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Abstract 

In many real-world domains the task of machine 
learning algorithms is to learn a theory for pre- 
dicting numerical values. In particular several 
standard test domains used in Inductive Logic 
Programming (ILP) are concerned with predict- 
ing numerical values from examples and rela- 
tional and mostly non-determinate background 
knowledge. However, so far no ILP algorithm ex- 
cept one can predict numbers and cope with non- 
determinate background knowledge. (The only 
exception is a covering algorithm called FORS.) 
In this paper we present Structural Regression 
Trees (SRT), a new algorithm which can be ap- 
plied to the above class of problems. SRT inte- 
grates the statistical method of regression trees 
into ILP. It constructs a tree containing a literal 
(an atomic formula or its negation) or a conjunc- 
tion of literals in each node, and assigns a numer- 
ical value to each leaf. SRT provides more com- 
prehensible results than purely statistical meth- 
ods, and can be applied to a class of problems 
most other ILP systems cannot handle. Experi- 
ments in several real-world domains demonstrate 
that the approach is competitive with existing 
methods, indicating that the advantages are not 
at the expense of predictive accuracy. 

Introduction 
Many real-world machine learning domains involve the 
prediction of a numerical value. In particular, sev- 
eral test domains used in Inductive Logic Programming 
(ILP) (including the Mesh data sets (Dolsak, Bratko, 
& Jezernik 1994) and the problem of learning quantita- 
tive structure-activity relations (QSAR) (Hirst, King, 
& Sternberg 1994a) (Hirst, King, & Sternberg 1994b)) 
are concerned with the prediction of numerical values 
from examples and relational background knowledge. 
This kind of learning problem is called relational re- 
gression in (DBeroski 1995)) and can be formulated 
in the “normal” ILP framework (i.e., it is not part 
of the non-monotonic ILP framework which includes 
the closed-world assumption). Nevertheless, relational 
regression differs from other ILP learning tasks in that 
there are no negative examples. 
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In this paper we present Structural Regression Trees 
(SRT), a new algorithm for relational regression. SRT 
can be viewed as integrating the statistical method of 
regression trees (Breiman et al. 1984) into ILP. 

To simplify the presentation, we first review work 
in statistics and machine learning that is related t’o 
our approach. In the third section we will describe 
the method, including the solution for the problem of 
non-determinate literals. Furthermore, we present a 
new method for detecting outliers by analogy. Sub- 
sequently, we discuss results of experiments in several 
real-world domains. Finally, we draw our conclusions, 
and sketch possible directions of further research. 

elated Work 
The classical statistical model for the prediction of nu- 
merical values is linear least-squares regression. Re- 
finements and extensions like non-linear models are 
also well-known and used in many real-world appli- 
cations. However, regression models have several limi- 
tations: first of all, regression models are often hard to 
understand. Secondly, classical statistical methods as- 
sume that, all features are equally relevant for all parts 
of the instance space. Thirdly, regression models do 
not allow for easy utilization of domain knowledge. 
The only way to include knowledge is to “engineer” 
features, and to map these symbolic features to real- 
valued features. 

In order to solve some of these problems, regression 
tree methods (CART (Breiman et al. 1984), RETIS 
(Karalic 1992), M5 (Quinlan 1992)) have been devel- 
oped. Regression trees are supposed to be more com- 
prehensible than traditional regression models. Fur- 
thermore, regression trees by definition do not t,reat 
all features as equally relevant for all regions of the in- 
stance space. The basic idea of regression trees accord- 
ing to CART is to minimize the least squared error for 
the next split of a node in the tree, and to predict, for 
unseen instances, the average of the dependent variable 
of all training instances covered by the matching leaf. 
RETIS and M5 differ in that they do not assign single 
values to the leaves, but linear regression models. 

Sophisticated post-pruning methods have been de- 
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veloped for CART, since the method grows the tree A more detailed comparison between FORS and 
until every leaf is “pure”, i.e. the leaves cover instances SRT shows that FORS may induce clauses contain- 

ing linear regression models, whereas SRT does not. sharing the same value of the dependent variable. The 
regression tree resulting from the growing phase is usu- 
ally bigger than a classification tree, since it takes more 
nodes to achieve pure leaves. 

