
Post-Analysis of

Bing Liu and Wynne Hsu

Department of Information Systems and Computer Science
National University of Singapore

Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
(hub, whsu)@iscs.nus.sg

Abstract
Rule induction research implicitly assumes that after
producing the rules from a dataset, these rules will be used
directly by an expert system or a human user. In real-life
applications, the situation may not be as simple as that,
particularly, when the user of the rules is a human being.
The human user almost always has some previous concepts
or knowledge about the domain represented by the data&.
Naturally, he/she wishes to know how the new rules
compare with his/her existing knowledge. Ill dynamic
domains where the rules may change over time, it is
important to know what the changes are. These aspects of
research have largely been ignored in the past. With the
increasing use of machine learning techniques in practica1
applications such as data mining, this issue of post analysis
of rules warrants greater emphasis and attention. In this
paper, we propose a technique to deal with this problem. A
system has been implemented to perform the post analysis of
classification rules generated by systems such as C4.5. The
proposed technique is general and highly interactive. It will
be particularly useful in data mining and data analysis.

1. ntroduction

Past research on inductive learning has mostly been
focused on techniques for generating concepts or rules
from datasets (e.g., Quinlan 1992; Clark & Niblett 1989;
Michalski 1980). Limited research has been done on what
happens after a set of rules has been induced. It is
assumed that these rules will be used directly by an espert
system or some human user to infer solutions for specific
problems within a given domain. We argue that having
obtained a set of rules is not the end of the story. As
machine learning techniques are increasingly being used
to solve real-life problems, post-analysis of rules will
become increasing important.

The motivation for perfomling post-analysis of the rules
comes from realizing the fact that using a learning
technique on a dataset does not mean that the user knows
nothing at all about the domain and the dataset. This is
particularly true if the user is a human being. Typically,
the human user does have some pre-conceived notions or
knowledge about the learning domain. Hence, when a set
of rules is generated from a clataset, naturally he/she

828 Learning

would like to know the following: Do the rules represent
what I know? If not, which part of my previous knowledge
is correct and which part is not? In what ways are the new
rules different from my previous knowledge? Past research
has assumed that it is the user’s responsibility to analyze
the rules to answer these questions. However, when the
number of rules is large, it is very hard for the user to
analyze them manually.

In dynamic domains, rules themselves may change over
time. Obviously, it is important to know what have
changed since the last learning. These aspects of research
have largely been ignored in the past.

Besides enabling a user to determine how well the new
rules confimz/deny his/her existing concepts and to
detemline whether the rules have changed over time, post-
analysis of rules also helps to deal with a major problem
in data mining, i.e., the interestingness problem (Piatesky-
Shapiro & Matheus 1994; Piatesky-Shapiro et crl 1994).
This problem is typically described as follows: In data
mining, it is all too easy to generate a huge nmnber of
patterns in a database, and most of these patterns (or
rules) are achiahy useless or uninteresting to the user. But
due to the huge number of patterns, it is diflicult for the
user to comprehend them and to identify those patterns
that are interesting to him/her. Thus, some techniques are
needed to perform this identification task.

This paper proposes a fuzzy matching technique to
perform the post-analysis of rules. In this technique,
existing rules (from previous knowledge) are regarded as
fuzzy rules and are represented using fuzzy set theory
(Zimmemlann 1991). The newly generated rules are
matched against the existing fuzzy rules using the fuzzy
matching technique. Differeut algorithms are presented to
perform matching according to different criteria. The
matched results will then enable us to answer some of the
concerns raised above. In this paper, we focus on
perfomling post-analysis of classification r&es generated
by induction systems, such as C4.5 (Quinlan 1992). This
is because classification rule induction is perhaps the most
successful machine learning technique used in practice.
However, our proposed technique is not bound to
classification rules, it is also applicable to other types of

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

rules generated by some other learning techniques. The
proposed technique is general. It can be used in any
domain. It is also highly interactive as it allows the user to

I modify the existing rules as and when modification is
needed. We believe our technique is a major step in the
right direction.

