
ng to Take Actio

oni Khardon
Aiken Computation Laboratory,

Harvard University,
Cambridge, MA 02 13 8
roni @das.harvard.edu

Abstract and time.

We formalize a model for supervised learning of action
strategies in dynamic stochastic domains, and show
that pat-learning results on Occam algorithms hold in
this model as well. We then identify a particularly
useful bias for action strategies based on production
rule systems. We show that a subset of production rule
systems, including rules in predicate calculus style,
small hidden state, and unobserved support predicates,
is properly learnable. The bias we introduce enables
the learning algorithm to invent the recursive support
predicates which are used in the action strategy, and
to reconstruct the internal state of the strategy. It is
also shown that hierarchical strategies are learnable if
a helpful teacher is available, but that otherwise the
problem is computationally hard.

Explanation Based Learning (EBL) (DeJong & Mooney
1986; Mitchell, Keller, & Kedar-Cabelli 1986) uses declar-
ative knowledge and search, but learns from its experience,
essentially compiling its knowledge into a more procedural
form by saving generalized forms of the results of search
as rules in the system. While arbitrary addition of rules
may actually reduce the performance, utility based tests for
added rules were found to be useful (Minton 1990). Note
that, similar to reinforcement learning, EBL is an unsuper-
vised process since no external guidance for the search is
given, and that both approaches ultimately try to find the
optimal solution to problems.

Introduction
Planning and acting have been mainly studied in AI with
a logical perspective, where knowledge about the world is
encoded in declarative form. In order to achieve goals,
one proves that they are true in some world state, and
as a side effect derives a plan for these goals (McCarthy
1958). Similarly, in partial order planning declarative in-
formation is given, and search in plan space is performed
to find a plan (Weld 1994). However, the computational
problems involved in these approaches are computationally
hard (Cook 1971; Bylander 1994). Furthermore, these ap-
proaches have difficulties in handling dynamic situations
where “re-planning” is used, and situation where the world
is non-deterministic, or partially observable.

In this paper we follow the framework of learning to rea-
son (Khardon & Roth 1994; 1995) and previous formaliza-
tions of learning in deterministic domains (Tadepalli 1991;
1992; ‘I’adepalli & Natarajan 1996) and suggest a new ap-
proach to these problems. The new formalization, learning
to act, combines various aspects of previous approaches. In
particular we use the stochastic partially observable world
model as in reinforcement learning, but on the other hand
use symbolic representations and action strategies that are
similar to the ones used in planning and explanation based
learning.

Our model is similar to the reinforcement learning ap-
proach, in that the agent tries to learn action strategies which
are successful in the world; namely, no explicit reasoning
power is required from the agent. Rather, it is sufficient
that an agent chooses its actions so that most of the time it
succeeds.

A different approach is taken by the reinforcement learn-
ing paradigm where “reactive” action selection is used. In
this model an agent wanders in a (partially observable)
Markov decision process, and the only source of information
is a (positive or negative) reinforcement signal given in re-
sponse to its actions. The goal of the agent is to find a good
mapping from situations to actions so as to maximize its
future reinforcement. While interesting results on conver-
gence to optimal strategies have been obtained (Sutton 1988;
Fiechter 1994), the resulting strategies essentially enumer-
ate the state space, and therefore require exponential space

Our framework differs from previous approaches in a few
aspects. First, no direct assumptions on the structure of the
world are made. We do assume that the world behaves as
a partially observable Markov process, but we do not make
any restrictions on the size or structure of this process.

On the other hand, in order to ensure tractability we as-
sume that some simple strategy provides good behavior in
the world, where simple is properly quantified. We also as-
sume some form of supervised learning, where the learner
observes a teacher acting in the world, and is trying to find
a strategy that achieves comparable performance.

Unlike previous models we do not require optimalpe$or-
munce (which in many cases is hard to achieve), but rather

Fundamental Issues 787

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

demand that the learner be able to reproduce things that have
already been discovered. This can be seen as an attempt to
model progress in some communities, where most agents
only perform local discoveries or learning. However, once
an important tool is found and established, it is transferred
to the rest of the community relatively fast, and with no
requirement that everyone understand the process properly,
or reinvent it.

