen- 
bloom, & Newell 1986) are composed of a collection of 
condition action rules C + A, where C is usually a con- 
junction, and A is used to denote an action. Actions in 
PRS denote either a real actuator of the agent, or a predicate 
which is “made true” if the rule is executed. PRS are simply 
a way to describe programs with a special kind of control 
mechanism. An important part of this mechanism is the 
working memory. The working memory captures the “cur- 
rent state” view of the system. Initially, the input is put into 
the working memory, and the PRS then works in iterations. 
In each iteration, the condition C of every rule is evalu- 
ated, to get a list of rules which may be executed. Out of 
these rules, one is selected, by the “resolution mechanism”, 
and its action A is executed. That is either the actuator is 
operated, or the predicate mentioned as A is added to the 
working memory. The above cycle is repeated until the goal 
is achieved. 

We study the learnability of a restricted form of PRS. 
In particular we use a priority list of rules as a resolution 
mechanism, and restrict the conditions to include conjunc- 
tion of bounded size. Furthermore, we restrict the amount 
and size of the working memory used. The working mem- 
ory includes internal predicates and small state machines, 
and is combined with a particular control structure. 

Blocks World: In order to illustrate the style of PRS con- 
sidered, we present a PRS for the Blocks World. We then 
proceed with formal definitions. 

earning Action Strategies 
We now present a general result on learning algorithms. 
Similar to results in the PAC model (Blumer et al. 1987), 
we show that in order to learn it is sufficient to find a concise 
action strategy which is consistent with the examples given 
by the teacher. 

The main idea is that an action strategy which is very 
different from the teacher’s strategy will be detected as dif- 
ferent by a large enough random sample. Notice that the 
distribution of the states visited by the agent within a run 

21t is straightforward to generalize the theorem so that the 
hypothesis size will depend on the size of the strategy being learned 
as in (Blumer et al. 1987). 
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A situation in the blocks world is described by listing the 
names of blocks, and the relations that hold for them. The 
input relations we consider are: clear(x) which denotes 
that nothing is placed above block x, and on(x, y) which 
denotes that block x is on block y. We assume that the goal 
situation is described in a similar manner using the predicate 
GO. For example G(on(u, b))G(on(b, c)) could be our 
goal. The only action available is move(x, y) which moves 
object x to be on y given that both were clear beforehand. 

Finding an optimal solution for this problem is NP- 
complete, but there is a simple algorithm that produces at 
most twice the number of steps that is needed (Gupta & Nau 
1991). The idea is that if a block is above another block, 
which is part of the goal but is not yet in its goal place, then 
it has to be moved. If we arbitrarily move such blocks to the 
table, then we can easily build the required tower by moving 
each block once more. So blocks are moved twice, and each 
of them must be moved at least once in the optimal solution. 
We present a PRS which implements this algorithm (which 
assumes for simplicity that the target towers start on the 
table). 

Our PRS has three parts. The first part computes the 
support predicates of the system. The second part consists 
of a priority list of condition action rules which we will refer 
to as the main part of the PRS. The third part includes rules 
for updating the internal state. 

The production rule system first computes the support 
predicates inplace( and above(x, y). These have the 
intuitive meaning; namely &place(x) if x is already in its 
goal situation, and ubove(x, y) if x is in the stack of blocks 
which is above y. 

1. inpZuce(T) 
2. on(x, y) A G(on(x, y)) A inpZuce(y) - inpZuce(x) 
3. on(x, y) - ubove(x, y) 
4. on(x, y) A ubove(y, z) - ubove(x, z) 

Then the actions are chosen: 

1. clear(x) A clear(y) A G(on(x, y)) A inpZuce(y) - 
move(x, Y) 

2. inpZuce(y) A G(on(x, y)) A on(s,y) A ubove(z, x) A 

clear(z) A sad - move(z, T) 

3. inpZuce(y) A G(on(x, y)) A on(z,y) A ubove(z, y) A 
clear(z) - move(2, T) 

4. inpZuce(y) A G(on(x, y)) A on(z,y) A ubove(z,x) A 
clear(z) - move(z, T) 

Then the internal state is updated: 

1. sad c sad @ inpZuce(y) A G(on(x, y)) A on(z,y) A 
ubove(z, x) A clear(z) 
The PRS computes its actions as follows: (1) First, the 

support predicate rules are operated until no more changes 
occur. (No ordering of the rules is required.) (2) Then, the 
main part of the PRS chooses the action. The main part of 
the PRS is considered as a priority list. Namely, the first rule 
that matches the situation is the one that chooses the action. 
(It is assumed that if the condition holds for more than one 
binding of the rule to the situation, then an arbitrary fixed 

ordering is used to choose between them.) (3) The internal 
state is updated after choosing the action. The form of the 
transition rules is defined by conditions under which the 
value of a state variable is flipped; the details are explained 
below. The state machine is not so useful in the strategy 
above. (The internal state sad is superfluous and rule 4 
could replace rule 2.) However, it is useful for example 
when memory for a particular event is needed. 