2. roblem Definition
Assuming a human user or an intelligent agent has some
previous knowledge, or hypotheses, or a set of rules
generated from an earlier dataset, about a particular
domain. These concepts can be expressed as a set of rules
E. There exists a dataset D from this domain. A learning
technique T can be applied to D to induce a set of rules B.
The rules in E and rules in B have the same syntax and
semantics. We are interested in knowing the degree of
similarity and difEerence between set B and set E. Since
the focus of this paper is on the classification rules
produced by C4.5, T is the decision tree induction
technique used in C4.5. The rules in E and B have the
same syntax and semantics as the rules produced by C4.5.

The syntax of the rules generated by C4.5 has the
following form (we use If-then format, instead of “+” as
in C4.5, and we also add a “,” between two propositions to
facilitate presentation):

lf PI, .&, P3, P,, tbcn C
where “,” means “and”, and Pi is a proposition of the
form: rrttr OF’ v&e, where nttr is the name of an attribute
in the dataset, value is a possible value for &‘r, and OP E
(=, f, <, >: I, 2) is the operator. C is the consequent of
the form: CInss = value.

We denote a new rule as &i E B and an existing rule as
e, E E. We denote the set of attribute names in the
conditional part of B, as Fj, and the set of attribute names
in the conditional part of l$ as H$ For example, we have

Bi: If Ht :. 1.8, Wt < 70 then Chss = underweight.
.I$: If S& = ntec!, l;‘t 2 65, Wt < 70 then Clrrss =fit.

Then, Fi = (Fit, Wt>, and k!i= (Size3 WI).
We now define what we mean by similarities and

differences between E and B. Firstly: we define them
intuitively (in this section), and then we define them
computationally (in Section 3 and 4). The intuitive
delM.ions can be stated at two levels: the individual-rule
level and the aggregate level.
Definitions at hdividual-rule Level

Definition 1 (Rule-Similarity): Bj and Ej are similar if
both the conditional parts of Bi and Ej, and the
consequent parts of Bi and & are similar.

Definition 2 (Rule-Difference): Bi and EJ are different if
Bj and 15 are far apart in one of the following ways:
(1). Unexpected consequent: The conditional parts of

B, and E; are similar, but the consequents of the two
rules are quite di.Eerent.

ected conditions: The consequents of Bi and
EJ are similar but the conditional parts of the two
rules are far apart. There are two situations:

a). Contradictory conditions: The sets of attribute
names in the conditional parts of Bi and Ej overlap
to a large extend but their attribute values are
quite different.

b). Unanticipated conditions: The sets of attribute
names in the conditional parts of B, and Ej do not
overlap.

Definition 3 (Set-Similarity): The subset of rules in B
that are the same or Ileum close to some of the rules in E.
efini O&e): The subset of rules in B
that the set of rules in E in the sense
of unexpected consequent or unexpected conditions as
stated in definition 2.

Notice that we have been using fuzzy ternIs such as
similar, veyJ different (or far apart) that we have not
quantified. In the next two sections, we will define
computation procedures that measure the similarity and
difference. Our technique does not identify the similar
rules and di.Eerent rules. It only ranks them according to
the similarity <and difference values. The final job of
identifying the rules as similar or different is left to the
user as the system does not know what degree of match of
two rules are considered similar or different.

3.

In this section, we present a high level view of the fiizzy
matching method. It consists of two main steps:
Stepl. The user converts each rule in E to a fuzzy rule.

The fuzzy rule has the same syntax as the original rule,
but its attribute values must be described using some
fuzzy linguistic variables. See the definition below.

Step2. The system matches each new rule Bi E B against
each fuzzy rule EJ E E in order to obtain the degree of
match for each new rule Bj against the set E. The new
rules in B are then ranked according to their degrees of
match with E. Four matching algorithms are used to
perform matching for different purposes.

Before we proceed, let us review the definition of a fuzzy
linguistic variable (Zimmermann 1991).

etinitioa 5: A fuzzy linguistic variable is a quintuple (x,
T(x), CT, G, fi) in which x is the name of the variable;
T(x) is the term set of X; that is, the set of names of
linguistic values of x: with each value being a fuzzy
variable denoted generally by x and ranging over a
universe of discourse r/‘; G is a syntactic rule for
generating the name, X$ of values of X; and M is a
semantic rule for associating with each value S its

Knowledge Bases 829

meaning, A%(J) which is a fuzzy subset of U. A
particular X is called a term.

