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Abstract 

Inductive algorithms rely strongly on their represen- 
tational biases, Constructive induction can mitigate 
representational inadequacies. This paper introduces 
the notion of a relative gain measure and describes a 
new constructive induction algorithm (GALA) which 
is independent of the learning algorithm. Unlike most 
previous research on constructive induction, our meth- 
ods are designed as preprocessing step before stan- 
dard machine learning algorithms are applied. We 
present the results which demonstrate the effective- 
ness of GALA on artificial and real domains for several 
learners: C4.5, CN2, perceptron and backpropagation. 

Introduction 
The ability of an inductive learning algorithm to find 
an accurate concept description depends heavily upon 
the representation. Concept learners typically make 
strong assumptions about the vocabulary used to rep- 
resent these examples. The vocabulary of features de- 
termines not only the form and size of the final concept 
learned, but also the speed of the convergence (Fawcett 
& Utgoff, 1991). Learning algorithms that consider a 
single attribute at a time may overlook the significance 
of combining features. For example, C4.5 (Quinlan, 
1993) splits on the test of a single attribute while con- 
structing a decision tree, and CN2 (Clark & Niblett, 
1989; Clark & Boswell,l991) specializes the complexes 
in Star by conjoining a single literal or dropping a dis- 
junctive element in its selector. Such algorithms suffer 
from the standard problem of any hill-climbing search: 
the best local decision may not lead to the best global 
result. 

One approach to mitigate these problems is to con- 
struct new features. Constructing new feature by hand 
is often difficult (Quinlan, 1983). The goal of con- 
structive induction is to automatically transform the 
original representation space into a new one where the 
regularity is more apparent (Dietterich & Michalski, 
1981; Aha 1991 ), thus yielding improved classifica- 
tion accuracy. Several machine learning algorithms 
perform feature construction by extending greedy, hill- 
climbing strategies, including FRINGE, GREEDY3 
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(Pagallo & Haussler, 1990), DCFringe (Yang et. al., 
1991), CITRE (Matheus & Rendell, 1989). These al- 
gorithms construct new features by finding local pat- 
terns in the previously constructed decision tree. These 
new attributes are added to the original attributes, 
the learning algorithm is called again, and the process 
continues until no new useful attributes can be found. 
However, such greedy feature construction algorithms 
often show their improvement only on artificial con- 
cepts (Yang ed. al., 1991). FRINGE-like algorithms 
are limited by the quality of the original decision tree. 
Some reports show that if the basis for the construction 
of the original tree is a greedy, hill-climbing strategy, 
accuracies remain low (Rendell & Ragavan, 1993). 

An alternative approach is to use some form of looka- 
head search. Exhaustive lookahead algorithms like 
IDX (Norton, 1989) can improve decision tree induc- 
tive learners without constructing new attributes, but 
the lookahead is computationally prohibited, except in 
simple domains. LFC (Ragavan & Rendell, 1993; Ra- 
gavan et. al., 1993) mitigate this problem by using 
directed lookahead and by caching features. However, 
LFC’s quality measure (i.e., blurring measure) limits 
this approach. 

In this paper, we introduce a new feature construc- 
tion algorithm which addresses both the bias of the 
initial representation and the search complexity in con- 
structive induction. 

Issues 
There are several important issues about the construc- 
tive induction process. 

Interleaving vs Preprocessing 
By interleaving we mean that the learning process and 
constructive induction process are intertwined into a 
single algorithm. Most current constructive induction 
algorithms fall into this category. This limits the ap- 
plicability of the constructive induction method. By 
keeping these processes separate, the constructive in- 
duction algorithm can be used as a preprocessor to any 
learning algorithm. With the preprocessor model one 
can also test the appropriateness of the learned fea- 
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tures over a wider class of learning algorithms. GALA 
follows the preprocessing approach. 

