
Carla E. Bradley
School of Electrical

and Computer Engineering
Purdue University

West Lafayette, IN 47906
brodley@ecn.purdue.edu

Abstract

This paper presents a new approach to iden-
tifying and eliminating mislabeled training in-
stances. The goal of this technique is to improve
classification accuracies produced by learning al-
gorithms by improving the quality of the training
data. The approach employs an ensemble of clas-
sifiers that serve as a filter for the training data.
Using an n-fold cross validation, the training data
is passed through the filter. Only instances that
the filter classifies correctly are passed to the fi-
nal learning algorithm. We present an empirical
evaluation of the approach for the task of auto-
mated land cover mapping from remotely sensed
data. Labeling error arises in these data from
a multitude of sources including lack of consis-
tency in the vegetation classification used, vari-
able measurement techniques, and variation in
the spatial sampling resolution. Our evaluation
shows that for noise levels of less than 40%, filter-
ing results in higher predictive accuracy than not
filtering, and for levels of class noise less than or
equal to 20% filtering allows the base-line accu-
racy to be retained. Our empirical results suggest
that the ensemble filter approach is an effective
method for identifying labeling errors, and fur-
ther, that the approach will significantly benefit
ongoing research to develop accurate and robust
remote sensing-based methods to map land cover
at global scales.

Introduction
A goal of an inductive learning algorithm is to form a
generalization from a set of training instances such that
classification accuracy on previously unobserved in-
stances is maximized. The maximum accuracy achiev-
able depends on the quality of the data and on the
appropriateness of the biases of the chosen learning
algorithm for the data. The work described here fo-
cuses on improving the quality of the training data by
identifying and eliminating mislabeled instances prior
to applying the chosen learning algorithm, thereby in-
creasing classification accuracy.

Mark A. Fried1
Department of Geography and

Center for Remote Sensing
Boston University
Boston, MA 02215
friedl@crsa.bu.edu

For some learning tasks, domain knowledge exists
such that noisy instances can be identified because they
go against the “laws” of the domain. For example,
in the domain of diagnosing Alzheimer’s disease, it is
known that the illness strikes the elderly. An instance,
describing a patient, labeled as sick (versus not sick)
for which the patient’s age is ten is clearly incorrect.
This is an exa,mple of an instance for which the class
label is incorrect, or a faulty measurement of the age
feature was recorded. For many domains, this type of
knowledge does not exist, and an automated method
is needed to eliminate mislabeled instances from the
training data.

The idea of eliminating instances to improve the
performance of nearest neighbor classifiers has been
a focus of research in both pattern recognition and
instance-based learning. Wilson (1972) used a three-
nearest neighbor classifier (3-NN) to select instances
that were then used to form a l-NN; only instances
that the 3-NN classified correctly were retained for the
l-NN. Aha, Kibler and Albert (1991) demonstrated
that filtering instances based on records of their contri-
bution to classification accuracy in an instance-based
classifier improves the accuracy of the the resulting
classifier. Skalak (1994) created an instance selection
mecha.nism for nearest neighbor classifiers with the
goal of reducing their computational cost, which de-
pends on the number of stored instances.

The idea of selecting “good” instances has also been
applied to other types of classifiers. Winston (1975)
demonstrated the utility of selecting “near misses”
when learning structural descriptions. Skalak & Riss-
land (1990) d escribe an approach to selecting instances
for a decision tree algorithm using a case-based re-
trieval algorithm’s taxonomy of cases (for example “the
most-on-point cases”). Lewis and Catlett (1994) il-
lustrate that sampling instances using an estimate of
classification certainty drastically reduces the amount
of data needed to learn a concept.

In this article we address the problem of identify-

Inductive Learning 799

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

ing training instances that are mislabeled. Quinlan
(1986) demonstrated that, for higher levels of noise,
removing noise from attribute information decreases
the predictive accuracy of the resulting classifier if the
same attribute noise is present when the classifier is
subsequently used. In the case of mislabeled training
instances (class noise) the opposite is true; cleaning the
training data will result in a classifier with higher pre-
dictive accuracy. Cleaning can take one of two forms:
removing mislabeled instances from the training data,
or correcting their labels and retaining them.