For example, if speed is interpreted as a linguistic variable
with G’ = [1,140], then its term set 7’(speed) could be

T(speed) = {slow, moderate, fast, . . .).

fi(,U> gives a meaning to each term. For example,
ik(sZow> may be defined as follows:

fi(slow) ={(u, ps*ow(zc)) 1 zl E [l, ISO]>

1

1 u E [1,30]
where

psfow(24) =
1

---u+ 2
30

u E (30,601

0 u E (60,140]
~~~ow(zO denotes the degree of membership of u in slow. 

A window-based user interface has been implemented 
to simplie the input of semantic rules (i.e. membership 
values). After the user has speci.Eied the semantic rules 
associated with each term used, the fuzzy matching 
process can begin. 

Let us have an example. Consider the set of 
classification rules generated from an accident database. 

IfAge > 50, Lot = straight then Class = slight 
If Age > 65, Lot = bend, Spd =s 50 then Class = killed 
IfAge > 50, Lot = T-J’unct then Ciass = slight 

Assume the user believes that an old person crossing at a 
location with obstructed view is likely to result in a serious 
accident. S/he specifies the hypothesis as follows: 

If Age = OLD, Lot = OEST’ UCT then Class = &ID 
To confirm or deny this hypthesis, the system must first 
how how to interpret the semantic meanings of “OLD’, 
“OBS’I’RI/CT’ and ‘BAD.” This is achieved by asking the 
user to provide the semantic rules associated with these 
terms. Once the semantic rules have been specified, the 
matching process is carried out to determine the degrees 
of match between the hypothesis and the system generated 
rules. Different ranking algorithms are used for different 
purposes. For con&nation of the hypothesis, the system 
will give higher ranking to rules that are similar to the 
hypothesis. The resulting ranking could be as follows: 

1. If Age B 65, Lot = bend, Spd >50 then Cioss = killed 
2. If J4ge > 50, Lot = T+IG~ then Class = slight 
3. If&e > 50, Lot = straight then Class = slight 
On the other hand, if our purpose is to find those rules 

that are contradictory to the hypothesis? then a different 
ranking algorithm is used and the result is shown below: 

1. If Age > 50, Lot = T-junct the11 Class = slight 
2. If&e > 65, Lot = bend> Spd >50 then Cbs = killed 
3. If Age > 50, Lot = straight theu Class = slight 
This shows that rule 1 contradicts the hypothesis 

because instead of a serious injury, the old person suffers a 
slight injury. It is important to note that simply reversing 
the order of ranking for finding similar rules does not 
work in general for finding different rules. 

830 Learning 

atching Computation 

Having seen an overview of the proposed technique, we 
shall now describe the detailed formulas used in the rule 
matching computation. 

Let E be the set of existing rules and B be the set of 
newly generated rules. We denote IYi as the degree of 
match between a newly generated rule B, E B and the set 
of user-specified rules E. We denote w(i,j) as the degree of 
match between Bj E B and Ej E E. Ranking of the new (or 
system generated) rules is performed by sorting them in a 
decreasing order according to their Ivj (i.e., the rule with 
the highest K’itliill be at the top). 

4.1 Computing w(~J) and Fvi 

The computation of wtiJ. consists of hvo steps: (1) attribute 
name match, and (2) attribute value match. 
1. Attribute uame match - The attribute names of the 

conditions of B, and Ei are compared. The set of 
attribute names that are common to both the sonditions 
of B, and Ej is denoted as Ac,,l~ = P’j n Hi. Then, the 
degree of attribute name match of the conditional parts, 
denoted as Lci~lli): is computed as follows: 

where IFi] and ]JYJ are the numbers of attribute names in 
conditional parts of B, and & respectively, and p(jib:,I is 
the srze of the set Aji~:,. 

Likewise, the attribute names of the consequents of 
Bi and E’ are also compared. However, in the case of 