Manago’s KATE (Manago 1989) learns decision 
trees from examples represented in a frame-based lan- 
guage that is equivalent to first-order predicate calcu- 
lus. KATE makes extensive use of a given hierarchy 
and heuristics to generate the branch tests. To our 
knowledge, KATE was the first system to induce first- 
order theories in a divide-and-conquer fashion. 

Watanabe and Rendell (Watanabe & Rendell 1991) 
also investigated the use of divide-and-conquer for 
learning first-order theories. Although their so-called 
structural decision trees are used for the prediction of 
categorical classes and not continuous classes, it is the 
closest work found in the literature. 

Linear regression models usually improve the accuracy 
of the induced models, but they also reduce their com- 
prehensibility. Moreover, FORS requires setting thir- 
teen parameters, whereas SRT only has one parame- 
ter. Seven parameters of FORS are used to control 
pre-pruning, whereas SRT uses a simple method for 
tree selection based on the minimum description length 
(MDL) principle (Rissanen 1978). Most importantly, 
we believe that the theories learned by FORS are very 
hard to understand, since the rules are basically or- 
dered rule sets (Clark & Boswell 1991): to understand 
the meaning of a particular clause, we have t,o under- 
stand all preceding clauses in the theory. 

So far, two methods have been applied to the prob- 
lem of relational regression: DINUS/RETIS (Dzeroski, 
Todoroski, & Urbancic 1995), a combination of DINUS 
(Lavrac & Dzeroski 1994) and RETIS (Karalic 1992), 
and FORS (Karalic 1995). 

DINUS/RETIS transforms the learning problem 
into a propositional language, and subsequently ap- 
plies RETIS, a propositional regression tree algo- 
rithm, to the transformed problem. In contrast to 
DINUS/RETIS, SRT solves the problem in its origi- 
nal representation, and does not require transforming 
the problem. Furthermore, the transformation does 
not work for non-determinate background knowledge, 
which is a strict limitation of the appr0ach.i 

FORS is the only other algorithm so far that can 
be applied to the same class of learning problems as 
SRT, since it can also deal with non-determinate back- 
ground knowledge. FORS differs from SRT in its use 
of separate-and-conquer instead of divide-and-conquer 
( i.e., it is a covering algorithm, not a tree-based al- 
gorithm). Generally, all the advantages and disad- 
vantages known from other algorithms of these types 
(tree-based vs. covering) apply. A discussion of both 
strategies in the context of top-down induction of logic 
programs can be found in (Bostrom 1995): on the one 
hand, the hypothesis space for separate-and-conquer is 
larger than for divide-and-conquer. Thus, more com- 
pact hypotheses might be found using separate-and- 
conquer. On the other hand, building a tree is compu- 
tationally cheaper than searching for rules. In (Weiss 
& Indurkhya 1995), a comparison of tree induction 
and rule induction in propositional regression basically 
draws the same conclusions. However, the approach to 
rule-based regression in (Weiss & Indurkhya 1995) is 
different from FORS, since it involves the discretiza- 
tion of the numeric dependent variable. 

1 Cohen (Cohen 1994b) demonstrated that certain types 
of non-determinate background knowledge can be proposi- 
tionalized. However, this is not generally the case. 
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set of instances covered by a leaf 1 
in a partial tree 
the conjunction of all literals in the path 
from the root of the tree to E 
subset of I for which proving c A t 
(t E T, the set of possible tests) 
succeeds 
subset of I for which proving c A t fails 
(I=I1UI2, I~nI2=0) 
number of instances in Ii ( nl = IIll ) 
number of instances in 12 ( n2 = 1121 ) 
value of the dependent variable 
of a training instance j in 11 
value of the dependent variable 
of a training instance j in 12 
average of all instances in 11 
average of all instances in 12 

Table 1: Definition of terms 

escription of the Method 
Overview 
SRT is an algorithm which learns a theory for t’he pre- 
diction of numerical values from examples and rela- 
tional (and even non-determinate) background knowl- 
edge. The algorithm constructs a tree cont,aining a 
literal (an atomic formula or its negation) or a conjunc- 
tion of literals in each node, and assigns a numerical 
value to each leaf. 

