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Abstract 

This paper presents a new approach to iden- 
tifying and eliminating mislabeled training in- 
stances. The goal of this technique is to improve 
classification accuracies produced by learning al- 
gorithms by improving the quality of the training 
data. The approach employs an ensemble of clas- 
sifiers that serve as a filter for the training data. 
Using an n-fold cross validation, the training data 
is passed through the filter. Only instances that 
the filter classifies correctly are passed to the fi- 
nal learning algorithm. We present an empirical 
evaluation of the approach for the task of auto- 
mated land cover mapping from remotely sensed 
data. Labeling error arises in these data from 
a multitude of sources including lack of consis- 
tency in the vegetation classification used, vari- 
able measurement techniques, and variation in 
the spatial sampling resolution. Our evaluation 
shows that for noise levels of less than 40%, filter- 
ing results in higher predictive accuracy than not 
filtering, and for levels of class noise less than or 
equal to 20% filtering allows the base-line accu- 
racy to be retained. Our empirical results suggest 
that the ensemble filter approach is an effective 
method for identifying labeling errors, and fur- 
ther, that the approach will significantly benefit 
ongoing research to develop accurate and robust 
remote sensing-based methods to map land cover 
at global scales. 

Introduction 
A goal of an inductive learning algorithm is to form a 
generalization from a set of training instances such that 
classification accuracy on previously unobserved in- 
stances is maximized. The maximum accuracy achiev- 
able depends on the quality of the data and on the 
appropriateness of the biases of the chosen learning 
algorithm for the data. The work described here fo- 
cuses on improving the quality of the training data by 
identifying and eliminating mislabeled instances prior 
to applying the chosen learning algorithm, thereby in- 
creasing classification accuracy. 
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For some learning tasks, domain knowledge exists 
such that noisy instances can be identified because they 
go against the “laws” of the domain. For example, 
in the domain of diagnosing Alzheimer’s disease, it is 
known that the illness strikes the elderly. An instance, 
describing a patient, labeled as sick (versus not sick) 
for which the patient’s age is ten is clearly incorrect. 
This is an exa,mple of an instance for which the class 
label is incorrect, or a faulty measurement of the age 
feature was recorded. For many domains, this type of 
knowledge does not exist, and an automated method 
is needed to eliminate mislabeled instances from the 
training data. 

The idea of eliminating instances to improve the 
performance of nearest neighbor classifiers has been 
a focus of research in both pattern recognition and 
instance-based learning. Wilson (1972) used a three- 
nearest neighbor classifier (3-NN) to select instances 
that were then used to form a l-NN; only instances 
that the 3-NN classified correctly were retained for the 
l-NN. Aha, Kibler and Albert (1991) demonstrated 
that filtering instances based on records of their contri- 
bution to classification accuracy in an instance-based 
classifier improves the accuracy of the the resulting 
classifier. Skalak (1994) created an instance selection 
mecha.nism for nearest neighbor classifiers with the 
goal of reducing their computational cost, which de- 
pends on the number of stored instances. 

The idea of selecting “good” instances has also been 
applied to other types of classifiers. Winston (1975) 
demonstrated the utility of selecting “near misses” 
when learning structural descriptions. Skalak & Riss- 
land (1990) d escribe an approach to selecting instances 
for a decision tree algorithm using a case-based re- 
trieval algorithm’s taxonomy of cases (for example “the 
most-on-point cases”). Lewis and Catlett (1994) il- 
lustrate that sampling instances using an estimate of 
classification certainty drastically reduces the amount 
of data needed to learn a concept. 

In this article we address the problem of identify- 
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ing training instances that are mislabeled. Quinlan 
(1986) demonstrated that, for higher levels of noise, 
removing noise from attribute information decreases 
the predictive accuracy of the resulting classifier if the 
same attribute noise is present when the classifier is 
subsequently used. In the case of mislabeled training 
instances (class noise) the opposite is true; cleaning the 
training data will result in a classifier with higher pre- 
dictive accuracy. Cleaning can take one of two forms: 
removing mislabeled instances from the training data, 
or correcting their labels and retaining them. 

