
Structural

Stefan Kramer
Austrian Research Institute for Artificial Intelligence

Schottengasse 3
A-1010 Vienna, Austria

stefan@ai.univie.ac.at

Abstract

In many real-world domains the task of machine
learning algorithms is to learn a theory for pre-
dicting numerical values. In particular several
standard test domains used in Inductive Logic
Programming (ILP) are concerned with predict-
ing numerical values from examples and rela-
tional and mostly non-determinate background
knowledge. However, so far no ILP algorithm ex-
cept one can predict numbers and cope with non-
determinate background knowledge. (The only
exception is a covering algorithm called FORS.)
In this paper we present Structural Regression
Trees (SRT), a new algorithm which can be ap-
plied to the above class of problems. SRT inte-
grates the statistical method of regression trees
into ILP. It constructs a tree containing a literal
(an atomic formula or its negation) or a conjunc-
tion of literals in each node, and assigns a numer-
ical value to each leaf. SRT provides more com-
prehensible results than purely statistical meth-
ods, and can be applied to a class of problems
most other ILP systems cannot handle. Experi-
ments in several real-world domains demonstrate
that the approach is competitive with existing
methods, indicating that the advantages are not
at the expense of predictive accuracy.

Introduction
Many real-world machine learning domains involve the
prediction of a numerical value. In particular, sev-
eral test domains used in Inductive Logic Programming
(ILP) (including the Mesh data sets (Dolsak, Bratko,
& Jezernik 1994) and the problem of learning quantita-
tive structure-activity relations (QSAR) (Hirst, King,
& Sternberg 1994a) (Hirst, King, & Sternberg 1994b))
are concerned with the prediction of numerical values
from examples and relational background knowledge.
This kind of learning problem is called relational re-
gression in (DBeroski 1995)) and can be formulated
in the “normal” ILP framework (i.e., it is not part
of the non-monotonic ILP framework which includes
the closed-world assumption). Nevertheless, relational
regression differs from other ILP learning tasks in that
there are no negative examples.

812 Learning

In this paper we present Structural Regression Trees
(SRT), a new algorithm for relational regression. SRT
can be viewed as integrating the statistical method of
regression trees (Breiman et al. 1984) into ILP.

To simplify the presentation, we first review work
in statistics and machine learning that is related t’o
our approach. In the third section we will describe
the method, including the solution for the problem of
non-determinate literals. Furthermore, we present a
new method for detecting outliers by analogy. Sub-
sequently, we discuss results of experiments in several
real-world domains. Finally, we draw our conclusions,
and sketch possible directions of further research.

elated Work
The classical statistical model for the prediction of nu-
merical values is linear least-squares regression. Re-
finements and extensions like non-linear models are
also well-known and used in many real-world appli-
cations. However, regression models have several limi-
tations: first of all, regression models are often hard to
understand. Secondly, classical statistical methods as-
sume that, all features are equally relevant for all parts
of the instance space. Thirdly, regression models do
not allow for easy utilization of domain knowledge.
The only way to include knowledge is to “engineer”
features, and to map these symbolic features to real-
valued features.

In order to solve some of these problems, regression
tree methods (CART (Breiman et al. 1984), RETIS
(Karalic 1992), M5 (Quinlan 1992)) have been devel-
oped. Regression trees are supposed to be more com-
prehensible than traditional regression models. Fur-
thermore, regression trees by definition do not t,reat
all features as equally relevant for all regions of the in-
stance space. The basic idea of regression trees accord-
ing to CART is to minimize the least squared error for
the next split of a node in the tree, and to predict, for
unseen instances, the average of the dependent variable
of all training instances covered by the matching leaf.
RETIS and M5 differ in that they do not assign single
values to the leaves, but linear regression models.

Sophisticated post-pruning methods have been de-

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

veloped for CART, since the method grows the tree A more detailed comparison between FORS and
until every leaf is “pure”, i.e. the leaves cover instances SRT shows that FORS may induce clauses contain-

ing linear regression models, whereas SRT does not. sharing the same value of the dependent variable. The
regression tree resulting from the growing phase is usu-
ally bigger than a classification tree, since it takes more
nodes to achieve pure leaves.

Manago’s KATE (Manago 1989) learns decision
trees from examples represented in a frame-based lan-
guage that is equivalent to first-order predicate calcu-
lus. KATE makes extensive use of a given hierarchy
and heuristics to generate the branch tests. To our
knowledge, KATE was the first system to induce first-
order theories in a divide-and-conquer fashion.