More precisely, SRT generates a series of trees of in- 
creasing complexity, and subsequently returns one of 
the generated trees according to a preference criterion. 
This preference criterion is based on the minimum 
description length (MDL) principle (Rissanen 1978)) 
which helps to avoid overfitting the data especially in 
the presence of noise. The whole process can be seen 
as a kind of pruning based on the MDL principle. 

For the construction of a single tree, SRT uses the 
same method as used for the usual top-down induc- 
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activity(Drug,8.273) :- struct(Drug,Groupl,Group2,Group3), 
(pi_doner(Group3,X), X< 2). 

activity(Drug,6.844) :- struct(Drug,Groupl,Group2,Group3), 
\+ (pi_doner(Group3,X), X< 2), 
h-doner(Groupl,O). 

activity(Drug,6.176) :- struct(Drug,Groupl,Group2,Group3), 
\+ (pi-doner(GroupS,X), X< a), 
\+ h-doner(Groupl,O). 

Table 2: Example of a structural regression tree in clausal form 

tion of decision trees (Quinlan 1993a). The algorithm 
recursively builds a binary tree, selecting a literal or 
a conjunction of literals (as defined by user-defined 
schemata (Silverstein & Pazzani 1991)) in each node 
of the tree until a stopping criterion is fulfilled. With 
each selected literal or conjunction, the examples cov- 
ered by a node are further partitioned, depending on 
the success or failure of the literal(s) on the examples. 

The selection of the literal or conjunction is per- 
formed as follows: let I be the set of training instances 
covered by a leaf I in a partial tree, and c be the con- 
junction of all literals in the path from the root of the 
tree to Z. (For a definition of all used terms see table 
1.) Then every possible test t is evaluated according 
to the resulting partitioning of the training instances I 
in 1. The instances I are partitioned into the instances 
11 C I for which proving c A t succeeds, and into the 
instances 12 C_ I for which proving CA t fails. For every 
possible test t we calculate the sum of the squared dif- 
ferences between the actual values yi,j of the training 
instances and the average @ of Ii. From all possible 
tests, SRT selects t* E T which minimizes this sum of 
squared differences (see equation 1). When the stop- 
ping criterion (see below) is fulfilled, the average @ is 
assigned to the leaf as the predicted value for unseen 
cases that reach the leaf. 

Sum Squared Errors = >: x(yi,j _ vii)2 (1) 
i=l j=l 

From another point of view, each path starting from 
the root can be seen as a clause. Every time the tree is 
extended by a further literal or conjunction, two fur- 
ther clauses are generated: one of them is the current 
clause (i.e. the path in the current partial tree) ex- 
tended by the respective literal or conjunction of lit- 
erals. The other clause is the current clause extended 
by the negation of the literal(s). Table 2 shows a sim- 
ple example of a structural regression tree in clausal 
form. The three clauses predict the biological activity 
of a compound from its structure and its characteris- 
tics. Depending on the conditions in the clauses, the 
theory assigns either 8.273 or 6.844 or 6.176 to every 
unseen instance. In the following, we will use this lat- 
ter, clausal view on the process. 

The simplest possible stopping criterion is used to 

decide if we should further grow a tree: SRT stops ex- 
tending a clause when no literal(s) can produce t,wo 
further clauses that both cover more than a required 
minimum number of training instances. In t,he follow- 
ing this parameter will be called the minimum cover- 
age of all clauses in the theory. Apart from its use as 
a stopping criterion, the minimum coverage parameter 
has the following benefits: we have direct control over 
the complexity of the trees being built. The smaller the 
value of the parameter, the more complex the tree will 
be, since we allow for more specific clauses in the t,ree. 
In such a way we can generate a series of increasingly 
complex trees, and return the one which opt,imizes a 
preference function. Note that if the minimum cov- 
erage parameter had a different value, different, split#s 
might have been selected in any node of the t’ree. 

SRT generates a series of increasingly complex trees 
by varying the minimum coverage parameter. The al- 
gorithm starts with a high minimum coverage, and 
decreases it from iteration to iteration. Fortunately, 
many iterations can be skipped, since nothing would 
change for certain values of the minimum coverage pa- 
rameter: in the process of building the tree, we always 
select the one literal or conjunction which produces two 
clauses with an admissible coverage and which yields 
the lowest sum of squared errors. There could be lit- 
erals or conjunctions yielding an even lower sum of 
squared errors, but with a coverage that! is too low. 
The maximum coverage of these literals or conjunc- 
tions is the next value of the paramet,er for which t#he 
tree would be different from the current tree. So we 
choose this value as the next minimum coverage. 