In the next section we introduce a method for iden- 
tifying mislabeled instances that is not specific to any 
single learning algorithm, but rather serves as a general 
method that can be applied to a dataset before feed- 
ing it to a specific learning algorithm. The basic idea is 
to use a set of learning algorithms to create classifiers 
that serve as a filter for the training data. The method 
was motivated by the technique of removing orrtliers 
in regression analysis (Weisberg, 1985). An outlier is a 
case (an instance) that does not follow the same model 
as the rest of the data, appearing as though is comes 
from a different probability distribution. Candidates 
are cases with a large residual error.’ Weisberg sug- 
gests building a model using all of the data except for 
the suspected outlier and testing whether it does or 
does not belong to the model using the externally stu- 
dentized t-test. 

Here, we apply this idea by using a set of classifiers 
formed from part of the training data to test whether 
instances in the remaining part of the training data are 
mislabeled. An important difference between our work 
and previous approaches to outlier detection is that 
our approach assumes that the errors in the class labels 
are independent of the particular model being fit to the 
data. In essence, our method attempts to identify data 
points that would be outliers in any model. 

Filtering Training 
This section describes a general procedure for iden- 
tifying and eliminating mislabeled instances from a 
training set. The first step is to identify candidate 
instances by using m learning algorithms (called filter 
algorithms) to tag instances as correctly or incorrectly 
labeled. To this end, a n-fold cross-validation is per- 
formed over the training data. For each of the n parts, 
the m algorithms are trained on the other n - 1 parts. 
The m resulting classifiers are then used to tag each 
instance in the excluded part as either correct or mis- 
labeled. An individual classifier tags an instance as 

c- 
‘Not all residual cases are outliers because according 

to the model, large errors will occur with the frequency 
prescribed by the generating probability distribution. 

mislabeled if it cannot classify the instance correctly. 
At the end of the n-fold cross-validation each in- 

stance in the training data has been tagged. Using 
this information, the second step is to form a classifier 
using a new version of the training data for which all of 
the instances identified as mislabeled are removed. The 
filtered set of training instances is provided as input to 
the final learning algorithm. The resulting classifier 
is the end product of the approach. Specific imple- 
mentations of this general procedure differ in how the 
filtering is performed, and in the relationship between 
the filter algorithm(s) and the final algorithm. 

Implementing the General Procedure 

One approach to implementing this procedure is to use 
the same algorithm to construct both the filter and the 
final classifier. This approach is most similar to remov- 
ing outliers in regression analysis, for which the same 
model is used to test for outliers and for fitting the 
final model to the data once the outliers have been re- 
moved. A related approach method is John’s (1995) 
method for removing the training instances that are 
pruned by C4.5 (Q uinlan, 1993). After the instances 
are removed a new tree is constructed using the filtered 
training data. In this approach training instances are 
filtered based on C4.5’~ pruning decisions, whereas our 
approach filters instances based on classification deci- 
sions. 

A second way to implement filtering is to construct 
the filter using one algorithm and the final classifier 
using a different algorithm. The assumption under- 
lying this approach is that some algorithms act as 
good filters for other algorithms, much like some algo- 
rithms act as good feature selection methods for others 
(Cardie, 1993). W’l 1 son’s (1972) approach to filtering 
data for a l-NN using a 3-NN is an example of this 
approach. 