Watanabe and Rendell (Watanabe & Rendell 1991)
also investigated the use of divide-and-conquer for
learning first-order theories. Although their so-called
structural decision trees are used for the prediction of
categorical classes and not continuous classes, it is the
closest work found in the literature.

Linear regression models usually improve the accuracy
of the induced models, but they also reduce their com-
prehensibility. Moreover, FORS requires setting thir-
teen parameters, whereas SRT only has one parame-
ter. Seven parameters of FORS are used to control
pre-pruning, whereas SRT uses a simple method for
tree selection based on the minimum description length
(MDL) principle (Rissanen 1978). Most importantly,
we believe that the theories learned by FORS are very
hard to understand, since the rules are basically or-
dered rule sets (Clark & Boswell 1991): to understand
the meaning of a particular clause, we have t,o under-
stand all preceding clauses in the theory.

So far, two methods have been applied to the prob-
lem of relational regression: DINUS/RETIS (Dzeroski,
Todoroski, & Urbancic 1995), a combination of DINUS
(Lavrac & Dzeroski 1994) and RETIS (Karalic 1992),
and FORS (Karalic 1995).

DINUS/RETIS transforms the learning problem
into a propositional language, and subsequently ap-
plies RETIS, a propositional regression tree algo-
rithm, to the transformed problem. In contrast to
DINUS/RETIS, SRT solves the problem in its origi-
nal representation, and does not require transforming
the problem. Furthermore, the transformation does
not work for non-determinate background knowledge,
which is a strict limitation of the appr0ach.i

FORS is the only other algorithm so far that can
be applied to the same class of learning problems as
SRT, since it can also deal with non-determinate back-
ground knowledge. FORS differs from SRT in its use
of separate-and-conquer instead of divide-and-conquer
(i.e., it is a covering algorithm, not a tree-based al-
gorithm). Generally, all the advantages and disad-
vantages known from other algorithms of these types
(tree-based vs. covering) apply. A discussion of both
strategies in the context of top-down induction of logic
programs can be found in (Bostrom 1995): on the one
hand, the hypothesis space for separate-and-conquer is
larger than for divide-and-conquer. Thus, more com-
pact hypotheses might be found using separate-and-
conquer. On the other hand, building a tree is compu-
tationally cheaper than searching for rules. In (Weiss
& Indurkhya 1995), a comparison of tree induction
and rule induction in propositional regression basically
draws the same conclusions. However, the approach to
rule-based regression in (Weiss & Indurkhya 1995) is
different from FORS, since it involves the discretiza-
tion of the numeric dependent variable.

1 Cohen (Cohen 1994b) demonstrated that certain types
of non-determinate background knowledge can be proposi-
tionalized. However, this is not generally the case.

c

4

I2

nl
n2

Yl,j

Y&j

set of instances covered by a leaf 1
in a partial tree
the conjunction of all literals in the path
from the root of the tree to E
subset of I for which proving c A t
(t E T, the set of possible tests)
succeeds
subset of I for which proving c A t fails
(I=I1UI2, I~nI2=0)
number of instances in Ii (nl = IIll)
number of instances in 12 (n2 = 1121)
value of the dependent variable
of a training instance j in 11
value of the dependent variable
of a training instance j in 12
average of all instances in 11
average of all instances in 12

Table 1: Definition of terms

escription of the Method
Overview
SRT is an algorithm which learns a theory for t’he pre-
diction of numerical values from examples and rela-
tional (and even non-determinate) background knowl-
edge. The algorithm constructs a tree cont,aining a
literal (an atomic formula or its negation) or a conjunc-
tion of literals in each node, and assigns a numerical
value to each leaf.

More precisely, SRT generates a series of trees of in-
creasing complexity, and subsequently returns one of
the generated trees according to a preference criterion.
This preference criterion is based on the minimum
description length (MDL) principle (Rissanen 1978))
which helps to avoid overfitting the data especially in
the presence of noise. The whole process can be seen
as a kind of pruning based on the MDL principle.

For the construction of a single tree, SRT uses the
same method as used for the usual top-down induc-

Inductive Learning 813

activity(Drug,8.273) :- struct(Drug,Groupl,Group2,Group3),
(pi_doner(Group3,X), X< 2).

activity(Drug,6.844) :- struct(Drug,Groupl,Group2,Group3),
\+ (pi_doner(Group3,X), X< 2),
h-doner(Groupl,O).

activity(Drug,6.176) :- struct(Drug,Groupl,Group2,Group3),
\+ (pi-doner(GroupS,X), X< a),
\+ h-doner(Groupl,O).