Finally, SRT returns the one tree from this series 
that obtains the best compression of the data. The 
compression measure is based on the minimum descrip- 
tion length (MDL) p rinciple (Rissanen 1978)) and will 
be discussed in the next section. 

Tree Selection by MDL 
The MDL principle tries to measure both t’he simplicity 
and the accuracy of a particular theory in a common 
currency, namely in terms of the number of bits needed 
for encoding theory and data. (Cheeseman 1990) de- 
fines the message length of a theory (called model in 
his article) as: 
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Total message length = 
Message length to describe the model + 
Message length to describe the data, 

given the model. 

This way a more complex theory will need more bits to 
be encoded, but might save bits when encoding more 
data correctly. 

The message length of the model consists of the en- 
coding of the literals and the encoding of the predicted 
values in the leaves. The message length of the data, 
given the model, is the encoding of the errors. 

The encoding of the tree structure is simply the en- 
coding of the choices made (for the respective literals) 
as the tree is built. For a single node, we encode the 
choice from all possible literals, so that the encoding 
considers predicates as well as all possible variabiliza- 
tions of the predicates. In addition to the tree struc- 
ture, we also have to encode the real numbers assigned 
to the leaves. In our coding scheme, we turn them into 
integers by multiplication and rounding. The factor 
is the minimum integer that still allows to discern the 
values in the training data after rounding. Then we 
encode all these integers in a way that the encoding 
requires the same amount of information for all values 
regardless of their magnitude. 

The errors are also real numbers, and they are 
turned into integers in the same way as above. Sub- 
sequently, however, these integers are encoded by the 
universal prior of integers (UPI) (Rissanen 1986) - in 
this way the coding length of the errors roughly corre- 
sponds to their magnitude. 

We chose MDL instead of cross-validation since it is 
computationally less expensive, and it can be used for 
pruning in search (Pfahringer & Kramer 1995). How- 
ever, we are planning to compare both methods for 
model selection in the future. 

Non-Determinate Background Knowledge 

Literals are non-determinate if they introduce new 
variables that can be bound in several alternative 
ways. Non-determinate literals often introduce ad- 
ditional parts of a structure like adjacent nodes in 
a graph. (Other examples are “part-of”-predicates.) 
Clearly, non-determinate literals do not immediately 
reduce the error when they are added to a clause un- 
der construction. Thus, any greedy algorithm without 
look-ahead would ignore non-determinate literals. The 
problem is how to introduce non-determinate literals in 
a controlled manner. 

In SRT, the user has to specify which literal(s) may 
be used to extend a clause. Firstly, the user can de- 
fine conjunctions of literals that are used for a limited 
look-ahead. (Th ese user-defined schemata are similar 
to relational cliches (Silverstein & Pazzani 1991)). Fur- 
t,hermore, the user can constrain the set of possible lit- 
erals depending on the body of the clause so far. The 
conditions concerning the body are arbitrary Prolog 

clauses, and therefore the user has even more possibil- 
ities to define a language than by Antecedent Descrip- 
tion Grammars (ADGs) (Cohen 1994a). To further 
reduce the number of possibilities, the set of literals 
and conjunctions is also constrained by modes, types 
of variables, and variable symmetries. 

Outlier Detection by Analogy 
Test instances that are outliers strongly deteriorate 
the average performance of learned regression models. 
Usually we cannot detect if test instances are outliers, 
because only little information is available for this task. 
If relational background knowledge is available, how- 
ever, a lot of information can be utilized to detect, by 
“analogy” , if test instances are outliers. Intuitively, 
when a new prediction is made, we check if the test 
instance is similar to the training instances which are 
covered by the clause that fires. If the similarity be- 
tween these training instances and the test instance is 
not big enough, we should consider a different predic- 
tion than the one suggested by the clause which suc- 
ceeds on the instance. In this case, we interpret the 
regression tree as defining a hierarchy of clusters. SRT 
chooses the cluster which is most similar to the test 
instance, and predicts the average of this cluster for 
the test instance. 