(X.5, the rules generated all have the same attribute 
name, i.e., C~QXS. Existing rules also use the same 
attribute. Thus, the attribute names always match. For 
example, we have 

Bi: If Ht > 1.8, R’t < 70 then C%WS = underweight. 
Ej: If Size = medium, R’t = middle then Class =Jit. 

The set of common attributes in the conditional parts of 
the two rules isA,, = ( Wt]. Hence, L<iij = 0.5. 

2. Attribute value match - Once an attribute of Bi and Ej 
matches, the two propositions are compared taking into 
consideration both the attribute operators and attribute 
values. We denote r/ii, as the degree of value match of 
the kth matching attribute in AcjJ:,, and .Z<jJ) the degree 
of value match of the consequents. The computation of 
the two values is presented in Section 4.2. 

We are now in the position to provide the formulas for 
computing *tv<i,i) and Svi. Due to the space limitation, we 
will not give detailed e?rplanation for each formula. 
Interested readers, please refer to (Liu & Hsu, 1995). 
1. Finding similar rules 

/ 

Z(i, j> x L<i, i) x C JJ’(~, f:lk 
hzA:I.J) 

W(i, j) = 
1 AM al 

I Au* aI fr 0 

0 I Au. ill = 0 



2. 

The formula for U:, which is the degree of match of 
the rule Bj with respect to the set of existing rules, E, 
is defined as follows (see Figure 1): 

Wi = IllaS(W(i,1), W(i,2), . . . , W(jj), . . . , W(j,q>) 
B E 

Figure 1. Computing !Yi 
Finding different rules in the following sense: 
1) consequent: The conditional parts 

are similar but the consequent parts are far apart. 
[L(f. j)X CvCLl,k 

1 ke.rl(t.,: 
W(i, f) = 

IAU.J,I 
-(Zw,-1) IAwl* 0 

I -Z(t. J) 1 Au, j,l= 0 
Jfi: is computed as follows: 

J4’i = IIlaX(W(i,l ), W(i,2), . . . , H’(iJ), . . ., W(i,pl)) 
IJnexpected conditions: The consequents are 
similar but the conditional parts are far apart. Two 
types of ranking are possible. 
(a) Contradictory conditions 

(rules with j~Ic~.~:,,l > 0 will be ranked higher) 

I 
I 

cvw)~ ‘1 
&, J) - J&, j) x ReA(r,;: 

wyi, f ) = I AL 111 

-1 IA(i.J)I+O 

\ J 

Z(i. j) 1 A(i. j)I= 0 

r;ri, is computed as follows: 
U’i = llXlX(W(i,1), M’(I,~), . . . . M’(iJ], . . . . W(i,p:,). 

(b) Unanticipated conditions 
(rules with /L!~~~,[ = 0 will be ranked higher) I 

c vu. J)k 
+l 

Waji. j) = Z(i.J)-L,t,Ji x ky~;*.f,, pu.nj;t 0 

\ I 
Z(i. 1) Itu..i= 0 

4.2 Computing V&M and Z,iJ) 

For the computation of 5iJp and Z(jib, we need to consider 
both the attribute values and the operators. Furthermore, 
the attribute value types (discrete or continuous) are also 
important. Since the computations of P:iJ)k and Zci,ll are the 
same, it suffices to just consider the computation of T/(yP, 
the degree of match for the Mz matching attribute in AtiJ9. 
Two cases are considered: the matching of discrete 

attribute values and the matching of continuous attribute 
values. 

2.1. atching of discrete attribute values 

En this case, the semantic rule for each term (133 used in 
describing the existing rule must be properly defined over 
the universe of the discrete attribute. We denote Vk as the 
set of possible values for the attribute. For each tf E & 
the user needs to input the membership degree of u in X, 
i.e., ,q&). For example, the user gives the following rule: 

Grade = poor then Class = reject 
Here, poor is a fuzzy term. To describe this term: the user 
needs to spec@ the semantic rule for poor. Assume the 
universe of the discrete attribute Grade = (A, B, C, D, F). 
The user may specirj; that “poor” grade means: 

W, 01, (B, 0): CC 0.2), (D, 0.81, V’. 1)) 
where the left coordinate is an element in the universe of 
the “Grade” attribute, and the right coordinate is the 
degree of membership of that element in the fuzzy set 
poor, e.g.: pP,,,.(D) = 0.8. 

When evaluating the degree of match for Pl/ijlk, two 
factors play an important role, namely: the semantic rules 