Table 2: Example of a structural regression tree in clausal form

tion of decision trees (Quinlan 1993a). The algorithm
recursively builds a binary tree, selecting a literal or
a conjunction of literals (as defined by user-defined
schemata (Silverstein & Pazzani 1991)) in each node
of the tree until a stopping criterion is fulfilled. With
each selected literal or conjunction, the examples cov-
ered by a node are further partitioned, depending on
the success or failure of the literal(s) on the examples.

The selection of the literal or conjunction is per-
formed as follows: let I be the set of training instances
covered by a leaf I in a partial tree, and c be the con-
junction of all literals in the path from the root of the
tree to Z. (For a definition of all used terms see table
1.) Then every possible test t is evaluated according
to the resulting partitioning of the training instances I
in 1. The instances I are partitioned into the instances
11 C I for which proving c A t succeeds, and into the
instances 12 C_ I for which proving CA t fails. For every
possible test t we calculate the sum of the squared dif-
ferences between the actual values yi,j of the training
instances and the average @ of Ii. From all possible
tests, SRT selects t* E T which minimizes this sum of
squared differences (see equation 1). When the stop-
ping criterion (see below) is fulfilled, the average @ is
assigned to the leaf as the predicted value for unseen
cases that reach the leaf.

Sum Squared Errors = >: x(yi,j _ vii)2 (1)
i=l j=l

From another point of view, each path starting from
the root can be seen as a clause. Every time the tree is
extended by a further literal or conjunction, two fur-
ther clauses are generated: one of them is the current
clause (i.e. the path in the current partial tree) ex-
tended by the respective literal or conjunction of lit-
erals. The other clause is the current clause extended
by the negation of the literal(s). Table 2 shows a sim-
ple example of a structural regression tree in clausal
form. The three clauses predict the biological activity
of a compound from its structure and its characteris-
tics. Depending on the conditions in the clauses, the
theory assigns either 8.273 or 6.844 or 6.176 to every
unseen instance. In the following, we will use this lat-
ter, clausal view on the process.

The simplest possible stopping criterion is used to

decide if we should further grow a tree: SRT stops ex-
tending a clause when no literal(s) can produce t,wo
further clauses that both cover more than a required
minimum number of training instances. In t,he follow-
ing this parameter will be called the minimum cover-
age of all clauses in the theory. Apart from its use as
a stopping criterion, the minimum coverage parameter
has the following benefits: we have direct control over
the complexity of the trees being built. The smaller the
value of the parameter, the more complex the tree will
be, since we allow for more specific clauses in the t,ree.
In such a way we can generate a series of increasingly
complex trees, and return the one which opt,imizes a
preference function. Note that if the minimum cov-
erage parameter had a different value, different, split#s
might have been selected in any node of the t’ree.

SRT generates a series of increasingly complex trees
by varying the minimum coverage parameter. The al-
gorithm starts with a high minimum coverage, and
decreases it from iteration to iteration. Fortunately,
many iterations can be skipped, since nothing would
change for certain values of the minimum coverage pa-
rameter: in the process of building the tree, we always
select the one literal or conjunction which produces two
clauses with an admissible coverage and which yields
the lowest sum of squared errors. There could be lit-
erals or conjunctions yielding an even lower sum of
squared errors, but with a coverage that! is too low.
The maximum coverage of these literals or conjunc-
tions is the next value of the paramet,er for which t#he
tree would be different from the current tree. So we
choose this value as the next minimum coverage.

Finally, SRT returns the one tree from this series
that obtains the best compression of the data. The
compression measure is based on the minimum descrip-
tion length (MDL) p rinciple (Rissanen 1978)) and will
be discussed in the next section.

Tree Selection by MDL
The MDL principle tries to measure both t’he simplicity
and the accuracy of a particular theory in a common
currency, namely in terms of the number of bits needed
for encoding theory and data. (Cheeseman 1990) de-
fines the message length of a theory (called model in
his article) as:

814 Learning

Total message length =
Message length to describe the model +
Message length to describe the data,

given the model.

This way a more complex theory will need more bits to
be encoded, but might save bits when encoding more
data correctly.