While the PRS we consider have all these properties we 
restrict these representations syntactically. First, for sim- 
plicity we would assume that n bounds the number of ob- 
jects seen in a learning scenario, the number of predicates, 
and the number of action names. 

Restricted Conjunctions: When using PRS, and when 
the input is given as a multi-object scene, one has to test 
whether the scene satisfies the condition of a rule under any 
substitution of objects for variables. This binding problem is 
NP-hard in general, and a simple solution (Haussler 1989) is 
to restrict the number of object variables in the conjunction 
by some constant. We restrict the rules, so that there are 
at most k literals in the conjunction, and that every literal 
has at most a constant C = 2 object variables. This bounds 
the number of variables in a rule to be 2k + 2. (A similar 
restriction has been used in (Valiant 1985).) 

Notice that the priority list only resolves between different 
rules in the list. We must specify which action to choose 
when more than one binding matches the condition of a 
rule. For this purpose we use a priority preference between 
bindings. In particular, for every condition-action rule we 
allow a separate ordering preference on its bindings. (This 
includes as a special case the situation where all rules use 
the lexicographical ordering as a preference ordering.) 

Support Predicates: The support predicates include a re- 
stricted type of recursive predicates, similar to the ones in 
the example. In particular, we consider support predicates 
that can be described using condition action rules C + A, 
where C has at most k literals. Another restriction we em- 
ploy is that the support predicates do not interact with each 
other; namely, the PRS can use many support predicates, 
but each of them is defined in terms of the input predicates. 
We consider both recursive and non-recursive predicates. A 
non-recursive predicate Z(x, y) is defined by a rule of the 
form c 3 Z(x, y). 

For a recursive predicate, we allow the same predicate to 
appear positively in the conjunction. We further associate 
with this predicate, a “base case rule”. This rule is a non- 
recursive statement as above. For example, for the predicate 
above in our example, on(x, y) - ubove(x, y) is the base 
case, and on(x, y) A ubove(y, z) - ubove(x, z) is the re- 
cursive rule. The total number of predicates in this setting 
is bounded by rng, where mo = n(n + 1)“(2k + 2)(2k+2). 

Notice that recursive predicates enhance the computing 
power of PRS considerably. These predicates enable the 
PRS to perform computations which are otherwise impos- 
sible. For example the predicate above cannot be described 
by a simple PRS. Evaluating this predicate may require an 
arbitrary number of steps, depending on the height of the 
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stack of blocks. 

Internal State: We next describe the restrictions on the 
state machines, whose transition function is restricted in 
a syntactic manner. Suppose the machine has c Boolean 
state variables sr , ~2, . . . , sc. The transition function of the 
machine is described for each variable separately. For each 
si we have a L+conjunction as before, conjuncted in turn 
with an arbitrary conjunction of the state variables. This 
conjunction identifies a condition under which the value 
of si is to be flipped. For example we can have sr +- 
sr $ S~~~OTZ(X, 2)moue(x, y), meaning that if s2 was 1, sg 
was 0, and a certain block was just moved in a certain way, 
then we should flip the value of sr . We would assume that 
the state machine is reset to state Oc in the beginning of every 
run. The number of state machines that can be defined in 
this way is at most m2 = mi”“(2k + 2)c(2k+2)3c . 

PRS and Decision Lists 
To illustrate the basic idea consider propositional PRS with 
no internal state and with no support predicates. The PRS 
is composed only of its main part, which is a priority list of 
condition action rules. Each condition is a conjunction of at 
most L literals, and the actions specify a literal oi E 0. The 
class of PRS is very similar to the class of decision lists. 
Rivest (1987) showed that a greedy algorithm succeeds in 
finding a consistent hypothesis for this class; we observe 
that the same holds in our model. 

First, recall that by Theorem 1 it is sufficient to find a 
strategy consistent with the examples in order to learn to 
act. Since the strategies are stationary we can partition each 
run into situation-action pairs and find a PRS consistent with 
the collection of these pairs, just as in concept learning. 