associated with the attribute value descriptions and the 
operators used in the propositions. In the discrete case, the 
valid operators are “=” and “f”. For example, suppose 
that the two propositions to be matched are as follows: 

User-supplied proposition: attr Opu X 
System-generated proposition: attr Ops S 

where attr is the matching attribute, Opu? Ops E (=, ;t], 
and Sand S are the attribute values of uttr. 

The matching algorithm must consider the combination 
of both operators and attribute values. Four cases result: 
Case 1. opu = ops = W’: 

1;‘(i. Jjh = /fX(S). 
Case 2. Opu = ‘h” and 0~s = “f”: 

c P(U) 
resuppm( x ) 

r (i. J,k = 
U#S 
1 Vkl- 1- ’ 

where support(X) = (~4 E r/k 1 &u) > 01, and I r/,1 is 
the size of LG. IC$l - 1 = 0 is not possible. 

Case 3. opu = ‘if” and Ops = cc=,,: 

r/‘(i.j)k = p-s(s). 

Case 4. OJ?U = i;#” and Ops = “#“I 

r jl--r(u) 
“cs”p~(Lr) 

1” (i, J jk = 
ULS 
ICq--1 fl 

where if Ops = “+“, IC$l - 1 = 0 is not possible. 

42.2. Matching of continuous attribute values 

When an attribute takes continuous values, the semantic 
rule for the term (-J;) takes on the form of a continuous 
function. To simplify the user’s task of specifying the 

Knowledge Bases 831 



shape of this continuous function, we assume the function 
has a curve of the form as shown in Figure 2. Thus, the 

Figure 2. Membership function 
For example, the user’s pattern is: 

IefAge = young then Ch.ss = accepted. 
Here, *voung is a term for variable Age. Suppose that in 
this case .4ge takes continuous values from 0 to 80. The 
user has to provide the 4 points using the values from 0 to 
80: e.g., a = 15, b = 20, c = 30, and d = 35. 

In the continuous case, the range of values that the 
operator can take is expanded to (=: f, 2, 2, %>. 5~” 
represents a range: Xl I attr 5 Xz. With this expansion, 
the total number of possible cases to be considered is 25. 
Due to space limitation, we cannot list all the formulas 
here. Interested readers may refer to (Liu & Hsu, 1995). 

5. Application in 

We have already mentioned that the proposed technique 
helps to solve the “interestingness” problem in data 
mining. We now outline the application in greater detail. 

Let D be the database on which the data mining 
technique 2’ is applied. Let B be the set of patterns (or 
rules) discovered by T in D. If we denote 1 as the set of 
interesting patterns (or rules) that may be discovered in D. 
Then, I c B. Three points to be noted: 
e The set of patterns in B could easily be in the hundreds 

or even thous,ands, and many of the patterns in B are 
useless. But because of the sheer number of patterns, it 
is very difficult for a user to focus on the “right” subset 
I of patterns that are interesting or useful to him/her. 

e Not all patterns in I are equally interesting. Different 
patterns may have different degrees of interestingness. 

e I may be a dynamic set in the sense that the user may be 
interested in different things at different points in time. 

In general, the size of B is much larger than the size of I. 
It is desirable that a wstem only gives the user the set of 
interesting patterns, 1: and ranks the patterns in. I 
according to their degrees of interestingness. Hence, the 
interestinbmess problem can be defined as follows: 
Definition 6: Given B, determine I and rank the patterns 

in I according to their degrees of interestingness to the 
user at the particular point in time. 

So, how can a computer system know what is useful in a 
domain and what is considered interesting at a particular 
moment to a user? What are the criteria used to rank the 
discovered patterns? Our proposed technique is able to 
provide a partial answer to these problems. 

The interestingness problem has been discussed in 
many papers (piatesky-Shapiro si Matheus 1994; 