In the next section we introduce a method for iden-
tifying mislabeled instances that is not specific to any
single learning algorithm, but rather serves as a general
method that can be applied to a dataset before feed-
ing it to a specific learning algorithm. The basic idea is
to use a set of learning algorithms to create classifiers
that serve as a filter for the training data. The method
was motivated by the technique of removing orrtliers
in regression analysis (Weisberg, 1985). An outlier is a
case (an instance) that does not follow the same model
as the rest of the data, appearing as though is comes
from a different probability distribution. Candidates
are cases with a large residual error.’ Weisberg sug-
gests building a model using all of the data except for
the suspected outlier and testing whether it does or
does not belong to the model using the externally stu-
dentized t-test.

Here, we apply this idea by using a set of classifiers
formed from part of the training data to test whether
instances in the remaining part of the training data are
mislabeled. An important difference between our work
and previous approaches to outlier detection is that
our approach assumes that the errors in the class labels
are independent of the particular model being fit to the
data. In essence, our method attempts to identify data
points that would be outliers in any model.

Filtering Training
This section describes a general procedure for iden-
tifying and eliminating mislabeled instances from a
training set. The first step is to identify candidate
instances by using m learning algorithms (called filter
algorithms) to tag instances as correctly or incorrectly
labeled. To this end, a n-fold cross-validation is per-
formed over the training data. For each of the n parts,
the m algorithms are trained on the other n - 1 parts.
The m resulting classifiers are then used to tag each
instance in the excluded part as either correct or mis-
labeled. An individual classifier tags an instance as

c-
‘Not all residual cases are outliers because according

to the model, large errors will occur with the frequency
prescribed by the generating probability distribution.

mislabeled if it cannot classify the instance correctly.
At the end of the n-fold cross-validation each in-

stance in the training data has been tagged. Using
this information, the second step is to form a classifier
using a new version of the training data for which all of
the instances identified as mislabeled are removed. The
filtered set of training instances is provided as input to
the final learning algorithm. The resulting classifier
is the end product of the approach. Specific imple-
mentations of this general procedure differ in how the
filtering is performed, and in the relationship between
the filter algorithm(s) and the final algorithm.

Implementing the General Procedure

One approach to implementing this procedure is to use
the same algorithm to construct both the filter and the
final classifier. This approach is most similar to remov-
ing outliers in regression analysis, for which the same
model is used to test for outliers and for fitting the
final model to the data once the outliers have been re-
moved. A related approach method is John’s (1995)
method for removing the training instances that are
pruned by C4.5 (Q uinlan, 1993). After the instances
are removed a new tree is constructed using the filtered
training data. In this approach training instances are
filtered based on C4.5’~ pruning decisions, whereas our
approach filters instances based on classification deci-
sions.

A second way to implement filtering is to construct
the filter using one algorithm and the final classifier
using a different algorithm. The assumption under-
lying this approach is that some algorithms act as
good filters for other algorithms, much like some algo-
rithms act as good feature selection methods for others
(Cardie, 1993). W’l 1 son’s (1972) approach to filtering
data for a l-NN using a 3-NN is an example of this
approach.

A third method is based on ensemble classifiers,
which combine the outputs of a set of base-level classi-
fiers (Hansen & Salamon, 1990; Benediktsson & Swain,
1992; Wolpert, 1992). A majority vote ensemble classi-
fier will outperform each individual base-level classifier
on a dataset if two conditions hold: (1) the probability
of a correct classification by each individual classifier
is greater than 0.5 and (2) if the errors in predictions
of the base-level classifiers are independent (Hansen &
Salamon, 1990). For this work, we use an ensemble
classifier to detect mislabeled insta.nces by construct-
ing a set of base-level detectors (classifiers) and then
using them to identify mislabeled instances by consen-
sus vote. This is distinct from majority vote in that
all base-level detectors must agree that an instance is
mislabeled for it to be eliminated from the training

800 Learning

Discarded Mislabeled

Training
Instances

Figure 1: Types of detection errors

data.

Consensus Filters

In regression analysis, outliers are defined relative to a
particular model. Here we assume that, some insta,nces
in the data have been mislabeled and that the label
errors are independent of the particu1a.r model being
fit to the data. Therefore collecting information from
different models will provide a better methocl for de-
tecting mislabeled instances than from a single model.