Wypot hesis-driven vs Data-driven 
Hypothesis-driven approaches construct new at- 
tributes based on the hypotheses generated previously. 
This is a two-edged sword. They have the advantage 
of previous knowledge and the disadvantage of being 
strongly dependent on the quality of previous knowl- 
edge. On the other hand, data-driven approaches can- 
not benefit from previous hypotheses, but can avoid 
the strong dependence. GALA is data-driven. 

Absolute Measures vs Relative Measures 
Absolute measures evaluate the quality of an attribute 
on the training examples without regard to how the 
attribute was constructed. Examples of such measures 
include entropy variants (e.g., blurring), gain ratio, and 
error-rate. While it is important that a new attribute 
performs well, it is also important that it has significant 
improvement over its parents. We refer to this as a rel- 
ative measure. GALA uses both relative and absolute 
measures. GALA’s relative measure is different from 
STAGGER’s (Schlimmer, 1987) in two respects. First, 
STAGGER metrics are based on statistical measures 
rather than information measures. Second, STAGGER 
evaluates the quality of a son by its absolute difference 
in quality from it parents (i.e., using parent’s quality 
as threshold) while GALA uses the relative quality dif- 
ference. 

Operators 
The simplest operators for constructing new attributes 
are boolean operators, which are what most construc- 
tive induction algorithms use. One could also consider 
relational operators or operations based on clustering. 
Currently GALA only uses (iteratively) the boolean 
operators “and” and “not”. 

Attribute Types 
We say an attribute is crisp if it has a relatively small 
description as a Boolean combination of the primitive 
features. Otherwise the attribute is not crisp. A com- 
mon type of non-crisp attributes are prototypical at- 
tributes. A prototypical attribute corresponds to a m- 
of-n concept. For example the 5-of-10 concept requires 
252 conjuncts when described in disjunctive normal 
form. Obviously there is a spectrum between crisp and 
non-crisp attributes. GALA finds crisp attributes. 

The GALA Algorithm 
The idea of GALA (G eneration of Attributes for Learn- 
ing Algorithms) is to consider those constructed fea- 
tures which have high relative and absolute gain ratio. 
This will be defined more precisely. In later sections we 
show the advantage of GALA. We also show the value 
of using a combined metric with ablation studies. The 

Given: Primitive attributes P, training examples E, threshold, 
cycle limit c and new attributes NEW 
(NEW is empty when GALA invoked the first time) 

Return: a set of new attributes NEW 

Procedure GALA(P,E,threshold,c,NEW) 
If (size(E) greater than threshold) and (E is not all of same class) 

Then Set Boo1 to Boolean attributes from Booleanize(P,E) 
Set Pool to attributes from Generate(Bool,E,c) 
Set Best to attribute in Pool with hiphest nain ratio 

Adi fgest to NEW 
i more than one, pick one of smzllest zze) 

Split on Best 
N = empty set 
For each outcome, Si, of Split on Best 

Ei = examples with outcome Si on split 
NEWi = GALA(P,Ei,threshold,c,NEW) 
N = union of N and NEWi 

NEW = union of NEW and N 
Return NEW 

Else Return empty set 

Figure 1: GALA 

Given: Attributes P and examples E. 
Return: set of candidate boolean attributes. 

Procedure Booleanize (P,E) 
Set Boo1 to empty. 
For each attribute f in P, find the v 

such that Pos(f,v) has highest gain ratio on E. 
Add Pos(f,v) and Neg(f,v) to Bool. 

Return Boo1 

Figure 2: Transforming 
boolean attributes 

real and nominal attributes to 

algorithm has three basic steps. The general flow of 
the algorithm is generate-and-test, but it is compli- 
cated since testing is interlaced with generation. The 
overall control flow is given in Figure 1. For each parti- 
tion of the data, only one new attribute is added to the 
original set of primitives. Partitioning is stopped when 
the set is homogeneous or below a fixed size, currently 
set at 10. The following subsections describe the basic 
steps in more detail. 