Another important part of this work is the choice of
knowledge representation. We concentrate on action strate-
gies in the form of Production Rule Systems (PRS). This is a
class of programs which has been widely studied (Anderson
1983; Laird, Rosenbloom, & Newell 1986). A nice prop-
erty of PRS is that it allows for a combination of condition
action rules, and declarative knowledge that can be used for
search, under the same framework. Previous studies have
mainly used PRS in a manner similar to EBL emphasizing
the effect of declarative representations.

In this paper, the rules are mainly used as a functional rep-
resentation, which chooses which actions to take. Learning
of simple PRS strategies, is performed with the help of an
external teacher. Our strategies have a flavor of reactive
agents. However, they are goal based, have internal state,
and use predicates which compute simple recursive func-
tions of the input.

We start by presenting the model of acting and learning in
the world, and deriving a general learning result showing the
utility of Occam algorithms. We then present a particular
subset of PRS which we show learnable using this result,
and briefly discuss the learnability of hierarchical strategies.
We conclude with a discussion and some reference to future
work. For lack of space, some details and proofs and further
discussion are omitted from the paper; these can be found
in (Khardon 1995).

Technically, the framework presented here is similar to the
one studied in (Tadepalli 199 1; Tadepalli & Natarajan 1996).
The main difference is that we do not incorporate assump-
tions about the deterministic structure of the world into the
model. Intuitively, the world is modeled as a randomized
state machine; in each step the agent takes an action, and the
world changes its state depending on this action. The agent
is trying to get to a state in which certain “goal” conditions
hold.

The interface of the agent to the world is composed of
three components:
0 The measurements of the learner are represented by a

set of n literals, ~1,222, . . . , x,, each taking a value in’
(0, 1). The set X = (0, l}n is the domain of these
measurements.
For structural domains, similar to (Haussler 1989), the
input, a multi-object scene, is composed of a list of objects
and values of predicates instantiated with these objects.

‘Our results also hold in a more general model, where a third
value, *, is used, denoting that the value of some variable is not
known or has not been observed (Valiant 1995).

o The agent can be assigned a goal, from a previously fixed
set of goals s. For simplicity we would assume that G is
the class of conjunctions over the literals gi,g2, . . . , g,,
and their negations, where gi represents the desired state
of xi. (This is similar to conjunctive goals in STRIPS
style planning problems.)

o The agent has at its disposal a set of actions 0 =
{a,..., on}. (The choice of n as the number of actions
is simply intended to reduce the number of parameters
used.) In the learning model, the agent is not given any
information on the effects of the actions, or the precon-
ditions for their application. In particular, there is no
hidden assumption that the effects of the actions are de-
terministic, or that they can be exactly specified.

The protocol of acting in the world is modeled as a in-
finitely repeated game. At each round, nature chooses an
instance, (x, g), such that x E X and g E G. Then the agent
is given some time, say N steps (where N is some fixed
polynomial in the complexity parameters), to achieve the
goal g starting with state x. In order to do this the learner
has to apply its actions, one at a time, until its measurements
have a value y which satisfies g (i.e. g(y) = 1).

Intuitively, each action that is taken changes the state of
the world, and at each time point the agent can take an action
and then read the measurements after it. However, some of
the actions may not be applicable in certain situations, so
the state does not have to change when an action is taken.
Furthermore, the state may change even when no action is
taken.

Definition 1 (strategy) A strategy s is composed of a state
machine (I, io, 6,), and a mapping s : X x 5: x I --+ 0
from instances and states into actions. An agent is follow-
ing a strategy s if before starting a run it is in state in,
and whenever it is in state i E I, and on input (x, g), the
agent chooses the action s(x, g, i), and changes its state to
b(x, 9, i).
Most of the strategies we consider are stationary, namely
no internal state is used. In this case a strategy is simply a
mapping s : X x G -+ 0 from instances into actions.

Definition 2 (Ron) A run of a strategy s on instance (x, g),
is a sequence resulting from repeated applications of the
strategy s,

R(s, x, 9) = x, s(x, 9, io), x1, s(d 9, $7 x2, * * * >

until g has been achieved or N steps have passed, where
foreach j 2 1, ij = S,(x’-‘,g,ij-t).