The main observation (Rivest 1987) is that the teacher’s 
strategy t is a consistent action strategy. Suppose we found 
a rule which explains some subset of the situation-action 
pairs. Then, if we add t after this rule we get a consis- 
tent strategy. Therefore, explaining some examples never 
hurts. Furthermore, there is always a consistent rule which 
explains at least one example, since the rule in t does. By 
enumerating all rules and testing for consistency we can find 
such a rule, and by iterating on this procedure we can find a 
consistent PRS. 

Learning BRS in Structural 
Assume first, that the strategies are stationary. Therefore 
it is sufficient to consider situation-action pairs, which we 
refer to as examples. Notice that for our PRS the main 
part is in the form of a priority list. This part of the PRS 
can be learned as in the propositional case by considering 
rules with structural predicates. (The restrictions make sure 
that the number of rules is polynomial for fixed Ic). When 
testing to see whether a rule C ---f A is consistent with the 
examples, one has to check whether there is a binding order 
which is consistent for this rule. If an example matches the 
rule with two bindings, and only one of them produces the 
correct action, then we record a constraint on the binding 
order for this rule. (The binding producing the correct action 

Algorithm Learn-PRS 
Initialize the strategy S to the empty list. 
For each possible state machine Do: 

Compute all possible support predicates for all ex- 
amples. 

Separate the example runs into a set E of situation- 
action pairs. 

Repeat: 
Find a consistent rule R = C -+ A. 
Remove from E the examples chosen by R. 
Add R at the end of the strategy S. 

Until E = 0 or there are no consistent rules. 

If E = 0 then output S and stop. 
Otherwise, initialize the strategy S to the empty list, 

and go to the next iteration. 

Figure 1: The Algorithm Learn-PRS 

must precede the other one.) The rule is consistent with the 
examples iff the set of constraints produced in this way is 
not cyclic. 

Our learning algorithm must also find the internal parts, 
not observable to it, namely the support predicates and state 
machine. To find the support predicates, we pre-process the 
examples by computing, for each example, the values of all 
possible invented predicates that agree with the syntactic 
restriction. (As noted above the number of such predicates 
is polynomial.) This computation is clearly possible for 
the non-recursive predicates. For the recursive predicates, 
one can use an iterative procedure to compute these values. 
First apply the base case on all possible bindings. Then in 
each iteration apply the recursive rule until no more changes 
occur. This procedure is correct since the recursive rule is 
monotone in the new predicate. 

To find the internal state machine we must deal with 
non-stationary strategies. This problem is much harder in 
general, since the actions selected can make the impres- 
sion that the output of the teacher is random or arbitrary. 
However, if we know the values of the state variables then 
the problem is simple again, since the strategy is stationary 
when these values are added to the input. The restrictions 
imposed imply that the number of state machines is poly- 
nomial. Therefore we can enumerate the machines, and 
for each possibility compute the values of the internal state 
(assuming that this is the right state machine), and apply the 
algorithm described above. We are guaranteed that the al- 
gorithm will succeed for the choice of the correct machine, 
and PAC arguments imply that a bad state machine is not 
likely to be chosen. 

A high level description of the algorithm Learn-PRS is 
described in Figure 1. Using the above observations, we can 
apply Theorem 1 to show that PRS under these restrictions 
are learnable. 

Theorem 2 The algorithm Learn-PRS is a learn to act al- 
gorithm for the class of restricted PRS actions strategies. 
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Hierarchical Strategies 
The computing power of the PRS considered can be en- 
hanced considerably if we allow a hierarchical construction. 
We consider such strategies where previously learned sub- 
routines can be used as primitive actions in new strategies. 
In the full version of the paper we show that with annotation 
on the examples it is possible to learn hierarchical strate- 
gies, but that without annotation the task is hard even in 
propositional domains. For lack of space we just illustrate 
this point through an example. 

A possible input for hierarchical learning problem is the 
subroutine 21 -+ A; 22 + B; True + A, with goal x4 = 1, 
and where the priority is from left to right, and the two 
example runs: RI = 01000,A,01100,B, lOlOO,A, 11011, 
andR2= 10100,B,11100,A,11010,A,10011. Thegoal 
of the PRS being learned is to achieve x5 = 1 which is 
indeed satisfied in the last state of the example runs. 

Notice that if we know which actions were chosen by the 
subroutine we can rewrite the examples by slicing out the 
parts of the subroutine and replacing it with a new action, 
S. Using this new input, the greedy algorithm can find a 
consistent strategy. For example, using the information that 
for RI the second and third actions are taken by S, and for R2 
the second action is taken by S, it is easy to see that the PRS 
q --+ A; 22 -+ S; xi -+ B is consistent with the example 
runs. However, without this information the problem is 
NP-Hard; the hardness of the problem essentially lies in 
determining a proper annotation for the examples. 