Piatesky-Shapiro et al 1994; Silberschatz & Tuzhilin 
1995). Many factors that contribute to the interestingness 
of a discovered pattern have also been proposed. They 
include: coverage, confidence, strength, significance, 
simplicity, unexpectedness, and actionability (Major Bi 
Mangano 1993; Piatesky-Shapiro & Matheus 1994). The 
first five factors are called objective measures. They can be 
handled with techniques that do not require user and 
domain knowledge. They have been studied extensively in 
the literature (e.g., Quinlan 1992; I’vlajor $ Mangano 
1993). The last two factors, unexpectedness and 
actionability, are called subjective measures. It has been 
noted in (Piatesky-Shapiro & Matheus 1994) that although 
objective measures are useful, they are insufficient in 
determining the interestingness of a discovered pattern. 
Subjective measures are needed. Our proposed technique 
is able to rank the discovered patterns according to their 
subjective interestingness. In particular, it helps to identify 
those unexpected patterns. 

To date a number of studies have also been conducted 
on the subjective interestingness and some systems have 
been built (Major & Mangano 1993; Piatesky-Shapiro & 
Matheus 1994) with interestingness filtering components 
to help users concentrate on only the useful patterns. 
However, these systems handle the subjective 
interestingness in application specific fashions eiatesky- 
Shapiro et al 1994; Silberschatz & Tuzhilin 1995). For 
such systems, domain-specific theories and expert 
knowledge are hard-coded into the systems, thus making 
them rigid and inapplicable to other applications. 

In our proposed technique, we adopt a simple and 
effective approach: 
1. The user is asked to supply a set of expected patterns, 

(not necessary a complete set). 
2. The user then gives the semantic meanings to the 

attribute values (as described in Section 3). 
3. The newly discovered patterns are then matched 

against the expected patterns and ranked according to 
different requirements from the user. Note that our 
technique does not identify the set of interesting 
patterns I. This task is left to the user. 

The assumption of this approach is that some amount of 
domain knowledge and the user’s interests are implicitly 
embedded in his/her specified expected patterns. With 
various types of ranking, the user can simply check the 
few patterns at the top of the list to confirm or to deny 
his/her intuitions (or previous knowledge), and to find 
those patterns that are against his/her expectation. 

It should be noted that the user does not have to provide 
all his/her expected patterns at the beginning, which is 
quite difficult. He/she can actually do this analysis 
incrementally, and slowly modify and build up the set of 
expected patterns. The highly interactive nature of our 
technique makes this possible. 

832 Learning 



6. Evaluation 

The proposed technique is implemented in Visual C++ on 
PC. A number of experiments have been conducted. A test 
example is given to evaluate how well the system performs 
its intended task of ranking the newly generated nlles 
against the existing knowledge. An analysis of .the 
complexity of the algorithm is also presented. 

6.1. A test example 

The set of rules is generated from a database using 64.5. 
The attribute names and values have been encoded to 
ensure confidentiality. Due to the space limitation, only a 
subset of the rules is listed below for ranking. 

Rule 1: Al <= 41 
-> Class NO 

Rule 2: Al <= 49, A3 -== 5.49, A4 > 60 
-> Class NO 

Rule 3: Al>49,A2=2 
-> Class YES 

Rule 4: Al > 49, Al <= 50 
-> Class YES 

Rule 5: Al>55 
-> Class YES 

Rule 6: Al > 41, A3 > 5.49, A7 > 106, A4 > 60, 
A10 <= 5.06 

-> Class YES 
Rule 7: Al > 41, A4 <= 60 

-> Class YES 
Rule 8: Al > 41, Al <= 47, A3 -== 3.91, A7 > 106, 