Definition 3 (successful run) A run is successful if for
some i 5 N, 9(x2) = 1.

Notice that, depending on the world, a run might be a fixed
value or a random variable.

Definition 4 (world) The world W is modeled as a par-
tially observable Markov decision process whose transitions
are effected by the actions of the agent.

Given this definition, for any fixed starting state, a proba-
bility distribution is induced on the values that the run may

788 Learning

take. It should be noted that we do not make any assump- depends on the actions it takes. Therefore the states visited
tions on the size or structure of W. Furthermore, in contrast are not independent random variables, and PAC results are
with reinforcement learning, we do not expect an agent to not directly applicable. Nevertheless, the examples runs are
have complete knowledge of W. Instead, an agent needs independent of each other. The proof of the next theorem
to have a strategy that copes with its task when interacting follows by showing that most of the good runs of the teacher
with W. are also covered by a consistent strategy.2

When interacting with the world the agent has some form
of a reset button which draws a new problem to be solved.
We assume that, at the beginning of a random run, a state of
the Markov process is randomly chosen according to some
fixed probability distribution D. This distribution induces
a probability distribution D over the measurements X x G
that the learner observes at a start of a run.

Definition 5 (random run) A random run of a strategy s
with respect to a world W, and probability distribution
D, denoted R(s, D), is a run R(s, x, g) where (x, g) are
induced by a random draw of D, and the successor states
are chosen according to the transition matrix of W.

We say that a strategy is consistent with a run R =
X,Oil,X 1 joi~,~ 2

tOi - - .I oil, x1 if for all j, the action cho-
sen by the strategy in step j, given the history on the first
j - 1 steps (which determine the internal state of the strat-
egy) is equal to oi, .

Theorem 1 Let H be a class of strategies, and let L be an
algorithm such that for any t E H, and on any set of runs
{R(h D)h L fi n d s a strategy h E H which is consistent
with all the runs. Then L is a learn to act algorithm for H
when given m = + log(F) independent example runs.

The above definition ensures that a random run is indeed
a random variable. Finally,
Definition 6 (quality of a strategy) The quality Q(s, D)
of a strategy s, with respect to a world W, and probability
distribution D, is

IJsing the above theorem we can immediately conclude
that several learning results developed in the model with a
deterministic world hold in our model as well. In particular
macro tables (Tadepalli 1991), and action strategies which
are intersection closed and have a priority encoding over
actions (Tadepalli & Natarajan 1996) are learnable in our
model.

Q(s, D) = Prob[R(s, D) issuccessful] resentation of Strategies
where the probability is taken over the random variable R
(which is determined by D and W).

We study a supervised learning scenario, where the
learner can observe a teacher acting in the environment.
We assume that a teacher has some strategy t according to
which it chooses its actions.
Definition 7 The oracle example(t) when accessed, re-
turns a random sample of R(t, 0).

A learning algorithm will get access to the oracle
example and will try to find a strategy which is almost
as good as the teacher’s strategy.
Definition 8 (learning) An algorithm A is a Learn to Act
algorithm, with respect to a class of strategies S, class
of worlds W, and class of distributions lJ, if there exists
a polynomial p(), such that on input 0 < E, 6 < 1, for
all t E S, for all W E W, and for all D E V, and
when given access to example(t), the algorithm A runs
in time p(n, I/E, 1/S), w h ere n is the number of attributes
A observes, and with probability at least 1 - S outputs a
strategy s such that Q(t, D) - Q(s, D) < E.

Production rule systems (Anderson 1983; Laird, Rosen-
bloom, & Newell 1986) are composed of a collection of
condition action rules C + A, where C is usually a con-
junction, and A is used to denote an action. Actions in
PRS denote either a real actuator of the agent, or a predicate
which is “made true” if the rule is executed. PRS are simply
a way to describe programs with a special kind of control
mechanism. An important part of this mechanism is the
working memory. The working memory captures the “cur-
rent state” view of the system. Initially, the input is put into
the working memory, and the PRS then works in iterations.
In each iteration, the condition C of every rule is evalu-
ated, to get a list of rules which may be executed. Out of
these rules, one is selected, by the “resolution mechanism”,
and its action A is executed. That is either the actuator is
operated, or the predicate mentioned as A is added to the
working memory. The above cycle is repeated until the goal
is achieved.