A third method is based on ensemble classifiers, 
which combine the outputs of a set of base-level classi- 
fiers (Hansen & Salamon, 1990; Benediktsson & Swain, 
1992; Wolpert, 1992). A majority vote ensemble classi- 
fier will outperform each individual base-level classifier 
on a dataset if two conditions hold: (1) the probability 
of a correct classification by each individual classifier 
is greater than 0.5 and (2) if the errors in predictions 
of the base-level classifiers are independent (Hansen & 
Salamon, 1990). For this work, we use an ensemble 
classifier to detect mislabeled insta.nces by construct- 
ing a set of base-level detectors (classifiers) and then 
using them to identify mislabeled instances by consen- 
sus vote. This is distinct from majority vote in that 
all base-level detectors must agree that an instance is 
mislabeled for it to be eliminated from the training 
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Figure 1: Types of detection errors 

data. 

Consensus Filters 

In regression analysis, outliers are defined relative to a 
particular model. Here we assume that, some insta,nces 
in the data have been mislabeled and that the label 
errors are independent of the particu1a.r model being 
fit to the data. Therefore collecting information from 
different models will provide a better methocl for de- 
tecting mislabeled instances than from a single model. 

Training data (ground truth) for the purposes of 
land cover mapping is generally sca,rce. Indeed, this 
problem is common in many classification and learning 
problem domains (e.g. medical diagnosis). Therefore, 
we want to minimize the proba.bility of discarding a.n 
instance that is an exception rather than an error. In- 
deed, Danyluk and Provost (1993) note that, learning 
from noisy data is difficult because it is hard to distin- 
guish between noise and exceptions, especially if the 
noise is systematic. Ideally, the biases of at least one 
of the learning algorithms will enable it to learn the ex- 
ception. Therefore, one or more of the classifiers tha.t 
comprise the base-level set of detectors can have diffl- 
culty capturing a particular exception without causing 
the exception to be erroneously eliminatecl from t#he 
training data. Ta.king a consensus rather than a major- 
ity vote is a more conservative approach and will result 
in fewer instances being eliminated from the training 
data. The drawback of a conservative approach is the 
added risk in retaining bad data. 

In identifying mislabeled instances there are two 
types of error that can be made (see Figure 1). The 
first type (El) occurs when an instance is incorrectly 
tagged as mislabeled (D). The second type of error 
(Ez) occurs when a mislabeled instance (M) is tagged 
as correctly labeled. 

A consensus filter has a smaller probability of ma.k- 

ing an El error than each of its base-level detectors if 
the errors made by the base-level detectors are inde- 
pendent. Let pi be the probability that a base-level 
detector i makes an error of type El, then the proba- 
bility that a consensus filter comprised of m base-level 
detectors will make an error is: 

m 

i= 1 

The probability of mistaking a mislabeled instance 
for a correctly labeled instance (&) is computed dif- 
ferently. Let qi be the probability that a base-level 
detector i makes an error of type ES. A consensus 
filter makes a type Ez error if one or more of the base- 
level classifiers makes a type E2 error. The probability 
that a consensus filter makes an E2 error is given by: 

m 

Qi L fv2) 5 c qi 
i = 1 

The lower bound represents the case where each clas- 
sifier makes identical errors. The upper bound rep- 
resents the case where each base-level classifier makes 
type E2 errors on different parts of the data. There- 
fore, in direct contrast to type 1 errors, independence 
of the errors can lead to higher overall E2 error. 

Empirical Evaluation 
This research was motivated by the uncertainty caused 
by labeling errors in land-cover maps of the Earth’s 
surface. In this context, we evaluate the ability of con- 
sensus filters to identify mislabeled training instances 
in remotely sensed data that was labeled using exist- 
ing land cover maps. To simulate the type of error 
that is common to land-cover maps, we artificially in- 
troduced noise between pairs of classes that are likely 
to be confused in the original labels. We chose not 
to introduce noise between all pairs of classes as this 
would not model the types of labeling errors that occur 
in practice. Our experiments are designed to evaluate 
the consensus filter’s ability to identify mislabeled in- 
stances and the effect that, eliminating mislabeled in- 
st#ances has on predictive accuracy. 

