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Abstract 

In this paper we describe the design and implementation of 
the derivation replay framework, DERSNLP+EBL (Deriva- 
tional SNLP+EBL), which is based within a partial order 
planner. DERSNLP+EBL replays previous plan derivations 
by first repeating its earlier decisions in the context of the 
new problem situation, then extending the replayed path 
to obtain a complete solution for the new problem. When 
the replayed path cannot be extended into a new solution, 
explanation-based learning (EBL) techniques are employed 
to identify the features of the new problem which prevent 
this extension. These features are then added as censors on 
the retrieval of the stored case. To keep retrieval costs low, 
DERSNLP+EBL normally stores plan derivations for individ- 
ual goals, and replays one or more of these derivations in 
solving multi-goal problems. Cases covering multiple goals 
are stored only when subplans for individual goals cannot 
be successfully merged. The aim in constructing the case 
library is to predict these goal interactions and to store a 
multi-goal case for each set of negatively interacting goals. 
We provide empirical results demonstrating the effective- 
ness of DERSNLP+EBL in improving planning performance 
on randomly-generated problems drawn from a complex 
domain. 

ntroduction 
Case-based planning provides significant performance im- 
provements over generative planning when the planner is 
solving a series of similar problems, and when it has an 
adequate theory of problem similarity (Hammond 1990; 
Ihrig 1996; Ihrig & Kambhampati 1994; Veloso & Car- 
bone11 1993). One approach to case-based planning is to 
store plan derivations which are then used as guidance when 
solving new similar problems (Veloso & Carbonell 1993). 
Recently we adapted this approach, called derivational 
replay, to improve the performance of the partial-order 
planner, SNLP (Ihrig & Kambhampati 1994). Although it 
was found that replay tends to improve overall performance, 
its effectiveness depends on retrieving an appropriate case. 
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Often the planner is not aware of the implicit features of the 
new problem situation which determine if a certain case is 
applicable. 

Earlier work in case-based planning has retrieved pre- 
vious cases on the basis of a static similarity metric 
which considers the previous problem goals as well as 
the features of the initial state which are relevant to the 
achievement of those goals (Kambhampati & Hendler 1992; 
Ihrig & Kambhampati 1994; Veloso & Carbonell 1993). If 
these are again elements of the problem description then 
the case is retrieved and reused in solving the new problem. 
Usually the new problem will contain extra goal condi- 
tions not covered by the case. This means that the planner 
must engage in further planning effort to add constraints 
(including plan steps and step orderings) which achieve 
the conditions that are left open. Sometimes an extra goal 
will interact with the covered goals and the planner will 
not be able to find a solution to the new problem without 
backtracking and retracting some of the replayed decisions. 
In the current work we treat such instances as indicative 
of a case failure. We provide a framework by which a 
planner may learn from the case failures that it encounters 
and improve its case retrieval. 

In this paper, we present the derivation replay framework, 
DERSNLP+EBL, which extends DERSNLP, a replay system 
for a partial-order planner, by incorporating explanation- 
based learning (EBL) techniques for detecting and explain- 
ing analytical failures in the planner’s search space. These 
include methods for forming explanations of search path 
failures and regressing these explanations through the plan- 
ning decisions in the failing paths (Kambhampati, Katukatn, 
& Qu 1996). Here we employ these techniques to construct 
reasons for case failure, which are then used to annotate the 
failing cases to constrain their future retrieval. Furthermore, 
each failure results in the storage of a new case which repairs 
the failure. DERSNLP+EBL normally stores plan derivations 
solving single input goals. When a case fails in that it can- 
not be extended to solve extra goals, a new multi-goal case 
is stored covering the set of negatively interacting goals. 
DERSNLP+EBL thus builds its case library incrementally in 
response to case failure, as goal interactions are discovered 
through the course of problem solving. 