The message length of the model consists of the en-
coding of the literals and the encoding of the predicted
values in the leaves. The message length of the data,
given the model, is the encoding of the errors.

The encoding of the tree structure is simply the en-
coding of the choices made (for the respective literals)
as the tree is built. For a single node, we encode the
choice from all possible literals, so that the encoding
considers predicates as well as all possible variabiliza-
tions of the predicates. In addition to the tree struc-
ture, we also have to encode the real numbers assigned
to the leaves. In our coding scheme, we turn them into
integers by multiplication and rounding. The factor
is the minimum integer that still allows to discern the
values in the training data after rounding. Then we
encode all these integers in a way that the encoding
requires the same amount of information for all values
regardless of their magnitude.

The errors are also real numbers, and they are
turned into integers in the same way as above. Sub-
sequently, however, these integers are encoded by the
universal prior of integers (UPI) (Rissanen 1986) - in
this way the coding length of the errors roughly corre-
sponds to their magnitude.

We chose MDL instead of cross-validation since it is
computationally less expensive, and it can be used for
pruning in search (Pfahringer & Kramer 1995). How-
ever, we are planning to compare both methods for
model selection in the future.

Non-Determinate Background Knowledge

Literals are non-determinate if they introduce new
variables that can be bound in several alternative
ways. Non-determinate literals often introduce ad-
ditional parts of a structure like adjacent nodes in
a graph. (Other examples are “part-of”-predicates.)
Clearly, non-determinate literals do not immediately
reduce the error when they are added to a clause un-
der construction. Thus, any greedy algorithm without
look-ahead would ignore non-determinate literals. The
problem is how to introduce non-determinate literals in
a controlled manner.

In SRT, the user has to specify which literal(s) may
be used to extend a clause. Firstly, the user can de-
fine conjunctions of literals that are used for a limited
look-ahead. (Th ese user-defined schemata are similar
to relational cliches (Silverstein & Pazzani 1991)). Fur-
t,hermore, the user can constrain the set of possible lit-
erals depending on the body of the clause so far. The
conditions concerning the body are arbitrary Prolog

clauses, and therefore the user has even more possibil-
ities to define a language than by Antecedent Descrip-
tion Grammars (ADGs) (Cohen 1994a). To further
reduce the number of possibilities, the set of literals
and conjunctions is also constrained by modes, types
of variables, and variable symmetries.

Outlier Detection by Analogy
Test instances that are outliers strongly deteriorate
the average performance of learned regression models.
Usually we cannot detect if test instances are outliers,
because only little information is available for this task.
If relational background knowledge is available, how-
ever, a lot of information can be utilized to detect, by
“analogy” , if test instances are outliers. Intuitively,
when a new prediction is made, we check if the test
instance is similar to the training instances which are
covered by the clause that fires. If the similarity be-
tween these training instances and the test instance is
not big enough, we should consider a different predic-
tion than the one suggested by the clause which suc-
ceeds on the instance. In this case, we interpret the
regression tree as defining a hierarchy of clusters. SRT
chooses the cluster which is most similar to the test
instance, and predicts the average of this cluster for
the test instance.

To implement this kind of reasoning by analogy, we
first have to define similarity of “relational structures”
(such as labeled graphs). 2 Our simple approximation
of similarity is based on properties of such structures.
In this context, we say that an instance i has a prop-
erty P iff P is a literal or a conjunction (permitted
by specified schemata) that immediately succeeds on i
(i.e., it succeeds without the introduction of interme-
diate variables). The similarity is defined as follows:
let pinstance denote th e set of properties of an in-
stance i. Let pinVeommon (I) be the set of properties all
instances in a set I have in common. Then the simi-
larity between a test instance i and a set (cluster) of
training instances I is

similarity(i, I) = lPi7hZ?lC~ (i) n ~~~~~~~~~~ (1) I
IPin-common (1) I

The similarity is simply defined as the number of prop-
erties that the test instance and the covered training
instances have in common, divided by the number of
properties that the training instances have in common.

SRT uses a parameter for the minimum similarity
to determine if the similarity between a test instance
and the training instances covered by the clause that
fires is large enough. The minimum similarity pa-
rameter is the only real parameter of SRT, since the
best value for the required minimum coverage of a
clause is determined automatically using the MDL

2(Bisson 1992) defined a similarity measure for first-
order logic, but it measures the similarity of two tuples
in a relation, not of two “relational structures”.