Automated Land Cover Mapping 
The dataset consists of a time series of globally dis- 
tributed satellite observations of the Earth’s surface. 
The dataset was compiled by Defries and Townsend 
(1994), and includes 3398 locations that encompass all 
major terrestrial biomes2 and land cover types at the 
Earth’s surface (see Table 1). 

2A biome is the largest subdivision of the terrestrial 
ecosystems. Some examples of biornes are grasslands, 
forests and deserts. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Table 1: Land cover classes 
Class Name 
broadleaf evergreen forest 
conif. evergreen forest & woodland 
high lat. decid. forest & woodland 
tundra 
decid .-evergreen forest & woodland 
wooded grassland 
grassland 
bare ground 
cultivated 
broadleaf decid. forest & woodland 
shrubs and bare ground 

Insts 
628 
320 
112 
735 

57 
212 
348 
291 
527 

15 
153 

The remote sensing observations are measurements 
of a parameter called the normalized difference vege- 
tation index (NDVI). This index is commonly used to 
infer the amount of live vegetation present within a 
pixel at the time of data acquisition. Each one degree 
pixel is described by a time series of twelve NDVI val- 
ues at monthly time increments from 1987, and by its 
latitude, which can be useful for discriminating among 
classes with otherwise similar spectral properties. 

Learning Algorithms 

We used three well-known algorithms from the machine 
learning and statistical pattern recognition communi- 
ties: decision trees, nearest neighbor classifiers and lin- 
ear machines. The decision tree algorithm uses the in- 
formation gain ratio (Quinlan, 1986) to construct the 
tree, and prunes the tree using C4.5’~ pruning algo- 
rithm with a confidence level of 0.10. We choose to set 
k = 1 for the k-nearest neighbor algorithm, but in fu- 
ture implementations we will experiment with varying 
values of k. To find the weights of a linear machine 
(Nilsson, 1965) we used the thermal training rule for 
linear machines (Brodley & Utgoff, 1995). 

Experimental Method 

To test the data filtering procedure described above, 
we introduced random noise into the training data be- 
tween pairs of classes that are most likely to be con- 
fused in the d’riginal labels. In this way, we have re- 
alistically simulated a type of labeling error that is 
common to land cover maps. This type of error oc- 
curs because discrete classes and boundaries are used 
to distinguish between classes that have transitional 
boundaries in space and that have fairly small differ- 
ences in terms of their physical attributes. For exam- 
ple, the distinction between a grassland and wooded 
grassland can be subtle. Consequently, pixels labeled 
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as grassland may in fact represent open woodland ar- 
eas and vice versa, especially at the one degree spatial 
resolution of the data used here. For this work, we in- 
troduced random error between the following pairs of 
classes: 3-4, 5-2, 6-7, 8-11, 5-10. 

For each of ten runs, the dataset was divided into 
a training (90%) set and a testing (10%) set. For 
each run, an even distribution over the classes was en- 
forced to reduce variation in performance across dif- 
ferent runs. After the data was split into independent 
train and test sets, we then corrupted the training data 
by introducing labeling errors. For a noise level 2, an 
individual observation whose class is one of the identi- 
fied problematic pairs has an 2% chance of being cor- 
rupted. For example, an instance from class 8 (bare 
ground) has an s% chance of being changed to class 
11 (shrubs and bare ground), and an instance from 
class 11 has an 2% chance of being changed to class 8. 
Using this method the percentage of the entire training 
set that is corrupted will be less than Z% because only 
some pairs of classes are considered problematic. The 
actual percentage of noise in the corrupted training 
data is reported in column 2 of Table 2. 