In (Ihrig & Kambhampati 1995), the potential effective- 
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STORE REPLAY / EXTEND 

Figure 1: Schematic characterization of derivation storage 
and replay. Each time that a plan is derived, the decisions 
contained in the plan derivation (shown as the filled circles 
to the left of the figure) are stored as a sequence of 
instructions (shown as open rectangles) which are used 
to guide the new search process. The guidance provided 
by replay is considered successful if the skeletal plan 
that replay produces can be extended (by the addition of 
constraints) into a solution to the new problem. If replay has 
been successful, the skeletal plan lies on the new derivation 
path leading to the solution. 

ness of this approach was evaluated in an empirical study 
which compared the replay performance of DERSNLP+EBL 
both with and without failure information. In this paper, we 
demonstrate overall performance improvements provided 
by multi-case replay when a case library is constructed on 
the basis of replay failures. In the next section, we describe 
DERSNLP+EBL which implements derivation replay within 
the partial-order planner, SNLP. 

splay in Partial- er Planning 
Whenever DERSNLP+EBL attempts a new problem, and 
achieves a solution, a trace of the decisions that fall on the 
derivation path leading from the root of the search tree to 
the final plan in the leaf node is stored in the case library. 
Then, when a similar problem is encountered, this trace is 
replayed as guidance to the new search process. Figure 1 
illustrates the replay of a derivation trace. DERSNLP+EBL 
employs an eager replay strategy. With this strategy, 
control is shifted to the series of instructions provided by 
the previous derivation, and is returned to from-scratch 
planning only after all of the valid instructions in the trace 
have been replayed. This means that the plan which is 
produced through replay, called the skeletal plan, contains 
all of the constraints that were added on the guidance of 
the previous trace. When the skeletal plan contains open 
conditions relating to extra goals not covered by the case, 
further planning effort is required to extend this plan into a 
solution for the new problem. 

In the current work replay success and failure is defined 
in terms of the skeletal plan. Replay is considered to fail 
if the skeletal plan cannot be extended by the addition of 
further constraints into a solution for the new problem (See 
Figure 2). In such instances, the planner first explores the 
failing subtree underneath the skeletal plan, then recovers 
by backtracking over the replayed portion of the search path. 

Figure 2: A replayfailure is indicated when a solution to the 
new problem can be reached only by backtracking over the 
skeletal plan, which now lies outside the new plan derivation 
(shown as filled circles). Explanations are constructed for 
the failing plans in the leaf nodes of the subtree directly 
beneath the skeletal plan, and are regressed up the search 
tree and collected at the root to become the reason for case 
failure. 

Replay failure usually results in poor planning performance 
since, over and above the cost of the search effort, it entails 
the additional cost of retrieving a trace from the library, as 
well as the cost of validating each of the decisions in the 
trace. This means that when replay fails and the planner 
has to backtrack over the skeletal plan performance may be 
worse than in from-scratch planning. 

When a case fails, and the planner goes on to find a new 
solution, the final plan that it reaches does not contain some 
of the constraints that are present in the skeletal plan. The 
new derivation path which leads from the root of the search 
tree to the final plan in the leaf node thus avoids (or repairs) 
the failure encountered in replaying the old case. Consider 
a simple example taken from the logistics transportation 
domain of (Veloso & Carbonell 1993). Figure 3a illustrates 
the solution to a simple problem drawn from this domain. 
The goal is to have package OB 1 located at the destination 
location ld. The package is initially at location 21. There 
is a plane located at lr, which can be used to transport the 
package. A previous plan which solves this problem will 
contain steps (shown by the curved arrows in Figure 3a) 
that determine the plane’s route to the destination airport as 
well as steps which accomplish the loading of the package 
at the right place along this route. This plan may be readily 
extended to load and unload extra packages which lie along 
the same route. However, if the new problem involves 
the additional transport of a package which is off the old 
route, the planner may not be able reach a solution without 
backtracking over some of the previous step additions. The 
new plan shown in Figure 3b contains some alternative 
steps that achieve the goal covered by the previous case. 
The plane takes a longer route which means that the plan 
may be readily extended to solve the extra goal. 

DERSNLP+EBL detects that a previous case has failed 
when all attempts to refine the skeletal plan have been tried, 
and the planner is forced to backtrack over this plan. At this 
point, the planner has already constructed an explanation 
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(a) Previous Case 

Figure 3: An example of plan failure. The plan derived 
in an earlier problem-solving episode is shown in (a). 
This plan accomplishes the transport of a single package, 
OBI, to the destination airport L-J. Replay fails for a new 
problem, whose solution is illustrated in Figure (b). The 
new problem contains an extra goal which involves the 
additional transport to Id of a second package, OB2, which 
is initially located ofs the previous route. 