Training data (ground truth) for the purposes of
land cover mapping is generally sca,rce. Indeed, this
problem is common in many classification and learning
problem domains (e.g. medical diagnosis). Therefore,
we want to minimize the proba.bility of discarding a.n
instance that is an exception rather than an error. In-
deed, Danyluk and Provost (1993) note that, learning
from noisy data is difficult because it is hard to distin-
guish between noise and exceptions, especially if the
noise is systematic. Ideally, the biases of at least one
of the learning algorithms will enable it to learn the ex-
ception. Therefore, one or more of the classifiers tha.t
comprise the base-level set of detectors can have diffl-
culty capturing a particular exception without causing
the exception to be erroneously eliminatecl from t#he
training data. Ta.king a consensus rather than a major-
ity vote is a more conservative approach and will result
in fewer instances being eliminated from the training
data. The drawback of a conservative approach is the
added risk in retaining bad data.

In identifying mislabeled instances there are two
types of error that can be made (see Figure 1). The
first type (El) occurs when an instance is incorrectly
tagged as mislabeled (D). The second type of error
(Ez) occurs when a mislabeled instance (M) is tagged
as correctly labeled.

A consensus filter has a smaller probability of ma.k-

ing an El error than each of its base-level detectors if
the errors made by the base-level detectors are inde-
pendent. Let pi be the probability that a base-level
detector i makes an error of type El, then the proba-
bility that a consensus filter comprised of m base-level
detectors will make an error is:

m

i= 1

The probability of mistaking a mislabeled instance
for a correctly labeled instance (&) is computed dif-
ferently. Let qi be the probability that a base-level
detector i makes an error of type ES. A consensus
filter makes a type Ez error if one or more of the base-
level classifiers makes a type E2 error. The probability
that a consensus filter makes an E2 error is given by:

m

Qi L fv2) 5 c qi
i = 1

The lower bound represents the case where each clas-
sifier makes identical errors. The upper bound rep-
resents the case where each base-level classifier makes
type E2 errors on different parts of the data. There-
fore, in direct contrast to type 1 errors, independence
of the errors can lead to higher overall E2 error.

Empirical Evaluation
This research was motivated by the uncertainty caused
by labeling errors in land-cover maps of the Earth’s
surface. In this context, we evaluate the ability of con-
sensus filters to identify mislabeled training instances
in remotely sensed data that was labeled using exist-
ing land cover maps. To simulate the type of error
that is common to land-cover maps, we artificially in-
troduced noise between pairs of classes that are likely
to be confused in the original labels. We chose not
to introduce noise between all pairs of classes as this
would not model the types of labeling errors that occur
in practice. Our experiments are designed to evaluate
the consensus filter’s ability to identify mislabeled in-
stances and the effect that, eliminating mislabeled in-
st#ances has on predictive accuracy.

Automated Land Cover Mapping
The dataset consists of a time series of globally dis-
tributed satellite observations of the Earth’s surface.
The dataset was compiled by Defries and Townsend
(1994), and includes 3398 locations that encompass all
major terrestrial biomes2 and land cover types at the
Earth’s surface (see Table 1).

2A biome is the largest subdivision of the terrestrial
ecosystems. Some examples of biornes are grasslands,
forests and deserts.

Inductive Learning 801

1
2
3
4
5
6
7
8
9

10
11

Table 1: Land cover classes
Class Name
broadleaf evergreen forest
conif. evergreen forest & woodland
high lat. decid. forest & woodland
tundra
decid .-evergreen forest & woodland
wooded grassland
grassland
bare ground
cultivated
broadleaf decid. forest & woodland
shrubs and bare ground

Insts
628
320
112
735

57
212
348
291
527

15
153

The remote sensing observations are measurements
of a parameter called the normalized difference vege-
tation index (NDVI). This index is commonly used to
infer the amount of live vegetation present within a
pixel at the time of data acquisition. Each one degree
pixel is described by a time series of twelve NDVI val-
ues at monthly time increments from 1987, and by its
latitude, which can be useful for discriminating among
classes with otherwise similar spectral properties.