We study the learnability of a restricted form of PRS.
In particular we use a priority list of rules as a resolution
mechanism, and restrict the conditions to include conjunc-
tion of bounded size. Furthermore, we restrict the amount
and size of the working memory used. The working mem-
ory includes internal predicates and small state machines,
and is combined with a particular control structure.

Blocks World: In order to illustrate the style of PRS con-
sidered, we present a PRS for the Blocks World. We then
proceed with formal definitions.

earning Action Strategies
We now present a general result on learning algorithms.
Similar to results in the PAC model (Blumer et al. 1987),
we show that in order to learn it is sufficient to find a concise
action strategy which is consistent with the examples given
by the teacher.

The main idea is that an action strategy which is very
different from the teacher’s strategy will be detected as dif-
ferent by a large enough random sample. Notice that the
distribution of the states visited by the agent within a run

21t is straightforward to generalize the theorem so that the
hypothesis size will depend on the size of the strategy being learned
as in (Blumer et al. 1987).

Fundamental Issues 789

A situation in the blocks world is described by listing the
names of blocks, and the relations that hold for them. The
input relations we consider are: clear(x) which denotes
that nothing is placed above block x, and on(x, y) which
denotes that block x is on block y. We assume that the goal
situation is described in a similar manner using the predicate
GO. For example G(on(u, b))G(on(b, c)) could be our
goal. The only action available is move(x, y) which moves
object x to be on y given that both were clear beforehand.

Finding an optimal solution for this problem is NP-
complete, but there is a simple algorithm that produces at
most twice the number of steps that is needed (Gupta & Nau
1991). The idea is that if a block is above another block,
which is part of the goal but is not yet in its goal place, then
it has to be moved. If we arbitrarily move such blocks to the
table, then we can easily build the required tower by moving
each block once more. So blocks are moved twice, and each
of them must be moved at least once in the optimal solution.
We present a PRS which implements this algorithm (which
assumes for simplicity that the target towers start on the
table).

Our PRS has three parts. The first part computes the
support predicates of the system. The second part consists
of a priority list of condition action rules which we will refer
to as the main part of the PRS. The third part includes rules
for updating the internal state.

The production rule system first computes the support
predicates inplace(and above(x, y). These have the
intuitive meaning; namely &place(x) if x is already in its
goal situation, and ubove(x, y) if x is in the stack of blocks
which is above y.

1. inpZuce(T)
2. on(x, y) A G(on(x, y)) A inpZuce(y) - inpZuce(x)
3. on(x, y) - ubove(x, y)
4. on(x, y) A ubove(y, z) - ubove(x, z)

Then the actions are chosen:

1. clear(x) A clear(y) A G(on(x, y)) A inpZuce(y) -
move(x, Y)

2. inpZuce(y) A G(on(x, y)) A on(s,y) A ubove(z, x) A

clear(z) A sad - move(z, T)

3. inpZuce(y) A G(on(x, y)) A on(z,y) A ubove(z, y) A
clear(z) - move(2, T)

4. inpZuce(y) A G(on(x, y)) A on(z,y) A ubove(z,x) A
clear(z) - move(z, T)

Then the internal state is updated:

1. sad c sad @ inpZuce(y) A G(on(x, y)) A on(z,y) A
ubove(z, x) A clear(z)
The PRS computes its actions as follows: (1) First, the

support predicate rules are operated until no more changes
occur. (No ordering of the rules is required.) (2) Then, the
main part of the PRS chooses the action. The main part of
the PRS is considered as a priority list. Namely, the first rule
that matches the situation is the one that chooses the action.
(It is assumed that if the condition holds for more than one
binding of the rule to the situation, then an arbitrary fixed

ordering is used to choose between them.) (3) The internal
state is updated after choosing the action. The form of the
transition rules is defined by conditions under which the
value of a state variable is flipped; the details are explained
below. The state machine is not so useful in the strategy
above. (The internal state sad is superfluous and rule 4
could replace rule 2.) However, it is useful for example
when memory for a particular event is needed.