Booleanize 
Suppose f is a feature and v is any value in its 
range. We define two boolean attributes, Pos(f,v) and 
Neg(f,v) as follows: 

Pos(f,u) I ; ;; if f is a nominal or boolean attribute 
if f is a continuous attribute 

Nes(f, u> f if f is a nominal or boolean attribute 
if f is a continuous attribute 

The idea is to transform each real or nominal at- 
tribute to a single boolean attribute by choosing a sin- 
gle value from the range. The algorithm is more pre- 
cisely defined in Figure 2. This process takes O(AVE) 
time where A is the number of attributes, V is the max- 
imum number of attribute-values, and E is the number 
of examples. The net effect is that there will be two 
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Given: a set of boolean attributes P 
a set of training examples E 
cycle limit C 

Return: new boolean attributes 

Procedure Generate(P,E,C) 
Let Pool be P 
Repeat 

For each conjunction of Pos(f,v) or Neg(f,v) 
with Pos (g,w) or Neg(g,w). 

If conjunction passes GainFilter, add it to Pool 
Until no new attributes are found or reach cycle limit C 
Return Pool 

Figure 3: Attribute Generation 

Given: a set of new Attributes N 
Return: new attributes with high GR and RGR 

Procedure GainFilter 
Set M to those attributes in N whose gain ratio is 

better than mean(GR(N)). 
Set M’ to those attributes in M whose UPPER-RGR is 

better than mean(UPPER-RGR(N)) or LOWER-RGR is 
better than mean(LOWER-RGR(N)) 

Return M’. 

Figure 4: 
ratio 

Filtering by mean absolute and relative gain 

boolean 
tribute. 

attributes associated with each primitive at- 

Generation 
Conceptually, GALA uses only two operators, conjunc- 
tion and negation, to construct new boolean attributes 
from old ones. Repetition of these operators yields the 
possibility of generating any boolean feature. However 
only attributes with high heuristic value will be kept. 
Figure 3 describes the iterative and interlaced gener- 
ate and test procedure. If in each cycle we only keep B 
best new attributes (i.e., beam size is B), the procedure 
takes O(cB2E) time where c is the pre-determined cy- 
cle limit, B is the beam size, and E is the number of 
examples. 

Heuristic Gain Filtering 
In general, if A is an attribute we define GR(A) as the 
gain ratio of A. If a new attribute A is the conjunction 
of attributes Al and A2, then we define two relative 
gain ratios associated with A as: 

UPPER-RGR(A) = max{ 
GR(A) - GR(A1) GR(A) - GR(A2) 

GR(A) ’ GRC-4) 
1. 

LOWER-RGR(A) = min{ 
GR(A) - GR(A1) GR(A) - GR(A2)) 

GR(A) ’ GR(A) ’ 

We consider the relative gain ratio only when the con- 

junction has a better gain ratio than each of its par- 
ents. Consequently this measure ranges from 0 to 1 
and is a measure of the synergy of the conjunction 
over the value of the individual attributes. To con- 
sider every new attribute during feature construction 
is computational impractical. Coupling relative gain 
ratio with gain ratio constrains the search space with- 
out overlooking many useful attributes. We define 
mean(GR(S)) as th e average absolute gain ratio of each 
attribute in S. We also define the mean relative gain 
ratios (mean(UPPER-RGR(S)) and mean(LOWER- 
RGR(S))) over a set S of attributes similarly. We use 
these measures to define the GainFilter in Figure 4. 

Experimental 
We carried out three types of experiments. First, we 
show that GALA performs comparably with LFC on 
an artificial set of problems that Ragaven & Rendell 
(1993) used. They have kindly provided us with the 
code to LFC so that we could also perform other tests 
(Thanks to Ricardo Vilalta). Second, we consider the 
performance of GALA on a number of real world do- 
mains. Last, we consider various ablation studies to 
verify that our system is not overly complicated, i.e. 
the various components add power to the algorithm. 