Inductive Learning 815

Method Pyrimidines Mean (a) Triazines Mean (a)
Linear Regression on Hansch parameters and squares 0.693 (0.170) 0.272 (0.220)
Linear Regression on attributes and squares 0.654 (0.104) 0.446 (0.181)
Neural Network on Hansch parameters and squares 0.677 (0.118) 0.377 (0.190)
Neural Network on attributes and squares 0.660 (0.225) 0.481 (0.145)
GOLEM 0.692 (0.077) 0.431 (0.166)
SRT 0.806 (0.110) 0.457 (0.089)

Table 3: Summary of all methods in the biomolecular domains of the inhibition of dihydrofolate reductase by
pyrimidines and by triazines: performances as measured by the Spearman rank correlation coefficients

principle. Note that although we choose the cluster
with the largest similarity, this similarity might be
smaller than the specified minimum similarity.

This way of detecting and handling outliers adds an
instance-based aspect to SRT. However, it is just an
additional possibility, and can be turned off by means
of the minimum similarity parameter.

Experimental Results

We performed experiments in five real-world domains.
For each domain, we performed experiments with
(minimum similarity = 0.75) and without outlier
detection by analogy (minimum similarity = 0). In
cases where outlier detection affects the results, we will
mention it in the discussion.

A common step in pharmaceutical development is
forming a quantitative structure-activity relationship
(QSAR) th t 1 t a re a es the structure of a compound to
its biological activity. Two QSAR domains, namely
the inhibition of Escherichia coli dihydrofolate reduc-
tase (DHFR) by pyrimidines (Hirst, King, & Stern-
berg 1994a) and by triazines (Hirst, King, & Sternberg
199413) have been used to test SRT.

The pyrimidine dataset consists of 2198 background
facts and 55 instances (compounds), which are parti-
tioned into 5 cross-validation sets. For the triazines,
the background knowledge are 2933 facts, and 186 in-
stances (compounds) are used to perform 6-fold cross
validation. Hirst et al. made comprehensive compar-
isons of several methods in these domains, but they
concluded there is no statistically significant difference
between these methods.

Table 3 shows the results of the methods compared
in (Hirst, King, & Sternberg 1994a) and in (Hirst,
King, & Sternberg 1994b), and the results of SRT. The
table summarizes the test set performances in both do-
mains as measured by the Spearman rank correlation
coefficients. The Spearman rank correlation coefficient
is a measure of how much the order of the test instances
according to the target variable correlates with the or-
der predicted by the induced theory. The only reason
why Hirst et al. use the Spearman rank correlation
coefficient instead of, say, the average error is to com-
pare GOLEM (Muggleton & Feng 1992) (which cannot

816 Learning

predict numbers) with other methods.3
For the pyrimidines, SRT performs better than other

methods, but the improvement is not statistically sig-
nificant. Hirst et al. emphasize that a difference
in Spearman rank correlation coefficient of about 0.2
would have been required for a data set of this size.
The comparatively good performance of SRT is mostly
due to the detection of two outliers that cannot be rec-
ognized by other methods. These two outliers were the
only ones identified in these two domains. For the tri-
azine dataset, SRT performs quite well, but again the
differences are not statistically significant.

Since the Spearman rank correlation coefficient does
not measure the quantitative error of a prediction, we
included several other measures as proposed by Quin-
lan (Quinlan 199313). Clearly, these measures have dis-
advantages, too, but they represent interesting aspects
of how well a theory works for a given test set. Unfortu-
nately, we do not yet have a full comparison with other
methods that are capable of predicting numbers. Ta-
bles 4 and 7 contain the cross-validation test set perfor-
mances of SRT in four test domains not only in terms
of the Spearman rank correlation coefficient, but also
in terms of several other accuracy measures.

Furthermore, we performed experiments in the do-
main of finite element mesh design (for details see
(Dolsak, Bratko, & Jezernik 1994)), where the back-
ground knowledge is non-determinate. Table 5 shows
the results of SRT for the mesh dataset together with
the results of FOSSIL (Fiirnkranz 1994) and results of
other methods that were directly taken from (Karalic
1995). SRT performs better than FOIL (Quinlan 1990)
and mFOIL (Dzeroski & Bratko 1992), but, worse than
the other methods. However, statistical analysis shows
that only the differences between FOIL and the other
algorithms are significant.