(b) New Problem with 
Extra Goal 

for the skeletal plan’s failure (which becomes the reason 
for case failure). This explanation is incrementally formed 
with each path failure experienced in the subtree rooted at 
the skeletal plan. Each analytical failure that is encountered 
is regressed through the decisions in the failing path and 
the regressed path failure explanations are collected at the 
root of the search tree to form the reason for case failure. 
An example of a case failure reason is shown in Figure 4. 
It gives the conditions under which a future replay of the 
case will again result in failure. These conditions refer to 
the presence in the new problem of a set, C, of negatively 
interacting goals, as well as some initial state conditions, 
contained in E. A summary of the information content of 
the failure reason is: There is an extra package to transport 
to the same destination location, and that package is not at 
the destination location, is not 
located on the plane’s route. 

inside the plane, -and is not 

Since replay merely guides the search process (without 
pruning the search tree), a replay failure does not affect the 
soundness or completeness of the planning strategy. After 
backtracking over the skeletal plan, the planner continues 
its search, and will go on to find a correct solution to the 
full problem if one exists. This new solution achieves all of 
the negatively interacting goals identified in the case failure 
reason. Moreover, since the interacting goals represent a 
subset of the new problem goals, the new derivation may 
be used to construct a new repairing case covering only 
these goals. The repairing case is indexed directly beneath 
the failing case so as to censor its retrieval. In the future, 
whenever the failure reason holds, the retriever is directed 
away from the case that experiences 
the case that repairs the failure. 

a failure and toward 

We are now in a position to describe how the planner 
learns the reasons underlying a case failure. Specifically, 
we use EBL techniques to accomplish this learning. In 
the next section, we show how the techniques developed 
in (Kambhampati, Katukam, & Qu 1996) are employed to 
construct these reasons. 

Case Failure Explanation: 

C = (((AT-OB OBl Id), TV) 
((AT-OB OB2 Id), ta)} 

& = ((tr, (TAT-OB OB2 &$)) 
(tl, (TINSIDE-PL OB2 ?PL )) 
(tI, (TAT-OB OB2 rl)) 
(TV, (TAT-OB OB2 &,))} 

Figure 4: An example of a case failure reason 

earning from Case Failure 
DERSNLP+EBL constructs reasons for case failure through 
the use of explanation-based learning techniques which 
allow it to explain the failures of individual paths in the 
planner’s search space. A search path experiences an 
analytical failure when it arrives at a plan which, because 
it contains a set of inconsistent constraints, cannot be 
further refined into a solution. EBL techniques are used 
to form explanations of plan failures in terms of these 
conflicting constraints (Kambhampati, Katukam, 8z Qu 
1996). DERSNLP+EBL constructs explanations for each of 
the analytical failures that occur in the subtree beneath the 
skeletal plan’. 

Since a plan failure explanation is a subset of plan con- 
straints, these explanations are represented in the same 
manner as a pahilph. DERSNLP+EBL represents itspar- 
tial plans as a 6-tuple, (S, 0, x3, L, E, C), where (Barrett & 
Weld 1994): S is the set of actions (step-names) in the plan, 
each of which is mapped onto an operator in the domain 
theory. S contains two dummy steps: tl whose effects are 
the initial state conditions, and tG whose preconditions are 
the input goals, G. f3 is a set of codesignation (binding) and 
non-codesignation (prohibited binding) constraints on the 
variables appearing in the preconditions and post-conditions 
of the operators which are represented in the plan steps, 
S. 0 is a partial ordering relation on S, representing the 
ordering constraints over the steps in S. C is a set of causal 
links of the form (s, p, s’) where s, s’ E S. A causal link 
contains the information that s causes (contributes) p which 
unifies with a precondition of s’. E contains step effects, 
represented as (s, e), where s E S. C is a set of open 
conditions of the partial plan, each of which is a tuple (p, s) 
such that p is a precondition of step s and there is no link 
supporting p at s in L. 

The explanation for the failure of the partial plan contains 
a minimal set of plan constraints which represent an incon- 
sistency in the plan. These inconsistencies appear when 
new constraints are added which conflict with existing con- 
straints. DERSNLP makes two types of planning decisions, 
establishment and resolution. Each type of decision may 
result in a plan failure. For example, an establishment 

‘Depth limit failures are ignored. This means that the failure 
explanations that are formed are not sound in the case of a depth 
limit failure. However, soundness is not crucial for the current 
purpose, since explanations are used only for case retrieval and 
not for pruning paths in the search tree. 
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Type : ESTABLISHMENT Type : ESTABLISHMENT 
Kind : NEW STEP Kind : NEW LINK 
Preconditions : Preconditions : 
(P’, 8’) E c (P’, 4 E c 
Effects : Effects : 
s’ = s u (8) 
0’ = c3 u (8 4 a’} 
8’ = t? U uni f y(p, p’) 
t’ = L u {(qp, 8’)) 
E = & U effects(e) 
c’ = c - ((p’, 8’)) 