Learning Algorithms

We used three well-known algorithms from the machine
learning and statistical pattern recognition communi-
ties: decision trees, nearest neighbor classifiers and lin-
ear machines. The decision tree algorithm uses the in-
formation gain ratio (Quinlan, 1986) to construct the
tree, and prunes the tree using C4.5’~ pruning algo-
rithm with a confidence level of 0.10. We choose to set
k = 1 for the k-nearest neighbor algorithm, but in fu-
ture implementations we will experiment with varying
values of k. To find the weights of a linear machine
(Nilsson, 1965) we used the thermal training rule for
linear machines (Brodley & Utgoff, 1995).

Experimental Method

To test the data filtering procedure described above,
we introduced random noise into the training data be-
tween pairs of classes that are most likely to be con-
fused in the d’riginal labels. In this way, we have re-
alistically simulated a type of labeling error that is
common to land cover maps. This type of error oc-
curs because discrete classes and boundaries are used
to distinguish between classes that have transitional
boundaries in space and that have fairly small differ-
ences in terms of their physical attributes. For exam-
ple, the distinction between a grassland and wooded
grassland can be subtle. Consequently, pixels labeled

802 Learning

as grassland may in fact represent open woodland ar-
eas and vice versa, especially at the one degree spatial
resolution of the data used here. For this work, we in-
troduced random error between the following pairs of
classes: 3-4, 5-2, 6-7, 8-11, 5-10.

For each of ten runs, the dataset was divided into
a training (90%) set and a testing (10%) set. For
each run, an even distribution over the classes was en-
forced to reduce variation in performance across dif-
ferent runs. After the data was split into independent
train and test sets, we then corrupted the training data
by introducing labeling errors. For a noise level 2, an
individual observation whose class is one of the identi-
fied problematic pairs has an 2% chance of being cor-
rupted. For example, an instance from class 8 (bare
ground) has an s% chance of being changed to class
11 (shrubs and bare ground), and an instance from
class 11 has an 2% chance of being changed to class 8.
Using this method the percentage of the entire training
set that is corrupted will be less than Z% because only
some pairs of classes are considered problematic. The
actual percentage of noise in the corrupted training
data is reported in column 2 of Table 2.

For each of six noise levels, ranging from 0% to 40%,
we compared the average predictive accuracy of clas-
sifiers trained using filtered and unfiltered data. For
each of the ten runs that make up the average, we
used a four-fold cross-validation to filter the corrupted
instances from the training data. The consensus filter
consisted of the following base-level classifiers: a de-
cision tree, a linear discriminant function and a l-NN
classifier. To assess the ability of the consensus filter to
identify the corrupted instances we then trained each
of the three algorithms twice: first using the unfiltered
dataset then using the filtered dataset. In addition,
we formed two majority vote ensemble classifiers: one
from the filtered and one from unfiltered data. The ma-
jority vote ensemble serves as the final classifier and
not as the filter. The resulting classifiers were then
used to classify the uncorrupted test data.

AfTect of Filtering on Classification
Accuracy

Table 2 reports the accuracy of the classifiers formed
by each of the three algorithms without a filter (none)
and with a consensus filter (CF). When zero noise is
introduced, filtering did not make a significant differ-
ence for any of the methods. Since the original data
is not guaranteed to be noise free, we have no way to
evaluate whether it improves the true classification ac-
curacy by using the test data. For noise levels of 5 to
30%, filtering significantly improved the classification
accuracy (at the 0.05 level of significance using a paired

Table 2: Comparison of classification accuracy of filtered versus unfiltered data

Noise Actual 1-NN LM
Level Noise None CF None CF

0 -----m- 87.3 87.5 78.6 80.0
5 3.4 84.4 87.8 76.7 78.9

10 7.1 81.8 86.4 77.5 79.2
20 13.8 75.8 83.1 70.2 78.1
30 23.3 68.6 75.2 63.4 74.0
40 36.1 58.4 59.9 49.0 54.2

t-test) in all cases except when a linear machine was
the final classifier under noise levels 5% and 10%. For
noise levels of 5% and 10% the filtering allows reten-
tion of approximately the same accuracy as the original
uncorrupted dataset. At 20% noise the accuracies of k-
NN and the decision tree constructed from the filtered
data begin to drop, but not as substantially as when
they are constructed from the unfiltered data. For ex-
ample, applying a decision tree to the unfiltered data
set causes a drop of 12.2% (100 * ($5.6 - 75.2)/ $5.6)
from the base-line accuracy versus a 4.4% drop when
using the filtered data. At 30% noise, filtering cannot
fully overcome the error in the data and for noise levels
of 40% and over, consensus filtering does not help.