In all experiments, the parameters of C4.5 and CN2 
were set to default values to keep the consistency. For 
the backpropagation algorithm, we used the best pa- 
rameter settings after several tries. The learning rate 
and the momentum was between 0 and 1. We also 
adopted the suggested heuristics for a fully connected 
network structure: initial weights selected at random 
and a single hidden layer whose number of nodes was 
half the total number of input and output nodes (Ra- 
gavan & Rendell 1993; Rumelhart et. al., 1986) 

Artificial Domains 
We chose the same four boolean function as did 

Ragavan & Rendell (1993) and used their training 
methodology. Each boolean was defined over nine at- 
tributes, where four or five attributes were irrelevant. 
The training set had 32 examples and the remaining 
480 were used for testing. 

The four boolean functions were: 

fl = x1x2x3 + 2122x4 + x1x2x5 

f2 = 5122%3 + 2224??3 + jc3z4itl 

f3 = &j&x6 + ii62@5 + jc&& 
f4 = zf5xlx8 + 282451 + i?$&$xl 

These boolean functions are progressively more diffi- 
cult to learn, as verified by the experiments with C4.5, 
or in terms of blurring measure (see Ragavan & Ren- 
dell, 1993). Th e results of this experiment with respect 
to the learning algorithms C4.5, CN2 (using Laplace 
accuracy instead of entropy), perceptron, and back- 
prop are reported in Table 1. Each result is averaged 
over 20 runs. GALA always significantly improved per- 
ceptron and backpropagation and usually improved the 

Learning 



Table 1: Accuracy and Hypothesis Complexity Comparison for artificial domains. Significant 
GALA over learning algorithms is marked with *, and significant difference between GALA+C4 
ceptron, backprop) and LFC is marked with 1 (or 2, 3, 4). 

improvement by 
.5 (or CN2, per- 

. .c, - - - - 

LFC 1 94.2 f4.1 1 93.3 kts.9 1 84.0 Lt6.31zd4 1 82.3 f8.11 
size I 3.9 1 5.51 I 6.9’ I 7 11 II 

ll.Prl 1 c, I 77 79 
. .* 

I 3.1 tl 

performance of C4.5 and CN2. This demonstrates that 
the construction process is different than the learn- 
ing one. Also it shows that the features generated by 
GALA are valuable with respect to several rather dif- 
ferent learning algorithms. We believe this is a result of 
combining relative and absolute measure, so that the 
constructed attribute will be different from the ones 
generated by the learning algorithm. 

Previous reports indicated that LFC outperforms 
many other learners in several domains (Ragavan & 
Rendell, 1993; Ragavan et. al., 1993). The results of 
LFC are also reported in the table. In Table 1 from 
top-to-bottom the rows denote: the accuracy of the 
learning algorithm, the accuracy of the learning algo- 
rithm using the generated attributes, the concept size 
(node count for C4.5 and number of selectors for CN2) 
without generated attributes, the concept size after us- 
ing GALA, the accuracy of LFC, the concept size (node 
count for LFC), and the number of new attributes LFC 
used. In all of these experiments, GALA produced an 
average of only one new attribute and this attribute 
was always selected by C4.5 and CN2. The differences 
of hypothesis complexities and accuracies are signifi- 
cant at 0.01 level in a paired t-test. Because CN2, 
which is a rule induction system, is different from de- 
cision tree induction algorithms, we did not compare 
its hypothesis complexity with LFC’s. In no case was 
the introduction of new attributes detrimental and in 
13 out of 16 cases the generated attribute was useful. 