We also applied SRT to the biological problem of
learning to predict the mutagenic activity of a chem-
ical, i.e., if it is harmful to DNA. (For details see
(Srinivasan et al. 1994) and (Srinivasan, Muggleton,
& King 1995)). Th is omain involves non-determinate d
background knowledge, too. In Table 6 we compiled

3Despite this disadvantage of GOLEM, Hirst et al. state
that GOLEM is the only method that provides understand-
able rules about drug-receptor interactions. SRT can be
seen as a step towards integrating both capabilities.

Measure of Accuracy Pyr. Mean (a) Triaz. Mean (g) Mutagen. Mean (0)

Spearman rank correlation coefficient 0.806 (0.110) 0.457 (0.089) 0.683 (0.124)
Average error IEI 0.435 (0.088) 0.514 (0.084) 1.103 (0.121)
Correlation r 0.818 (0.091) 0.457 (0.104) 0.736 (0.089)
Relative Error RE 0.218 (0.170) , 0.381 (0.132) 0.170 (0.055)

Table 4: Performances of SRT in three domains in terms of several accuracy measures

1 Struct. 11 FOIL 1 mFOIL 1 GOLEM 1 MILP I FOSSIL I FORS 1 SRT 1

c 36 62 80 90 90 87 68
% 12.9 22.3 28.8 32.4 32.4 31.3 24.4

Table 5: Results of several methods in the domain of finite element mesh design: numbers and percentages of
correctly classified edges

results from (Karalic 1995) and (Srinivasan, Muggle-
ton, & King 1995), and filled the result of SRT. In the
table, ‘S’ refers to structural background knowledge,
‘NS’ refers to non-structural features, ‘PS’ refers to
predefined structural features that can be utilized by
propositional algorithms, and ‘MDL’ refers to MDL
pre-pruning. (Note that the results of FORS are the
best that can be found by varying three of its param-
eters.) In the experiments we used the 188 instances
(compounds) for a lo-fold cross-validation. The accu-
racy concerns the problem to predict if a chemical is
active or not. Since SRT learns a theory that predicts
the activity (a number) instead, we had to evaluate it
in a different way (by discretization) to compare the re-
sults. Summing up, the experiments showed that SRT
is competitive in this domain too, although the differ-
ences between SRT and the rest are not statistically
significant.

Finally, we applied SRT to a domain where we are
trying to predict the half-rate of surface water aerobic
aqueous biodegradation in hours (DBeroski & Kompare
1995). To simplify the learning task, we discretized
this quantity and mapped it to {1,2,3,4}. The back-
ground knowledge is non-determinate, and except for
the molecular weight there are no “global” features
available. The dataset contains 62 chemicals, and we
performed 6-fold cross-validation in our tests. The re-
sults of SRT can be found in table 7. SRT is the first
algorithm to be tested on the data, and the results ap-
pear to indicate that there are too few instances to find
good generalizations. Again, SRT with outlier detec-
tion improves upon the result of SRT without it. Note
that neither a propositional algorithm (such as CART)
nor an algorithm that cannot handle non-determinate
background knowledge (such as FOIL, GOLEM and
DINUS/RETIS) can be applied to this problem.

To sum up the experiments, SRT turned out to be

quantitatively competitive, but its main advantages
are that it yields comprehensible and explicit rules for
predicting numbers, even when given non-determinate
background knowledge.

1 CART + NS
I
) 0.82 (0.03j 1

FOIL + NS + S 0.81 (0.03j
Progol + NS + S 0.88 (0.02)
FORS + NS + S 0.89 (0.06)
FORS + NS + S + MDL 0.84 (0.11 j
SRT + NS + S 0.85 (0.08)

Table 6: Summary of accuracy of several systems in
the mutagenicity domain

Conclusion and rther esearch
In this paper we presented Structural Regression Trees
(SRT), a new algorithm which can be applied to learn-
ing problems concerned with the prediction of numbers
from examples and relational (and non-determinate)
background knowledge. SRT can be viewed as in-
tegrating the statistical method of regression trees
(Breiman et al. 1984) into ILP. SRT can be applied
to a class of problems no ILP system except FORS
can handle, and learns theories that may be easier t,o
understand than theories found by FORS (section 2).
The advantages and disadvantages of SRT are basically
the same as the ones of CART: regression trees have
a great potential to be explanatory, but we cannot ex-
pect to achieve a very high accuracy, since we predict

Inductive Learning 817

Measure of Accuracy Biod. with Outl. Det. Mean ((T) Biod. w o Outl. Det. Mean ~7
7

Spearman rank correlation coefficient 0.463 (0.213) 0.402 (0.232)
Average error IEI 0.744 (0.190) 0.771 (0.210)
Correlation r 0.382 (0.247) 0.364 (0.223)
Relative Error RE 0.363 (0.139) 0.377 (0.141)

Table 7: Performances of SRT with and without outlier detection in the biodegradability domain

constant values for whole regions of the instance space.
As it could help to build more accurate models, one of
the next steps will be to assign linear regression models
to the leaves.