A hypothesis of interest is whether a majority vote
ensemble classifier can be used instead of filtering. The
final column of Table 2 reports the accuracies of major-
ity vote ensembles constructed from unfiltered and fil-
tered data. Each ensemble consists of three base-level
classifiers: a l-NN, a linear machine and a univariate
decision tree. During classification, if no ma.jority cla.ss
was predicted for an instance, then the ensemble se-
lects the class predicted by the univariate decision tree.
The results show that the majority ensemble classifier
formed from the unfiltered dataset is not as accurate
as the l-NN and the decision tree formed from filtered
data (excluding the case of a tree constructed with 5%
noise). Using a consensus filter in conjunction with a
majority vote ensemble results in higher accuracy than
any of the other methods in all but three cases (l-NN
for noise levels 0, 5 and 40). In summary, the results
show that the consensus filter improves the classifk-
tion accuracies of all four learning methods.

Another point worth noting is that applying the con-
sensus filter to the training data leads to substantia.lly
smaller decision trees. Table 3 reports the number of
leaves in decision trees produced from the filtered and
unfiltered data. For O-10% noise, the filtered data cre-
ates a tree with fewer leaves than a tree induced from
the original dataset. This affect was also observed by
John (1995) and attributed to Robust C4.5’~ ability to

remove “confusing” instances from the training data,
thereby reducing the size of the learned decision trees.

UTree
None CF
85.6 85.5
84.4 $6.1
80.1 $5.1
75.2 $1.8
67.4 74.2
56.9 59.6

Table

Majority
None CF
$7.3 87.1
$6.5 87.2
$4.4 86.7
$0.7 85.6
71.7 79.0
57.5 59.7

3: Tree size - number of
Noise None CF
0 187.7 121.4
5 270.7 126.0
10 333.0 143.5
20 419.2 189.7
30 484.6 262.4
40 517.7 302.8

The reduction in tree size and the improvement in
accuracy raise the question as to whether filtering is
just getting rid of those parts of the data that are
difIicultO to classify, thereby achieving higher overall
accuracy. In other words, is the filtering procedure
throwing out the instances of a particular class, or of
a subset of the classes, to achieve higher accuracy on
the rema.ining classes. To test this hypothesis we ex-
amined the decision tree’s accuracy for each class at
each noise level. The results are shown in Table 4. We
have placed a t by the class numbers of those classes
that were artificially corrupted.

For a noise level of 5% filtering decreased accuracy
for classes 3, 5, 7 and 9, but by less than 2.5%. For a
noise level of 10% the accuracy of class 1 went down
by 0.7 %. For a noise level of 20% classes 5 and 10
decreased in accuracy. For a noise level of 30% the
accuracies of classes 5 and 7 decreased with filtering
a.nd for 40% the accuracy of classes 4, 5, 6, and 8 de-
creased. For classes that did not have noise added to
them (classes 1 and 9), filtering generally did not de-
crease accura.cy and in some cases increased accuracy.
For class 5, filtering decreases accuracy in four out of
the five cases. Class 5 is unique in that its labels were
artificially corrupted with both class 10 and class 2,
thereby doubling the noise level. In general, the results
show that for this dataset, filtering does not sacrifice
the accuracy of some of the classes to improve overall