To implement this kind of reasoning by analogy, we 
first have to define similarity of “relational structures” 
(such as labeled graphs). 2 Our simple approximation 
of similarity is based on properties of such structures. 
In this context, we say that an instance i has a prop- 
erty P iff P is a literal or a conjunction (permitted 
by specified schemata) that immediately succeeds on i 
( i.e., it succeeds without the introduction of interme- 
diate variables). The similarity is defined as follows: 
let pinstance denote th e set of properties of an in- 
stance i. Let pinVeommon (I) be the set of properties all 
instances in a set I have in common. Then the simi- 
larity between a test instance i and a set (cluster) of 
training instances I is 

similarity(i, I) = lPi7hZ?lC~ (i) n ~~~~~~~~~~ (1) I 
IPin-common (1) I 

The similarity is simply defined as the number of prop- 
erties that the test instance and the covered training 
instances have in common, divided by the number of 
properties that the training instances have in common. 

SRT uses a parameter for the minimum similarity 
to determine if the similarity between a test instance 
and the training instances covered by the clause that 
fires is large enough. The minimum similarity pa- 
rameter is the only real parameter of SRT, since the 
best value for the required minimum coverage of a 
clause is determined automatically using the MDL 

2(Bisson 1992) defined a similarity measure for first- 
order logic, but it measures the similarity of two tuples 
in a relation, not of two “relational structures”. 
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Method Pyrimidines Mean (a) Triazines Mean (a) 
Linear Regression on Hansch parameters and squares 0.693 (0.170) 0.272 (0.220) 
Linear Regression on attributes and squares 0.654 (0.104) 0.446 (0.181) 
Neural Network on Hansch parameters and squares 0.677 (0.118) 0.377 (0.190) 
Neural Network on attributes and squares 0.660 (0.225) 0.481 (0.145) 
GOLEM 0.692 (0.077) 0.431 (0.166) 
SRT 0.806 (0.110) 0.457 (0.089) 

Table 3: Summary of all methods in the biomolecular domains of the inhibition of dihydrofolate reductase by 
pyrimidines and by triazines: performances as measured by the Spearman rank correlation coefficients 

principle. Note that although we choose the cluster 
with the largest similarity, this similarity might be 
smaller than the specified minimum similarity. 

This way of detecting and handling outliers adds an 
instance-based aspect to SRT. However, it is just an 
additional possibility, and can be turned off by means 
of the minimum similarity parameter. 

Experimental Results 

We performed experiments in five real-world domains. 
For each domain, we performed experiments with 
(minimum similarity = 0.75 ) and without outlier 
detection by analogy (minimum similarity = 0 ). In 
cases where outlier detection affects the results, we will 
mention it in the discussion. 

A common step in pharmaceutical development is 
forming a quantitative structure-activity relationship 
(QSAR) th t 1 t a re a es the structure of a compound to 
its biological activity. Two QSAR domains, namely 
the inhibition of Escherichia coli dihydrofolate reduc- 
tase (DHFR) by pyrimidines (Hirst, King, & Stern- 
berg 1994a) and by triazines (Hirst, King, & Sternberg 
199413) have been used to test SRT. 

The pyrimidine dataset consists of 2198 background 
facts and 55 instances (compounds), which are parti- 
tioned into 5 cross-validation sets. For the triazines, 
the background knowledge are 2933 facts, and 186 in- 
stances (compounds) are used to perform 6-fold cross 
validation. Hirst et al. made comprehensive compar- 
isons of several methods in these domains, but they 
concluded there is no statistically significant difference 
between these methods. 