Real Domains 
We are more interested in demonstrating the value of 

GALA on real world domains. The behavior of GALA 
on these domains is very similar to its behavior on the 
artificial domains. We selected from UC1 repository 
several domains that have a mixture of nominal and 
continuous attributes. These were: Cleveland heart 
disease, Bupa liver disorder, Credit screening, Pima 
Diabetes, Wisconsin Breast Cancer, Wine and Promot- 
ers. In each case, two thirds of the examples form the 
training set and the remaining examples form the test 

set. The results of these experiments are given in table 
6. We do not report the results for the Diabetes do- 
main since there was no significant difference for any 
field. Besides providing the same information as in the 
artificial domains, we have also added two additional 
fields, the average number of new attributes generated 
by GALA and the average number of attributes used 
(i.e., included in the final concept description) by the 
learning algorithm. We did not apply LFC or percep- 
tron to the wine domain because they require 2 classes 
and the wine domain has 3 classes. Again each result 
is averaged over 20 runs. 

Table 2 shows the results for accuracies, hypothesis 
size, number of new attributes added and number of 
new attributes used. The differences of concept com- 
plexities are significant at the 0.01 level, and the dif- 
ferences of accuracies are significant at the 0.02 level in 
a paired t-test. In no case was the introduction of the 
generated attributes harmful to the learning algorithm 
and in 21 out of 27 cases (6 out of 7 for C4.5, 4 out 
of 7 for CN2, 5 out of 6 for perceptron, 6 out of 7 for 
backprop) GALA significantly increased the resulting 
accuracy. Excluding the Diabetes domain GALA al- 
ways improved the accuracy of both backpropagation 
and perceptron, mimicking the results for the artifi- 
cial concepts. For CN2 and C4.5, GALA sometimes 
improved the performance and never decreased the ac- 
curacy. 

Ablation Studies 
To further demonstrate the value of combining abso- 
lute gain ratio with relative gain ratio, we conducted 
the following studies. First, we evaluated the impor- 
tance of GainFilter (i.e., combining relative gain ratio 
with absolute gain ratio). We reran all the experi- 
ments, including the artificial and the real domains, 
but we only used the attributes not passing Gain- 
Filter to construct new attributes. The significant 
decrease of accuracies for all domains indicates that 
GainFilter could effectively keep promising attributes 
for constructing new attributes. Those attributes that 
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Table 2: Accuracy and Hypothesis Complexity Comparison for real domains. Significant improver 
over learning algorithms is marked with *, and significant difference between GALA+C4.5 (or CP 
backprop) and LFC is marked with 1 (or 2. 3. 4). 

- -I \ I 

Domem Heart Liver Credit Breast Wine Promoter 
C4.5 72.3 f 2.1 62.1 f 5.0 81.6 f 2.5 93.6 f 1.4 89.5 f 4.9 73.9 f 8.8 

GALA+ 76.4 f 2.5’ 65.4 f 3.8’ 83.3 f 2.2’ 95.2 f l.am 93.8 3.0* f 79.5 f 7.8’ 
c4.5 

would not contribute to forming useful new attributes 
were successfully filtered out by GainFilter. Due to 
space consideration, we only report the accuracies for 
C4.5+GALA and C4.5+GALA- in Table 3, where 
GALA- stands for the modified algorithm. 

Second, we evaluated the value of relative measure. 
In any iterative feature construction process, the ma- 
jor difficulty is to determine the usefulness of attributes 
for later process. One obvious way to avoid overlooking 
promising attributes is to keep all the attributes, but 
this is computationally prohibited. Thus beam search 
naturally comes into play. However, when absolute 
measure is the only quality criterion, it increases the 
danger of overlooking promising attributes. For exam- 
ple, a new attribute over its parents with a minor in- 
crease of absolute gain ratio by chance may be mistak- 
enly selected in the beam given that the new attribute 
happens to have high absolute gain ratio. On the 
other hand, a new attribute with significant increase 
of gain ratio over its parents, but only with low ab- 
solute gain ratio itself may be mistakenly ruled out of 
the beam though this attribute is promising. Increas- 
ing the beam size is one way to solve the problem, but 
it is difficult to predict the perfect beam size, and arbi- 
trarily increasing the beam size is also computationally 
prohibited. We first demonstrated the problem men- 
tioned above to emphasize the need of other measure 
than absolute measure. We reran all the experiments 
using only the absolute gain ratio with beam size of 
ten, and compared the results with those of GALA 
also with the same beam size. GALA’s accuracies for 
heart, wine and promoter domains were significantly 
better (by 1% to 3%, depending on the domain and the 
learning algorithm). The results of the other domains 
were not significantly different. Though the absolute 
gain ratio beam search sometimes reached the same ac- 
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lent by GALA 
2, perceptron, 