Inductive Learning 803

Table 4: Decision tree accuracy by class

Noise Filter 1 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 lot 11i
5 None 94.3 78.4 92.7 92.9 40.0 81.0 66.8 90.4 78.5 0.0 82.0
5 CF 96.0 79.7 91.8 95.6 38.0 84.8 64.4 97.3 77.7 0.0 88.0
10 None 96.0 73.1 80.9 86.7 46.0 74.8 58.2 $9.7 73.5 0.2 74.0
10 CF 95.3 79.7 88.2 94.8 46.0 83.8 63.2 94.2 78.4 0.2 81.3
20 None 94.0 64.4 65.4 80.0 40.0 68.1 55.9 74.5 76.3 20.0 70.0
20 CF 96.6 75.9 80.0 87.7 38.0 78.6 62.1 89.7 77.9 0.0 72.7
30 None 95.3 50.9 54.5 64.4 22.0 58.1 52.4 67.9 74.2 0.0 54.0
30 CF 95.7 64.1 54.5 76.3 16.0 68.1 50.9 74.8 81.5 0.0 71.3
40 None 94.2 44.4 47.3 47.0 18.0 47.1 32.4 44.8 72.7 0.0 39.4
40 CF 97.0 51.2 49.1 45.1 12.0 43.8 35.3 42.8 83.8 0.0 47.3

accuracy, and that it can retain base-line accuracy in
noisy classes for noise levels of up to 20%.

Filter Precision

To assess the consensus filter’s ability to identify misla-
beled instances, we examined the intersection between
the set of instances that were corrupted and the set of
instances that were tagged as mislabeled by the con-
sensus filter. In Figure 1 this is the a.rea A4 fl D. The
results of this analysis are shown in Table 5. Each row
in the table reports the average over the ten runs of
the number of instances discarded by the filter 1 D 1,
corrupted in the data 1 M I, in both sets 1 M n D I,
and estimates of the probability of making an El or an
E2 error. P(Er) represents the probability of throwing
out good data and can be estimated as:

f’(G) =
Discarded - Intersect

Total - Corrupted =
WI-IMf-w

Total- I M I

P(E2) represents the probability of keeping ba.d da.ta
and can be estimated as:

P(E2)=
Corrupted - Intersect IMI-IMnDI =

Corrupted WI
There are 3063 (90% of 3398) total training in-
stances. Therefore, for a noise level of 5%, P(EI) =
257.8-89.5
3063-103.0 = .057 and P(E2) = ‘“~&~g.5 =‘.13i. -’

The results show that the probability of throwing
out good data remains small even for higher noise lev-
els, illustrating that the consensus filter is conservative
in discarding data. On the other hand, the result,s il-
lustrate that the probability of keeping bad data grows
rapidly as the noise level increases. Indeed for a noise
level of 40% it has a 72% chance of retaining misla-
beled instances. This comes as no surprise since 40%
noise makes it difficult to distinguish between pairs of
classes that have been corrupted, which is evident from

Table 5: Consensus filter precision

Number of Instances
PI WI IMnDl

5 257.8 103.0 89.5
10 353.7 217.7 171.8
20 465.0 422.7 272.8
30 559.8 712.2 324.9
40 609.8 1106.4 314.8

Prob. of Error
P(E1) P(E2)

0.057 0.131
0.064 0.211
0.073 0.355
0.100 0.544
0.151 0.716

the low accuracies observed for these classes in Table
4.

For higher levels of noise, the consensus filter did
not find many of the mislabeled instances. For do-
mains with high class noise a less conservative ap-
proach may do a better job at minimizing type E2
errors. Indeed, a drawback of the consensus filter is
that it minimizes El errors at the expense of incurring
more E2 errors. Therefore future work will focus on
modeling this tradeoff explicitly as a parameter. In
addition, we will develop methods for customizing this
parameter to the dataset characteristics of the partic-
ular task at hand. A straightforward way to model the
tradeoff is to ha.ve the parameter be set to be the min-
imum number of base-level classifiers that must label
an instance as noisy before it can be discarded. At one
end of the spectrum a.ll ba.se-level classifiers must label
an instance a.nd at the other only one must la.bel an
instance before it ca.n be discarded.

Conclusions and Future Directions
This article presented a procedure for identifying mis-
labeled instances. The results of an empirical evalua-
tion demonstrated that the consensus filter method im-
proves classification accuracy for a la.nd-cover mapping
task for which the training data contains mislabeled in-
stances. Filtering allowed the base-line accuracy to be

804 Learning

retained for noise levels up to 20%. An evaluation of
the precision of the approach illustrated that consensus
filters are conservative in throwing away good data, at
the expense of keeping mislabeled data.