One of the biggest differences between SRT and
FORS is that it is a tree-based and not a covering algo-
rithm. So generally all the advantages and disadvan-
tages known from other algorithms of these types ap-
ply (Bostrijm 1995) (Weiss & Indurkhya 1995). How-
ever, FORS and SRT also differ in many other ways,
and thus a real comparison of the search strategies em-
ployed is still to be done for relational regression.

Experiments in several real-world domains demon-
strate that the approach is competitive with existing
methods, indicating that its advantages (the applica-
bility to relational regression given non-determinate
background knowledge and the comprehensibility of
the rules) are not at the expense of predictive accu-
racy.

SRT generates a series of increasingly complex trees,
but currently every iteration starts from scratch. We
are planning to extend the algorithm such that parts
of the tree of one iteration can be reused in the next
iteration.

We also plan to compare our way of coverage-based
prepruning and tree selection by MDL with more tra-
ditional pruning methods a la CART (Breiman et al.
1984).

Besides, we addressed the problem of non-
determinate literals. We adopted and generalized so-
lutions for this problem, but they involve the tiresome
task of writing a new specification of admissible literals
and conjunctions for each domain. We therefore think
that a more generic solution would make the applica-
tion of the method easier.

Acknowledgements

This research is sponsored by the Austrian Fonds zur
Forderung der Wissenschaftlichen Forschung (F WF)
under grant number P10489-MAT. Financial support
for the Austrian Research Institute for Artificial Intel-
ligence is provided by the Austrian Federal Ministry
of Science, Research, and Arts. I would like to thank
Johannes Fiirnkranz, Bernhard Pfahringer and Ger-
hard Widmer for valuable discussions. I also wish to
thank Saso Dzeroski for providing the biodegradabil-
ity dataset and the anonymous AAAI referees for their
comments which helped to improve this paper.

818 Learning

References
Bisson, G. 1992. Learning in FOL with a similar-
ity measure. In Proc. Tenth National Conference on
Artificial Intelligence (AAAI-92).
Bostrom, H. 1995. Covering vs. Divide-and-Conquer
for Top-Down Induction of logic programs. In Proc.
Fourteenth International Joint Conference on Artiji-
cial Intelligence (IJCAI-95), 1194-1200. San Mateo,
CA: Morgan Kaufmann.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone,
C. 1984. Classification and Regression Trees. The
Wadsworth Statistics/Probability Series. Belmont,
CA: Wadsworth International Group.
Cheeseman, P. 1990. On finding the most probable
model. In Shrager, J., and Langley, P., eds., Compu-
tational Models of Discovery and Theory Formation.
Los Altos, CA: Morgan Kaufmann.
Clark, P., and Boswell, R. 1991. Rule induction
with CN2: Some recent improvements. In Proceedings
of the Fifth European Working Session on Learning,
151-161. Berlin Heidelberg New York: Springer.
Cohen, W. 1994a. Grammatically biased learning:
Learning logic programs using an explicit antecedent
description language. Artificial Intelligence 68(2).
Cohen, W. 1994b. Pat-learning nondeterminate
clauses. In Proc. Twelfth National Conference on Ar-
tificial Intelligence (AAAI-94).
Dolsak, B.; Bratko, I.; and Jezernik, A. 1994. Fi-
nite element mesh design: An engineering domain for
ILP application. In Proceedings of the Fourth Inter-
national Workshop on Inductive Logic Programming
(ILP-94), GMD-Studien Nr. 237, 305-320.
Dieroski, S., and Bratko, I. 1992. Handling noise in
Inductive Logic Programming. In Proceedings of the
International Workshop on Inductive Logic Program-
ming.
Dzeroski, S., and Kompare, B. 1995. Personal Com-
munication.
Dzeroski, S.; Todoroski, L.; and Urbancic, T. 1995.
Handling real numbers in inductive logic program-
ming: A step towards better behavioural clones. In
Lavrac, N., and Wrobel, S., eds., Machine Learning:
ECML-95, 283-286. Berlin Heidelberg New York:
Springer.
Dzeroski, S. 1995. Numerical Constraints and Learn-
ability in Inductive Logic Programming. Ph.D. Disser-
tation, University of Ljubljana, Ljubljana, Slovenija.