A4 > 60, A10 <= 5.06 
-> Class YES 

Two runs of the system are conducted in this testing. In 
the first run? the focus is on finding similar (generated) 
rules, while in the second run the focus is on finding 
different rules (or unexpected rules). The system 
automatically cuts off rules with low matching values. 

(II). Fiding similar rules 

The set of user’s rules is listed below with the fuzzy set 
attached to each term. 
User’s rule set 1: 

Rule 1: Al <= Mid (a = 30, b = 35, c = 45, d = 50) 
-> Class NO {(NO, l), (YES, 0)) 

Rule2: Al >=Ret {a = 50, b = 53, c = 57, d = 60) 
-> Class YES ((NO, 0): (YES, 1)) 

e Ranking results: 

RANK 1 Rule 5: Al > 55 
-> Class YES 

confirming user specified rule 2 
RANK2 Rulel:Al<=41 

-> Class NO 
confirming user specified rule 1 

RANK3 

RANK4 

RANK5 

Rule3:Al>49,A2=2 
-> Class YES 

confirming user specified rule 2 
Rule 7: Al > 41: A4 <= 60 

-> Class YES 
confirming user specified rule 2 
Rule 2: Al <= 49, A3 <= 5.49, A4 > 60 

-> Class NO 
confirming user specified rule 1 

inding different rules 

The set of user’s rules for this test nm are listed below, 
which is followed by three types of ranking for finding 
different rules. 

User’s rule set 2: 

Rule 1: A7 >= HI, (a =147, b=148, c=152, d = 153) 
A4>=HI (a=92,b=93,c=97,d=98) 
-> Class YES {(NO, 0), (YES, 1)) 

Rule 2: A3 >= MI (a =1.75, b =1.8, c = 2.2, d=2.25} 
-> Class YES ((NO, 0): (YES, 1)) 

Unexpected consequent: 

RANK 1 Rule 2: Al <= 49: A3 <= 5.49, A4 > 60 
-> Class NO 

contradicting user specified rule 2 

Contradictory conditions: 

RANK1 Rule7:Al>41:A4<=60 
-> Class YES 

contradicting user specified rule 1 
RANK 2 Rule 6: Al > 41, A3 > 5.49, A7 > 106, 

A4 > 60, A10 <= 5.06 
-> Class YE% 

contradicting user specified rule 1 
RANK 3 Rule 8: Al > 41, Al <= 47, A3 += 3.91, 

A7 > 106, A4 > 60, Al0 <= 5.06 
-> Class YES 

contradicting user specified rule 1 
Unanticipated conditions: 

RANK 1 Rule 3: Al > 49, A2 = 2 
-> Class YES 

RANK2 Rule4: Al > 49, Al <= 50 
-> Class YES 

RANK3 Rule5: Al>55 
-> Class YES 

RANK4 Rule7: Al>41,A4<=60 
-> Class YES 

6.2 Efficiency analysis 

Finally, let us analyze the nmtime complexity of the 
algorithm that implements the proposed technique. 
Assume the maximal number of propositions in a rule is 
hi. Assume the attribute value matching (computing YtjJ:, 
and ,Z&,) takes constant time. Combining the individual 

Knowledge Bases 833 



matching values to calculate lg’(i,l> also takes constant time. 
The computation of E/i is O(lQ). Then, without 
considering the final ranking, which is basically a sorting 
process, the worst-case time complexity of the technique is 
o(lEp3p2). 

7. Related ‘N70rk 

To the best of our knowledge, there is no reported work on 
comparing existing rules with the newly generated rules. 
Most of the work on machine learning focuses on the 
generation of rules from various @pes of datasets as well 
as pruning of the generated rules (e.g., Quinlan 1992; 
Breiman et al 1984; Clark & Matwin 1993). Some systems 
also use existing domain knowledge in the induction 
process (e.g., Ortega $ Fisher 1995; Clark & Mawin 
1993; Pazzani & Kibler 1992). However, their purpose is 
mainly for helping the induction process so as to increase 
learning efficiency and/or to improve prediction accuracy 
of the generated rules. Clearly, the focus of their research 
is quite diEerent from ours because our technique is 
primarily a post-analysis method that aims to help the user 
or an intelligent agent to analyze the rules generated. 

In the areas of data mining research, the interestingness 
issue (Piatesky-Shapiro & Matheus 1994; Piatesky- 
Shapiro et ul 1994) has long been identified as an 
important problem (see Section 5). 

(Piatesky-Shapiro & Matheus 1994) studied the issue of 
subjective interestingness in the context of a health care 