A future direction of research will be to extend the
filter approach to correct labeling errors in training
data. For example, one way to do this might be to rela-
bel instances if the consensus class is different than the
observed class. Instances for which the consensus filter
predicts two or more classes would still be discarded.
This direction is particularly important because of the
paucity of high quality training data availa.ble for many
applications.

Finally, the issue of determining whether or not to
use the consensus filter method for a given data set
must be considered. For the work described here, the
data were artificially corrupted. Therefore the nature
and magnitude of the labeling errors were known a pri-
ori. Unfortunately, this type of information is rarely
known for most “real world” applications. In some sit-
uations, it may be possible to use doma.in knowledge
to estimate the amount of la,bel noise in a dataset.
For situations where this knowledge is not available,
the conservative nature of our filtering procedure dic-
tates that relatively few instances will be cliscarcled for
data sets with low levels of labeling error (see Table 5).
Therefore, the application of this method to rela.tively
noise free datasets should not significantly impact the
performance of the final classification procedure.

Acknowledgments
We would like to thank our reviewers for their ca.reful
and detailed comments and Ruth Defries for supplying
the data used for this work.

References
Aha, D., Kibler, D., AZ Albert, M. (1991). Instance-

based learning algorithms. Machine Learning, 6,
37-66.

Benediktsson, J., & Swain, P. (1992). Consensus theo-
retic classification methods. IEEE Transactions on
Systems, Man, and Cybernetics, 22, 668-704.

Brodley, 6. E., & Utgoff, P. E. (1995). Multivariate
decision trees. Machine Learning, 19, 45-77.

Cardie, C. (1993). Using decision trees to improve case-
based learning. Machine Learning: Proceedings of
the Tenth International Conference (pp. 25-32).
Amherst, MA: M0rga.n Kaufmann.

Danyluk, A., & Provost, F. (1993). Sma.11 disjuncts
in action: Learning to dia.gnose errors in the
telephone network local loop. Machine Learning:

Proceedings of the Tenth International Conference
(pp. 81-88). Amherst, MA: Morgan Kaufmann.

Defries, R. S. , & Townsend, J. R. G. (1994).
NDVI-derived land cover classifications at a global
scale. International Journal of Remote Sensing,
15, 3567-3586.

Hansen, L. K., & Salamon, P. (1990). Neural network
ensembles. IEEE Transactions of Pattern Analysis
and Machine Intelligence, 12, 993-1001.

John, G. H. (1995). Robust decision trees: Remov-
ing outliers from data. Proceedings of the First
International Conference on Knowledge Discovery
and Data Mining (pp. 174-179). Montreal, Quebec:
AAAI Press.

Lewis, D., & Catlett, J. (1994). Heterogeneous uncer-
tainty sa.mpling for supervised learning. Machine
Learning: Proceedings of the Eleventh Interna-
tional Conference (pp. 148-156). New Brunswick,
NJ: Morgan Kaufmann.

Nilsson, N. J. (1965). L earning machines. New York:
McGra.w-IIill.

Quinlan, J. R.. (1986). Induction of decision trees. Ma-
chine Learning, I, 81-106.

Quinlan, J. R. (1993). C4.5: Programs for machine
learning. San Mateo, CA: Morgan Kaufmann.

Skalak, D., 8r; R.issla.nd, E. (1990). Inductive learning
in a mixed paradigm setting. Proceedings of the
Eighth National Conference on Artificial Intelli-
gence (pp. 840-847). Boston, MA: Morgan Kauf-
mann.

Ska.lak, D. (1994). Prototype and feature selection by
sampling and random mutation hill climbing al-
goritllins. Machine Learning: Proceedings of the
Eleventh International Conference (pp. 293-301).
New Brunswick, NJ: Morgan Kaufmann.

Weisberg, S. (1985). Applied linear regression. John
Wiley & Sons.

Wilson, D. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Trans. on
System.s, Man and Cybernetics, 2, 408-421.

Winston, I’. II. (1975). Learning structura.1 descriptions
from exa,mples. In Winston (Ed.), The psychology
of computer vision. New York: McGraw-Hill.

Wolpert, D. II. (1992). Stacked generalization. Neural
Networks, 5, 24 l-259.

Inductive Learning 805