Fiirnkranz, J. 1994. FOSSIL: A robust relational
learner. In Bergadano, F., and De Raedt, L., eds.,
Machine Learning: ECML-94, 122-137. Berlin Hei-
delberg New York: Springer.
Hirst, J.; King, R.; and Sternberg, M. 1994a. Quanti-
tative structure-activity relationships by neural net-
works and inductive logic programming. the inhibi-
tion of dihydrofolate reductase by pyrimidines. Jour-
nal of Computer-Aided Molecular Design 8:405-420.
Hirst, J.; King, R.; and Sternberg, M. 199413. Quan-
titative structure-activity relationships by neural net-
works and inductive logic programming: The inhibi-
tion of dihydrofolate reductase by triazines. Journal
of Computer-Aided Molecular Design 81421-432.
Karalic, A. 1992. Employing linear regression in
regression tree leaves. In Neumann, B., ed., Proc.
Tenth European Conference on Artificial Intelligence
(ECAI-92), 440-441. Chichester, UK: Wiley.
Karalic, A. 1995. First Order Regression. Ph.D.
Dissertation, University of Ljubljana, Ljubljana,
Slovenij a.
Lavrac, N., and Dieroski, S. 1994. Inductive Logic
Programming. Chichester, UK: Ellis Horwood.
Manago, M. 1989. Knowledge-intensive induction. In
Segre, A., ed., Proceedings of the Sixth International
Workshop on Machine Learning, 151-155. Morgan
Kaufman.
Muggleton, S., and Feng, C. 1992. Efficient induction
of logic programs. In Muggleton, S., ed., Inductive
Logic Programming. London, U.K.: Academic Press.
281-298.
Pfahringer , B . , and Kramer, S. 1995. Compression-
based evaluation of partial determinations. In Pro-
ceedings of the First International Conference on
Knowledge Discovery and Data Mining. AAAI Press.
Quinlan, J. 1990. Learning logical definitions from
relations. Machine Learning 5:239-266.
Quinlan, J. 1992. Learning with continuous classes.
In Adams, S., ed., Proceedings AI’92, 343-348. Sin-
gapore: World Scientific.
Quinlan, J. 1993a. C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.
Quinlan, J. 199313. A case study in machine learning.
In Proceedings ACSC-16 Sixteenth Australian Com-
puter Science Conference.
Rissanen, J. 1978. Modeling by shortest data descrip-
tion. Automatica 14:465-471.
Rissanen, J. 1986. Stochastic complexity and model-
ing. The Annals of Statistics 14(3):1080-1100.
Silverstein, G., and Pazzani, M. 1991. Relational
cliches: Constraining constructive induction during
relational learning. In Birnbaum, L., and Collins, G.,
eds., Machine Learning: Proceedings of the Eighth In-
ternational Workshop (ML91), 203-207. San Mateo,
CA: Morgan Kaufmann.

Srinivasan, A.; Muggleton, S.; King, R.; and Stern-
berg, M. 1994. Mutagenesis: ILP experiments in
a non-determinate biological domain. In Proceedings
of the Fourth International Workshop on Inductive
Logic Programming (ILP-94), GMD-Studien Nr. 237,
217-232.
Srinivasan, A.; Muggleton, S.; and King, R. 1995.
Comparing the use of background knowledge by In-
ductive Logic Programming systems. In Proceedings
of the 5th International Workshop on Inductive Logic
Programming (ILP-95), 199-230. Katholieke Univer-
siteit Leuven.
Watanabe, L., and Rendell, L. 1991. Learning struc-
tural decision trees from examples. In Proc. Twelfth
International Joint Conference on Artificial Intelli-
gence (IJCAI-9l), 770-776. San Mateo, CA: Morgan
Kaufmann.
Weiss, S., and Indurkhya, N. 1995. Rule-based
machine learning methods for functional prediction.
Journal of Artificial Intelligence Research 3:383-403.

Knowledge Bases 819