While the PRS we consider have all these properties we
restrict these representations syntactically. First, for sim-
plicity we would assume that n bounds the number of ob-
jects seen in a learning scenario, the number of predicates,
and the number of action names.

Restricted Conjunctions: When using PRS, and when
the input is given as a multi-object scene, one has to test
whether the scene satisfies the condition of a rule under any
substitution of objects for variables. This binding problem is
NP-hard in general, and a simple solution (Haussler 1989) is
to restrict the number of object variables in the conjunction
by some constant. We restrict the rules, so that there are
at most k literals in the conjunction, and that every literal
has at most a constant C = 2 object variables. This bounds
the number of variables in a rule to be 2k + 2. (A similar
restriction has been used in (Valiant 1985).)

Notice that the priority list only resolves between different
rules in the list. We must specify which action to choose
when more than one binding matches the condition of a
rule. For this purpose we use a priority preference between
bindings. In particular, for every condition-action rule we
allow a separate ordering preference on its bindings. (This
includes as a special case the situation where all rules use
the lexicographical ordering as a preference ordering.)

Support Predicates: The support predicates include a re-
stricted type of recursive predicates, similar to the ones in
the example. In particular, we consider support predicates
that can be described using condition action rules C + A,
where C has at most k literals. Another restriction we em-
ploy is that the support predicates do not interact with each
other; namely, the PRS can use many support predicates,
but each of them is defined in terms of the input predicates.
We consider both recursive and non-recursive predicates. A
non-recursive predicate Z(x, y) is defined by a rule of the
form c 3 Z(x, y).

For a recursive predicate, we allow the same predicate to
appear positively in the conjunction. We further associate
with this predicate, a “base case rule”. This rule is a non-
recursive statement as above. For example, for the predicate
above in our example, on(x, y) - ubove(x, y) is the base
case, and on(x, y) A ubove(y, z) - ubove(x, z) is the re-
cursive rule. The total number of predicates in this setting
is bounded by rng, where mo = n(n + 1)“(2k + 2)(2k+2).

Notice that recursive predicates enhance the computing
power of PRS considerably. These predicates enable the
PRS to perform computations which are otherwise impos-
sible. For example the predicate above cannot be described
by a simple PRS. Evaluating this predicate may require an
arbitrary number of steps, depending on the height of the

790 Learning

stack of blocks.

Internal State: We next describe the restrictions on the
state machines, whose transition function is restricted in
a syntactic manner. Suppose the machine has c Boolean
state variables sr , ~2, . . . , sc. The transition function of the
machine is described for each variable separately. For each
si we have a L+conjunction as before, conjuncted in turn
with an arbitrary conjunction of the state variables. This
conjunction identifies a condition under which the value
of si is to be flipped. For example we can have sr +-
sr $ S~~~OTZ(X, 2)moue(x, y), meaning that if s2 was 1, sg
was 0, and a certain block was just moved in a certain way,
then we should flip the value of sr . We would assume that
the state machine is reset to state Oc in the beginning of every
run. The number of state machines that can be defined in
this way is at most m2 = mi”“(2k + 2)c(2k+2)3c .

PRS and Decision Lists
To illustrate the basic idea consider propositional PRS with
no internal state and with no support predicates. The PRS
is composed only of its main part, which is a priority list of
condition action rules. Each condition is a conjunction of at
most L literals, and the actions specify a literal oi E 0. The
class of PRS is very similar to the class of decision lists.
Rivest (1987) showed that a greedy algorithm succeeds in
finding a consistent hypothesis for this class; we observe
that the same holds in our model.

First, recall that by Theorem 1 it is sufficient to find a
strategy consistent with the examples in order to learn to
act. Since the strategies are stationary we can partition each
run into situation-action pairs and find a PRS consistent with
the collection of these pairs, just as in concept learning.

The main observation (Rivest 1987) is that the teacher’s
strategy t is a consistent action strategy. Suppose we found
a rule which explains some subset of the situation-action
pairs. Then, if we add t after this rule we get a consis-
tent strategy. Therefore, explaining some examples never
hurts. Furthermore, there is always a consistent rule which
explains at least one example, since the rule in t does. By
enumerating all rules and testing for consistency we can find
such a rule, and by iterating on this procedure we can find a
consistent PRS.