Conclusions 
We presented a new framework for studying the problem 
of acting in dynamic stochastic domains. Following the 
learning to reason framework we stressed the importance of 
learning for accomplishing such tasks. The new approach 
combines features from several previous works, and in a 
sense narrows the gap between the reactive and declarative 
approaches. We have shown that results from the PAC 
model of learning can be generalized to the new framework, 
and thus many results hold in the new model as well. We 
also demonstrated that powerful representations in the form 
of production rule systems can be learned. 

We have also shown that bias can play an important role in 
predicate invention; by using an appropriate bias, and grad- 
ing the learning experiments in their difficulty, a new set of 
useful predicates (which are not available for introspection) 
can be learned and then used in the future. 

Our model shares some ideas with reinforcement learning 
and EBL, and several related questions are raised by the new 
approach. In particular we believe that introducing bias in 
either of these frameworks can enhance our understanding 
of the problems. Other interesting questions concern learn- 
ing of randomized strategies, and learning from “exercises” 
(Natarajan 1989), in the new model. Further discussion can 
be found in the full version of the paper. 

Acknowledgments 
I am grateful to Les Valiant for many discussions that helped 
in developing these ideas, and to Prasad Tadepalli for helpful 

comments on an earlier draft. This work was supported by 
AR0 grant DAAL03-92-6-0115 and by NSF grant CCR- 
9504436. 

eferences 
Anderson, J. 1983. The Architecture of Cognition. Harvard 
University Press. 
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth, M. K. 
1987. Occam’s razor. Information Processing Letters 24:377- 
380. 
Bylander, T. 1994. The computational complexity of proposi- 
tional STRIPS planning. ArtiJCiciaZ Zntelligence 69: 165-204. 
Cook, S. A. 1971. The complexity of theorem proving proce- 
dures. In 3rd annual ACM Symposium of the Theory of Comput- 
ing, 151-158. 
DeJong, G., and Mooney, R. 1986. Explanation based learning: 
An alternative view. Machine Learning 1: 145-l 76. 
Fiechter, C. N. 1994. Efficient reinforcement learning. In Proc. 
of Workshop on Comput. Learning Theory, 88-97. 
Gupta, N., and Nau, D. 1991. Complexity results for blocks 
world planning. In Proceedings of AAAZ-9I,629-633. 
Haussler, D. 1989. Learning conjunctive concepts in structural 
domains. Machine Learning 4( 1):7-40. 
Khardon, R., and Roth, D. 1994. Learning to reason. In Pro- 
ceedings of AAAI-94,682-687. 
Khardon, R., and Roth, D. 1995. Learning to reason with a 
restricted view. In Proc. Workshop on Comput. Learning Theory, 
301-310. 
Khardon, R. 1995. Learning to take actions. Technical Report 
TR-28-95, Aiken Computation Lab., Harvard University. 
Laird, J.; Rosenbloom, P.; and Newell, A. 1986. Chunking in 
Soar: the anatomy of a general learning mechanism. Machine 
Learning 1: 1 l-46. 
McCarthy, J. 1958. Programs with common sense. In Brachman, 
R., and Levesque, H., eds., Readings in Knowledge Representa- 
tion, 1985. Morgan-Kaufmann. 
Minton, S. 1990. Quantitative results concerning the utility of 
explanation based learning. ArtiJicial Intelligence 42:363-39 1. 
Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986. Explanation 
based learning: A unifying view. Machine Learning 1:47-80. 
Natarajan, B. K. 1989. On learning from exercises. In Proc. of 
Workshop on Comp. Learning Theory, 72-87. 
Rivest, R. L. 1987. Learning decision lists. Machine Learning 
2(3):229-246. 
Sutton, R. S. 1988. Learning to predict by the methods of 
temporal differences. Machine Learning 3( 1):9134. 
Tadepalli, P., and Natarajan, B. 1996. A formal framework for 
speedup learning from problems and solutions. Journal of AI 
Research. Forthcoming. 
Tadepalli, P. 199 1. A formalization of explanation based macro- 
operator learning. In Proceedings of IJCAI-91, 6 16-622. 
Tadepalli, P. 1992. A theory of unsupervised speedup learning. 
In Proceedings of AAAI-92,229-234. 
Valiant, L. G. 1985. Learning disjunctions of conjunctions. In 
Proceedings of IJCAI-85,560-566. 
Valiant, L. G. 1995. Rationahty. In Proc. Workshop on Comput. 
Learning Theory, 3-l 4. 
Weld, D. 1994. An introduction to least commitment planning. 
AZ magazine 15(4):27-6 1. 

792 Learning 