For each of six noise levels, ranging from 0% to 40%, 
we compared the average predictive accuracy of clas- 
sifiers trained using filtered and unfiltered data. For 
each of the ten runs that make up the average, we 
used a four-fold cross-validation to filter the corrupted 
instances from the training data. The consensus filter 
consisted of the following base-level classifiers: a de- 
cision tree, a linear discriminant function and a l-NN 
classifier. To assess the ability of the consensus filter to 
identify the corrupted instances we then trained each 
of the three algorithms twice: first using the unfiltered 
dataset then using the filtered dataset. In addition, 
we formed two majority vote ensemble classifiers: one 
from the filtered and one from unfiltered data. The ma- 
jority vote ensemble serves as the final classifier and 
not as the filter. The resulting classifiers were then 
used to classify the uncorrupted test data. 

AfTect of Filtering on Classification 
Accuracy 

Table 2 reports the accuracy of the classifiers formed 
by each of the three algorithms without a filter (none) 
and with a consensus filter (CF). When zero noise is 
introduced, filtering did not make a significant differ- 
ence for any of the methods. Since the original data 
is not guaranteed to be noise free, we have no way to 
evaluate whether it improves the true classification ac- 
curacy by using the test data. For noise levels of 5 to 
30%, filtering significantly improved the classification 
accuracy (at the 0.05 level of significance using a paired 



Table 2: Comparison of classification accuracy of filtered versus unfiltered data 

Noise Actual 1-NN LM 
Level Noise None CF None CF 

0 -----m- 87.3 87.5 78.6 80.0 
5 3.4 84.4 87.8 76.7 78.9 

10 7.1 81.8 86.4 77.5 79.2 
20 13.8 75.8 83.1 70.2 78.1 
30 23.3 68.6 75.2 63.4 74.0 
40 36.1 58.4 59.9 49.0 54.2 

t-test) in all cases except when a linear machine was 
the final classifier under noise levels 5% and 10%. For 
noise levels of 5% and 10% the filtering allows reten- 
tion of approximately the same accuracy as the original 
uncorrupted dataset. At 20% noise the accuracies of k- 
NN and the decision tree constructed from the filtered 
data begin to drop, but not as substantially as when 
they are constructed from the unfiltered data. For ex- 
ample, applying a decision tree to the unfiltered data 
set causes a drop of 12.2% (100 * ($5.6 - 75.2)/ $5.6) 
from the base-line accuracy versus a 4.4% drop when 
using the filtered data. At 30% noise, filtering cannot 
fully overcome the error in the data and for noise levels 
of 40% and over, consensus filtering does not help. 

A hypothesis of interest is whether a majority vote 
ensemble classifier can be used instead of filtering. The 
final column of Table 2 reports the accuracies of major- 
ity vote ensembles constructed from unfiltered and fil- 
tered data. Each ensemble consists of three base-level 
classifiers: a l-NN, a linear machine and a univariate 
decision tree. During classification, if no ma.jority cla.ss 
was predicted for an instance, then the ensemble se- 
lects the class predicted by the univariate decision tree. 
The results show that the majority ensemble classifier 
formed from the unfiltered dataset is not as accurate 
as the l-NN and the decision tree formed from filtered 
data (excluding the case of a tree constructed with 5% 
noise). Using a consensus filter in conjunction with a 
majority vote ensemble results in higher accuracy than 
any of the other methods in all but three cases (l-NN 
for noise levels 0, 5 and 40). In summary, the results 
show that the consensus filter improves the classifk- 
tion accuracies of all four learning methods. 

Another point worth noting is that applying the con- 
sensus filter to the training data leads to substantia.lly 
smaller decision trees. Table 3 reports the number of 
leaves in decision trees produced from the filtered and 
unfiltered data. For O-10% noise, the filtered data cre- 
ates a tree with fewer leaves than a tree induced from 
the original dataset. This affect was also observed by 
John (1995) and attributed to Robust C4.5’~ ability to 

remove “confusing” instances from the training data, 
thereby reducing the size of the learned decision trees. 