Table 3 shows the results of the methods compared 
in (Hirst, King, & Sternberg 1994a) and in (Hirst, 
King, & Sternberg 1994b), and the results of SRT. The 
table summarizes the test set performances in both do- 
mains as measured by the Spearman rank correlation 
coefficients. The Spearman rank correlation coefficient 
is a measure of how much the order of the test instances 
according to the target variable correlates with the or- 
der predicted by the induced theory. The only reason 
why Hirst et al. use the Spearman rank correlation 
coefficient instead of, say, the average error is to com- 
pare GOLEM (Muggleton & Feng 1992) (which cannot 
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predict numbers) with other methods.3 
For the pyrimidines, SRT performs better than other 

methods, but the improvement is not statistically sig- 
nificant. Hirst et al. emphasize that a difference 
in Spearman rank correlation coefficient of about 0.2 
would have been required for a data set of this size. 
The comparatively good performance of SRT is mostly 
due to the detection of two outliers that cannot be rec- 
ognized by other methods. These two outliers were the 
only ones identified in these two domains. For the tri- 
azine dataset, SRT performs quite well, but again the 
differences are not statistically significant. 

Since the Spearman rank correlation coefficient does 
not measure the quantitative error of a prediction, we 
included several other measures as proposed by Quin- 
lan (Quinlan 199313). Clearly, these measures have dis- 
advantages, too, but they represent interesting aspects 
of how well a theory works for a given test set. Unfortu- 
nately, we do not yet have a full comparison with other 
methods that are capable of predicting numbers. Ta- 
bles 4 and 7 contain the cross-validation test set perfor- 
mances of SRT in four test domains not only in terms 
of the Spearman rank correlation coefficient, but also 
in terms of several other accuracy measures. 

Furthermore, we performed experiments in the do- 
main of finite element mesh design (for details see 
(Dolsak, Bratko, & Jezernik 1994)), where the back- 
ground knowledge is non-determinate. Table 5 shows 
the results of SRT for the mesh dataset together with 
the results of FOSSIL (Fiirnkranz 1994) and results of 
other methods that were directly taken from (Karalic 
1995). SRT performs better than FOIL (Quinlan 1990) 
and mFOIL (Dzeroski & Bratko 1992), but, worse than 
the other methods. However, statistical analysis shows 
that only the differences between FOIL and the other 
algorithms are significant. 

We also applied SRT to the biological problem of 
learning to predict the mutagenic activity of a chem- 
ical, i.e., if it is harmful to DNA. (For details see 
(Srinivasan et al. 1994) and (Srinivasan, Muggleton, 
& King 1995)). Th is omain involves non-determinate d 
background knowledge, too. In Table 6 we compiled 

3Despite this disadvantage of GOLEM, Hirst et al. state 
that GOLEM is the only method that provides understand- 
able rules about drug-receptor interactions. SRT can be 
seen as a step towards integrating both capabilities. 



Measure of Accuracy Pyr. Mean (a) Triaz. Mean (g) Mutagen. Mean (0) 

Spearman rank correlation coefficient 0.806 (0.110) 0.457 (0.089) 0.683 (0.124) 
Average error IEI 0.435 (0.088) 0.514 (0.084) 1.103 (0.121) 
Correlation r 0.818 (0.091) 0.457 (0.104) 0.736 (0.089) 
Relative Error RE 0.218 (0.170) , 0.381 (0.132) 0.170 (0.055) 

Table 4: Performances of SRT in three domains in terms of several accuracy measures 

1 Struct. 11 FOIL 1 mFOIL 1 GOLEM 1 MILP I FOSSIL I FORS 1 SRT 1 

c 36 62 80 90 90 87 68 
% 12.9 22.3 28.8 32.4 32.4 31.3 24.4 

Table 5: Results of several methods in the domain of finite element mesh design: numbers and percentages of 
correctly classified edges 

results from (Karalic 1995) and (Srinivasan, Muggle- 
ton, & King 1995), and filled the result of SRT. In the 
table, ‘S’ refers to structural background knowledge, 
‘NS’ refers to non-structural features, ‘PS’ refers to 
predefined structural features that can be utilized by 
propositional algorithms, and ‘MDL’ refers to MDL 
pre-pruning. (Note that the results of FORS are the 
best that can be found by varying three of its param- 
eters.) In the experiments we used the 188 instances 
(compounds) for a lo-fold cross-validation. The accu- 
racy concerns the problem to predict if a chemical is 
active or not. Since SRT learns a theory that predicts 
the activity (a number) instead, we had to evaluate it 
in a different way (by discretization) to compare the re- 
sults. Summing up, the experiments showed that SRT 
is competitive in this domain too, although the differ- 
ences between SRT and the rest are not statistically 
significant. 