Table 3: Effectiveness Test on GainFilter 
(C4.5+GALA/C4.5+GALA-) 

Function C4.5+GALA C4.5+GALA- 
fl 95.6zt 2.0 93.8f 4.4 . 
f2 95.2f 5.7 91.9 f 5.7 . 
f3 87.9f 6.8 84.0f 6.3 
fA 85.9 f 7.8 77.8f 9.1 

curacy as GALA, yet it’s search space was much larger 
( i.e., by 100% to 300% depending on domains). The 
above results showed that absolute measure does have 
the problem mentioned earlier. Increasing the beam 
size could solve the problem, but by how much do we 
need to increase the beam size? This suggests that we 
need another measure which combined with absolute 
measure could not only put the right attributes in a 
beam and avoid overlooking promising attributes, but 
also effectively constrain the search space. Thus we 
introduced the relative measure. 

To further validate the contribution of relative mea- 
sure, we intentionally removed the relative measure 
from GainFilter (refer to Figure 4) to increase the 
search space, and in fact, the new search space covered 
the old one. Again we reran all the experiments, and 
found that the accuracies were not significantly differ- 
ent, but search space increased dramatically (i.e., by 
25% to 200%, depending on domains). Based on the 
above studies, we conclude that absolute measure is 
insufficient, but combined with relative measure could 
not only avoid overlooking important information, but 
also effectively constrain the search space. 



Conclusion and Future Research 

This paper presents a new approach to constructive 
induction which generates a small number (1 to 3 on 
average) of new attributes. The GALA method is in- 
dependent of the learning algorithm so can be used as a 
preprocessor to various learning algorithm. We demon- 
strated that it could improve the accuracy of C4.5, 
CN2, the perceptron algorithm and the backpropaga- 
tion algorithm. The method relies on combining an 
absolute measure of quality with a relative one, which 
encourages the algorithm to find new features that are 
outside the space generated by standard machine learn- 
ing algorithms. Using this approach we demonstrated 
significant improvement in several artificial and real- 
world domains and no degradation in accuracy in any 
domain. 

There is no pruning technique incorporated with the 
current version of GALA. We suspect that some new 
attributes generated by GALA may be too complicated 
to improve the accuracy. Therefore, in one direction 
of the future research, we will study various pruning 
techniques. Another limit of the current GALA is that 
it has only two Boolean operators: “and” and “not”. 
Extending the operators could not only improve the 
performance of GALA but also expand its applicabil- 
ity. 

With hindsight, the results of GALA may be an- 
ticipated. Essentially, GALA constructs crisp boolean 
features. Since some boolean features are outside the 
space of a perceptron, we should expect that GALA 
would help this learner the most. In fact, perceptron 
trainging with GALA generated features was nearly 
as good as more general symbolic learners. With re- 
spect to backpropagation the expectation is similar. 
While neural nets can learn crisp features, their search 
bias favors prototypical attributes. Consequently we 
again expect that GALA will aid neural net learn- 
ing. While our results were less impressive compared 
with perceptron and backprop, it is almost more sur- 
prising that GALA improves CN2 and C4.5. Both of 
these algorithms find crisp attributes althought their 
search biases are somewhat different. However for both 
algorithms, GALA found useful additional crisp at- 
tributes. This demonstrates that GALA’s search is 
different from either of these algorithms. What GALA 
lacks is the ability to find non-crisp attributes. In our 
future research we intend to extend GALA to also find 
non-crisp attributes. 
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