UTree 
None CF 
85.6 85.5 
84.4 $6.1 
80.1 $5.1 
75.2 $1.8 
67.4 74.2 
56.9 59.6 

Table 

Majority 
None CF 
$7.3 87.1 
$6.5 87.2 
$4.4 86.7 
$0.7 85.6 
71.7 79.0 
57.5 59.7 

3: Tree size - number of 
Noise None CF 
0 187.7 121.4 
5 270.7 126.0 
10 333.0 143.5 
20 419.2 189.7 
30 484.6 262.4 
40 517.7 302.8 

The reduction in tree size and the improvement in 
accuracy raise the question as to whether filtering is 
just getting rid of those parts of the data that are 
difIicultO to classify, thereby achieving higher overall 
accuracy. In other words, is the filtering procedure 
throwing out the instances of a particular class, or of 
a subset of the classes, to achieve higher accuracy on 
the rema.ining classes. To test this hypothesis we ex- 
amined the decision tree’s accuracy for each class at 
each noise level. The results are shown in Table 4. We 
have placed a t by the class numbers of those classes 
that were artificially corrupted. 

For a noise level of 5% filtering decreased accuracy 
for classes 3, 5, 7 and 9, but by less than 2.5%. For a 
noise level of 10% the accuracy of class 1 went down 
by 0.7 %. For a noise level of 20% classes 5 and 10 
decreased in accuracy. For a noise level of 30% the 
accuracies of classes 5 and 7 decreased with filtering 
a.nd for 40% the accuracy of classes 4, 5, 6, and 8 de- 
creased. For classes that did not have noise added to 
them (classes 1 and 9), filtering generally did not de- 
crease accura.cy and in some cases increased accuracy. 
For class 5, filtering decreases accuracy in four out of 
the five cases. Class 5 is unique in that its labels were 
artificially corrupted with both class 10 and class 2, 
thereby doubling the noise level. In general, the results 
show that for this dataset, filtering does not sacrifice 
the accuracy of some of the classes to improve overall 
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Table 4: Decision tree accuracy by class 

Noise Filter 1 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 lot 11i 
5 None 94.3 78.4 92.7 92.9 40.0 81.0 66.8 90.4 78.5 0.0 82.0 
5 CF 96.0 79.7 91.8 95.6 38.0 84.8 64.4 97.3 77.7 0.0 88.0 
10 None 96.0 73.1 80.9 86.7 46.0 74.8 58.2 $9.7 73.5 0.2 74.0 
10 CF 95.3 79.7 88.2 94.8 46.0 83.8 63.2 94.2 78.4 0.2 81.3 
20 None 94.0 64.4 65.4 80.0 40.0 68.1 55.9 74.5 76.3 20.0 70.0 
20 CF 96.6 75.9 80.0 87.7 38.0 78.6 62.1 89.7 77.9 0.0 72.7 
30 None 95.3 50.9 54.5 64.4 22.0 58.1 52.4 67.9 74.2 0.0 54.0 
30 CF 95.7 64.1 54.5 76.3 16.0 68.1 50.9 74.8 81.5 0.0 71.3 
40 None 94.2 44.4 47.3 47.0 18.0 47.1 32.4 44.8 72.7 0.0 39.4 
40 CF 97.0 51.2 49.1 45.1 12.0 43.8 35.3 42.8 83.8 0.0 47.3 

accuracy, and that it can retain base-line accuracy in 
noisy classes for noise levels of up to 20%. 

Filter Precision 

To assess the consensus filter’s ability to identify misla- 
beled instances, we examined the intersection between 
the set of instances that were corrupted and the set of 
instances that were tagged as mislabeled by the con- 
sensus filter. In Figure 1 this is the a.rea A4 fl D. The 
results of this analysis are shown in Table 5. Each row 
in the table reports the average over the ten runs of 
the number of instances discarded by the filter 1 D 1, 
corrupted in the data 1 M I, in both sets 1 M n D I, 
and estimates of the probability of making an El or an 
E2 error. P(Er) represents the probability of throwing 
out good data and can be estimated as: 

f’(G) = 
Discarded - Intersect 

Total - Corrupted = 
WI-IMf-w 

Total- I M I 

P(E2) represents the probability of keeping ba.d da.ta 
and can be estimated as: 