Finally, we applied SRT to a domain where we are 
trying to predict the half-rate of surface water aerobic 
aqueous biodegradation in hours (DBeroski & Kompare 
1995). To simplify the learning task, we discretized 
this quantity and mapped it to {1,2,3,4}. The back- 
ground knowledge is non-determinate, and except for 
the molecular weight there are no “global” features 
available. The dataset contains 62 chemicals, and we 
performed 6-fold cross-validation in our tests. The re- 
sults of SRT can be found in table 7. SRT is the first 
algorithm to be tested on the data, and the results ap- 
pear to indicate that there are too few instances to find 
good generalizations. Again, SRT with outlier detec- 
tion improves upon the result of SRT without it. Note 
that neither a propositional algorithm (such as CART) 
nor an algorithm that cannot handle non-determinate 
background knowledge (such as FOIL, GOLEM and 
DINUS/RETIS) can be applied to this problem. 

To sum up the experiments, SRT turned out to be 

quantitatively competitive, but its main advantages 
are that it yields comprehensible and explicit rules for 
predicting numbers, even when given non-determinate 
background knowledge. 

1 CART + NS 
I 
) 0.82 (0.03j 1 

FOIL + NS + S 0.81 (0.03j 
Progol + NS + S 0.88 (0.02) 
FORS + NS + S 0.89 (0.06) 
FORS + NS + S + MDL 0.84 (0.11 j 
SRT + NS + S 0.85 (0.08) 

Table 6: Summary of accuracy of several systems in 
the mutagenicity domain 

Conclusion and rther esearch 
In this paper we presented Structural Regression Trees 
(SRT), a new algorithm which can be applied to learn- 
ing problems concerned with the prediction of numbers 
from examples and relational (and non-determinate) 
background knowledge. SRT can be viewed as in- 
tegrating the statistical method of regression trees 
(Breiman et al. 1984) into ILP. SRT can be applied 
to a class of problems no ILP system except FORS 
can handle, and learns theories that may be easier t,o 
understand than theories found by FORS (section 2). 
The advantages and disadvantages of SRT are basically 
the same as the ones of CART: regression trees have 
a great potential to be explanatory, but we cannot ex- 
pect to achieve a very high accuracy, since we predict 
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Measure of Accuracy Biod. with Outl. Det. Mean ((T) Biod. w o Outl. Det. Mean ~7 
7 

Spearman rank correlation coefficient 0.463 (0.213) 0.402 (0.232) 
Average error IEI 0.744 (0.190) 0.771 (0.210) 
Correlation r 0.382 (0.247) 0.364 (0.223) 
Relative Error RE 0.363 (0.139) 0.377 (0.141) 

Table 7: Performances of SRT with and without outlier detection in the biodegradability domain 

constant values for whole regions of the instance space. 
As it could help to build more accurate models, one of 
the next steps will be to assign linear regression models 
to the leaves. 

One of the biggest differences between SRT and 
FORS is that it is a tree-based and not a covering algo- 
rithm. So generally all the advantages and disadvan- 
tages known from other algorithms of these types ap- 
ply (Bostrijm 1995) (Weiss & Indurkhya 1995). How- 
ever, FORS and SRT also differ in many other ways, 
and thus a real comparison of the search strategies em- 
ployed is still to be done for relational regression. 

Experiments in several real-world domains demon- 
strate that the approach is competitive with existing 
methods, indicating that its advantages (the applica- 
bility to relational regression given non-determinate 
background knowledge and the comprehensibility of 
the rules) are not at the expense of predictive accu- 
racy. 

SRT generates a series of increasingly complex trees, 
but currently every iteration starts from scratch. We 
are planning to extend the algorithm such that parts 
of the tree of one iteration can be reused in the next 
iteration. 

We also plan to compare our way of coverage-based 
prepruning and tree selection by MDL with more tra- 
ditional pruning methods a la CART (Breiman et al. 
1984). 

Besides, we addressed the problem of non- 
determinate literals. We adopted and generalized so- 
lutions for this problem, but they involve the tiresome 
task of writing a new specification of admissible literals 
and conjunctions for each domain. We therefore think 
that a more generic solution would make the applica- 
tion of the method easier. 
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