application. The system (called KEFIR) analyzes the 
he<aIth care information to uncover interesting deviations 
(from the norms) or “key findings”. A domain expert 
system is built to identify findings that are actionable and 
the actions to be taken. KEFIR does not do rule 
comparison, nor does it handle the unexpectedness 
problem. The KEFIR approach is also application specific. 
Its domain knowledge is hard-coded in the system as 
production rules. Our system is domain independent. 

(Silberschatz & Tuzhilin 1995) proposed to use 
probabilistic beliefs as the framework for describing 
subjective interestingness. Specifically, a belief system is 
used for defining unexFtedness. However, (Silberschatz 
& Tuzhilin 1995) is just a proposal, and no system was 
implemented. * Our proposed approach has been 
implemented and tested. In addition, our approach allows 
the user to specify his/her beliefs in fizzy terms which are 
more natural than complex probabilities that the user has 
to assign in (Silberschatz Rt Tuzhilin 1995). 

8. Conclusion 

This paper tries to bridge the gap behveen the user and the 
rules produced by an induction system. A filzzy matching 
technique is proposed for rule comparison in the context 
of classification rules. It allows the user to compare the 

generated rules with his/her hypotheses or existing 
knowledge in order to find out what is right and what is 
wrong about his/her knowledge, and to tell what has 
changed since the last learning. This technique is also 
useful in data mining for solving the interestingness 
problem. The proposed technique is general, and highly 
interactive. We do not claim however: that the issues 
associated with the rule comparison are fully understood. 
In fact, much work remains to be done. We believe the 
proposed technique represents a major step in the right 
direction. 

Ac~o~led~me~ts: We would like to thank Hing-Yan 
Lee and Hwee-Leng Ong of Information Technology 
Institute for providing us the databases, and for many 
usem discussions. We thank Lai-Fun Mun and Gui-Jun 
Yang for implementing the system. The project is tided 
by National Science and Technology Board. 

References 
Breiman, L., Friedman, J., ’ Olshen, R., and Stone, C. 

1984. CiussiJication and regression trees. Belmont: 
Wadsworth. 

Clark, P and Niblett, T. 1989. “The CN2 induction 
algorithm.” MacJline Learning 3,261-284. 

Clark, P. and Mahvin, S. 1993. “Using qualitative models 
to guide induction learning.” In Proceedings of the 
International Conference on Machine Learning, 49-56. 

Liu, B. and HSU~ W. 1995. Finding interesting patterns 
using user expectations. DISCS Technical Report. 

Major, J., and Mangano, J. 1993. “Selecting among rules 
induced from a hurricane database.” In Proceedings of 
the AAAl-93 Workshop on KDD. 

Michalski, R. 1980. “Pattern recognition as rule-guided 
induction inference.” IEEE Trunsactions on Pattern 
Analysis and Machine Intelligence 2, 349-361. 

Ortega, J., and Fisher, D. 1995. “Flexibly exploiting prior 
knwledge in empirical learning.” IJC.41-95. 

Pazzani,M. and Kibler,D. 1992. “The utility of knowledge 
in inductive learning.” Machine learning 9. 

Piatesky-Shapiro, G., and C. J Matheus. 1994. “The 
interestingness of deviations.” In Proceedings of the 
.&LU-94 Workshop on KDD, 25-36. 

Piatetsky-Shapiro, G., Matheus, C., Smyth, P. and 
Uthurusamy, R. 1994. ‘KDD-93: progress and 
challenges . . . .” AI maguziije, Fall, 1994: 77-87. 

Quinlan, J. R. 1992. C4.5: program for machine learning. 
Morgan Kaufmann. 

Silberschatz, A. and Tuzhilin, A. 1995. “On subjective 
measures of interestingness in knowledge discovery.” In 
Proceedings of tJTe First International Conference on 
Knowledge Discovery and Data Mining. 

Zimmermann, H. J. 199 1. Fuzzy set theory and its 
applications. Khlwer Academic Publishers. 

834 Learning 