P(E2)= 
Corrupted - Intersect IMI-IMnDI = 

Corrupted WI 
There are 3063 (90% of 3398) total training in- 
stances. Therefore, for a noise level of 5%, P(EI ) = 
257.8-89.5 
3063-103.0 = .057 and P(E2) = ‘“~&~g.5 =‘.13i. -’ 

The results show that the probability of throwing 
out good data remains small even for higher noise lev- 
els, illustrating that the consensus filter is conservative 
in discarding data. On the other hand, the result,s il- 
lustrate that the probability of keeping bad data grows 
rapidly as the noise level increases. Indeed for a noise 
level of 40% it has a 72% chance of retaining misla- 
beled instances. This comes as no surprise since 40% 
noise makes it difficult to distinguish between pairs of 
classes that have been corrupted, which is evident from 

Table 5: Consensus filter precision 

Number of Instances 
PI WI IMnDl 

5 257.8 103.0 89.5 
10 353.7 217.7 171.8 
20 465.0 422.7 272.8 
30 559.8 712.2 324.9 
40 609.8 1106.4 314.8 

Prob. of Error 
P(E1) P(E2) 

0.057 0.131 
0.064 0.211 
0.073 0.355 
0.100 0.544 
0.151 0.716 

the low accuracies observed for these classes in Table 
4. 

For higher levels of noise, the consensus filter did 
not find many of the mislabeled instances. For do- 
mains with high class noise a less conservative ap- 
proach may do a better job at minimizing type E2 
errors. Indeed, a drawback of the consensus filter is 
that it minimizes El errors at the expense of incurring 
more E2 errors. Therefore future work will focus on 
modeling this tradeoff explicitly as a parameter. In 
addition, we will develop methods for customizing this 
parameter to the dataset characteristics of the partic- 
ular task at hand. A straightforward way to model the 
tradeoff is to ha.ve the parameter be set to be the min- 
imum number of base-level classifiers that must label 
an instance as noisy before it can be discarded. At one 
end of the spectrum a.ll ba.se-level classifiers must label 
an instance a.nd at the other only one must la.bel an 
instance before it ca.n be discarded. 

Conclusions and Future Directions 
This article presented a procedure for identifying mis- 
labeled instances. The results of an empirical evalua- 
tion demonstrated that the consensus filter method im- 
proves classification accuracy for a la.nd-cover mapping 
task for which the training data contains mislabeled in- 
stances. Filtering allowed the base-line accuracy to be 
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retained for noise levels up to 20%. An evaluation of 
the precision of the approach illustrated that consensus 
filters are conservative in throwing away good data, at 
the expense of keeping mislabeled data. 

A future direction of research will be to extend the 
filter approach to correct labeling errors in training 
data. For example, one way to do this might be to rela- 
bel instances if the consensus class is different than the 
observed class. Instances for which the consensus filter 
predicts two or more classes would still be discarded. 
This direction is particularly important because of the 
paucity of high quality training data availa.ble for many 
applications. 

Finally, the issue of determining whether or not to 
use the consensus filter method for a given data set 
must be considered. For the work described here, the 
data were artificially corrupted. Therefore the nature 
and magnitude of the labeling errors were known a pri- 
ori. Unfortunately, this type of information is rarely 
known for most “real world” applications. In some sit- 
uations, it may be possible to use doma.in knowledge 
to estimate the amount of la,bel noise in a dataset. 
For situations where this knowledge is not available, 
the conservative nature of our filtering procedure dic- 
tates that relatively few instances will be cliscarcled for 
data sets with low levels of labeling error (see Table 5). 
Therefore, the application of this method to rela.tively 
noise free datasets should not significantly impact the 
performance of the final classification procedure. 
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