Learning BRS in Structural
Assume first, that the strategies are stationary. Therefore
it is sufficient to consider situation-action pairs, which we
refer to as examples. Notice that for our PRS the main
part is in the form of a priority list. This part of the PRS
can be learned as in the propositional case by considering
rules with structural predicates. (The restrictions make sure
that the number of rules is polynomial for fixed Ic). When
testing to see whether a rule C ---f A is consistent with the
examples, one has to check whether there is a binding order
which is consistent for this rule. If an example matches the
rule with two bindings, and only one of them produces the
correct action, then we record a constraint on the binding
order for this rule. (The binding producing the correct action

Algorithm Learn-PRS
Initialize the strategy S to the empty list.
For each possible state machine Do:

Compute all possible support predicates for all ex-
amples.

Separate the example runs into a set E of situation-
action pairs.

Repeat:
Find a consistent rule R = C -+ A.
Remove from E the examples chosen by R.
Add R at the end of the strategy S.

Until E = 0 or there are no consistent rules.

If E = 0 then output S and stop.
Otherwise, initialize the strategy S to the empty list,

and go to the next iteration.

Figure 1: The Algorithm Learn-PRS

must precede the other one.) The rule is consistent with the
examples iff the set of constraints produced in this way is
not cyclic.

Our learning algorithm must also find the internal parts,
not observable to it, namely the support predicates and state
machine. To find the support predicates, we pre-process the
examples by computing, for each example, the values of all
possible invented predicates that agree with the syntactic
restriction. (As noted above the number of such predicates
is polynomial.) This computation is clearly possible for
the non-recursive predicates. For the recursive predicates,
one can use an iterative procedure to compute these values.
First apply the base case on all possible bindings. Then in
each iteration apply the recursive rule until no more changes
occur. This procedure is correct since the recursive rule is
monotone in the new predicate.

To find the internal state machine we must deal with
non-stationary strategies. This problem is much harder in
general, since the actions selected can make the impres-
sion that the output of the teacher is random or arbitrary.
However, if we know the values of the state variables then
the problem is simple again, since the strategy is stationary
when these values are added to the input. The restrictions
imposed imply that the number of state machines is poly-
nomial. Therefore we can enumerate the machines, and
for each possibility compute the values of the internal state
(assuming that this is the right state machine), and apply the
algorithm described above. We are guaranteed that the al-
gorithm will succeed for the choice of the correct machine,
and PAC arguments imply that a bad state machine is not
likely to be chosen.

A high level description of the algorithm Learn-PRS is
described in Figure 1. Using the above observations, we can
apply Theorem 1 to show that PRS under these restrictions
are learnable.

Theorem 2 The algorithm Learn-PRS is a learn to act al-
gorithm for the class of restricted PRS actions strategies.

Fundamental Issues 791

Hierarchical Strategies
The computing power of the PRS considered can be en-
hanced considerably if we allow a hierarchical construction.
We consider such strategies where previously learned sub-
routines can be used as primitive actions in new strategies.
In the full version of the paper we show that with annotation
on the examples it is possible to learn hierarchical strate-
gies, but that without annotation the task is hard even in
propositional domains. For lack of space we just illustrate
this point through an example.

A possible input for hierarchical learning problem is the
subroutine 21 -+ A; 22 + B; True + A, with goal x4 = 1,
and where the priority is from left to right, and the two
example runs: RI = 01000,A,01100,B, lOlOO,A, 11011,
andR2= 10100,B,11100,A,11010,A,10011. Thegoal
of the PRS being learned is to achieve x5 = 1 which is
indeed satisfied in the last state of the example runs.

Notice that if we know which actions were chosen by the
subroutine we can rewrite the examples by slicing out the
parts of the subroutine and replacing it with a new action,
S. Using this new input, the greedy algorithm can find a
consistent strategy. For example, using the information that
for RI the second and third actions are taken by S, and for R2
the second action is taken by S, it is easy to see that the PRS
q --+ A; 22 -+ S; xi -+ B is consistent with the example
runs. However, without this information the problem is
NP-Hard; the hardness of the problem essentially lies in
determining a proper annotation for the examples.

Conclusions
We presented a new framework for studying the problem
of acting in dynamic stochastic domains. Following the
learning to reason framework we stressed the importance of
learning for accomplishing such tasks. The new approach
combines features from several previous works, and in a
sense narrows the gap between the reactive and declarative
approaches. We have shown that results from the PAC
model of learning can be generalized to the new framework,
and thus many results hold in the new model as well. We
also demonstrated that powerful representations in the form
of production rule systems can be learned.

We have also shown that bias can play an important role in
predicate invention; by using an appropriate bias, and grad-
ing the learning experiments in their difficulty, a new set of
useful predicates (which are not available for introspection)
can be learned and then used in the future.

Our model shares some ideas with reinforcement learning
and EBL, and several related questions are raised by the new
approach. In particular we believe that introducing bias in
either of these frameworks can enhance our understanding
of the problems. Other interesting questions concern learn-
ing of randomized strategies, and learning from “exercises”
(Natarajan 1989), in the new model. Further discussion can
be found in the full version of the paper.

Acknowledgments
I am grateful to Les Valiant for many discussions that helped
in developing these ideas, and to Prasad Tadepalli for helpful

comments on an earlier draft. This work was supported by
AR0 grant DAAL03-92-6-0115 and by NSF grant CCR-
9504436.

eferences
Anderson, J. 1983. The Architecture of Cognition. Harvard
University Press.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth, M. K.
1987. Occam’s razor. Information Processing Letters 24:377-
380.
Bylander, T. 1994. The computational complexity of proposi-
tional STRIPS planning. ArtiJCiciaZ Zntelligence 69: 165-204.
Cook, S. A. 1971. The complexity of theorem proving proce-
dures. In 3rd annual ACM Symposium of the Theory of Comput-
ing, 151-158.
DeJong, G., and Mooney, R. 1986. Explanation based learning:
An alternative view. Machine Learning 1: 145-l 76.
Fiechter, C. N. 1994. Efficient reinforcement learning. In Proc.
of Workshop on Comput. Learning Theory, 88-97.
Gupta, N., and Nau, D. 1991. Complexity results for blocks
world planning. In Proceedings of AAAZ-9I,629-633.
Haussler, D. 1989. Learning conjunctive concepts in structural
domains. Machine Learning 4(1):7-40.
Khardon, R., and Roth, D. 1994. Learning to reason. In Pro-
ceedings of AAAI-94,682-687.
Khardon, R., and Roth, D. 1995. Learning to reason with a
restricted view. In Proc. Workshop on Comput. Learning Theory,
301-310.
Khardon, R. 1995. Learning to take actions. Technical Report
TR-28-95, Aiken Computation Lab., Harvard University.
Laird, J.; Rosenbloom, P.; and Newell, A. 1986. Chunking in
Soar: the anatomy of a general learning mechanism. Machine
Learning 1: 1 l-46.
McCarthy, J. 1958. Programs with common sense. In Brachman,
R., and Levesque, H., eds., Readings in Knowledge Representa-
tion, 1985. Morgan-Kaufmann.
Minton, S. 1990. Quantitative results concerning the utility of
explanation based learning. ArtiJicial Intelligence 42:363-39 1.
Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986. Explanation
based learning: A unifying view. Machine Learning 1:47-80.
Natarajan, B. K. 1989. On learning from exercises. In Proc. of
Workshop on Comp. Learning Theory, 72-87.
Rivest, R. L. 1987. Learning decision lists. Machine Learning
2(3):229-246.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3(1):9134.
Tadepalli, P., and Natarajan, B. 1996. A formal framework for
speedup learning from problems and solutions. Journal of AI
Research. Forthcoming.
Tadepalli, P. 199 1. A formalization of explanation based macro-
operator learning. In Proceedings of IJCAI-91, 6 16-622.
Tadepalli, P. 1992. A theory of unsupervised speedup learning.
In Proceedings of AAAI-92,229-234.
Valiant, L. G. 1985. Learning disjunctions of conjunctions. In
Proceedings of IJCAI-85,560-566.
Valiant, L. G. 1995. Rationahty. In Proc. Workshop on Comput.
Learning Theory, 3-l 4.
Weld, D. 1994. An introduction to least commitment planning.
AZ magazine 15(4):27-6 1.

792 Learning