0’ = 0 u (8 4 8’) 

8’ = B U unif y(p, p’) 
e!? = L u {(8,p, 8’)) 

c’ = c - ((p’, 8’ } 

U pTeconditione(8) 

Figure 5: Planning decisions are based on the current 
active plan (S, 0, x3, E, E, C) and have eJfects which alter 
the constraints so as to produce the new current active plan 
(S’, 0, t3’, J?, E’, Cl). 

decision makes a choice as to a method of achieving an 
open condition, either through a new plan step, or by adding 
a causal link from an existing step (See Figure 5). When an 
attempt is made to achieve a condition by linking to an initial 
state effect, and this condition is not satisfied in the initial 
state, the plan then contains a contradiction. An explana- 
tion for the failure is constructed which identifies the two 
conflicting constraints: (0,0,0, ((tl, p, s)), ((tr, lp)), 0). 

As soon as a plan failure is detected and an explanation 
is constructed, the explanation is regressed through the 
decisions in the failing path up to the root of the search tree. 
In order to understand the regression process, it is useful 
to think of planning decisions as STRIPS-style operators 
acting on partial plans. The preconditions of these operators 
are specified in terms of the plan constraints that make up a 
plan flaw, which is either an open condition or, in the case 

Each of the conflicting constraints in the failure expla- 
nation is regressed through the planning decision, and the 
results are sorted according to type to form the new regressed 
explanation. As an example, consider that a new decision, 
df , adds a link from the initial state which results in a failure. 
The expl=tion, el, is: (0,0,0, (@I, P, 0, @I, lp)), 0) 
When el is regressed through the final decision, &f , to 
obtain a new explanation, o!, ‘(el), the initial state ef- 
fect regresses to itself. However, since the link in the 
explanation was added by the decision, df , this link re- 
gresses to the open condition which was a precondition 
of adding the link. The new explanation, df l(ei), is 
therefore (0,0,0,0, ((tr, lp)), ((p, 8))). The regression 
process continues up the failing path until it reaches the 
root of the search tree. When all of the paths in the subtree 
underneath the skeletal plan have failed, the failure reason 
at the root of the tree provides the reason for the failure of 
the case. It represents a combined explanation for all of 
the path failures. The case failure reason contains only the 
aspects of the new problem which were responsible for the 
failure. It may contain only a subset of the problem goals. 

Also, any of the initial state effects that are present in a leaf 
node explanation, are also present in the reason for case 
failure. The next section describes how case failure reasons 
are used to build the case library. 

A large complex domain means a great variety in the 
problems encountered. When problem size (measured in 
terms of the number of goals, n) is large, it is unlikely that 
a similar n-goal problem will have been seen before. It 
is therefore an advantage to store cases covering smaller 
subsets of goals, and to retrieve and replay multiple cases 
in solving a single large problem. In implementing this 
storage strategy, decisions have to be made as to which goal 
combinations to store. Previous work (Veloso & Carbonell 
1993) has reduced the size of the library by separating 
out connected components of a plan, and storing their 
derivations individually. Since DERSNLP+EBL is based on 
a partial order planner, it can replay cases in sequence and 
later add step orderings to accomplish the merging of their 
subplans. It therefore has a greater capability of reducing 
the size of the library, since it may store smaller problems. 
In the current work, we store multi-goal cases only when 
subplans for individual goals cannot be merged to reach a 
full solution. 

With this aim in mind, we have implemented the fol- 
lowing deliberative storage strategy. When a problem is 
attempted which contains 72 goals, a single goal problem 
containing the first goal in the set is attempted and, if 
solved, the case covering this goal alone is stored in the 
library. Multi-goal problems to be stored are solved incre- 
mentally by increasing the problem size by one goal at a 
time. For example, if the problem just attempted solved 
goals G = (a, in, . . . . gi) through a decision sequence Di 
then a second decision sequence, Di+l , is stored whenever 
Di cannot be successfully extended to achieve the next goal 
gi+l . When this occurs, the explanation of replay failure is 
used to identify a subset of input goals that are responsible 
for the failure. A new derivation is produced which solves 
only these negatively interacting goals. This derivation is 
then stored in the library. Whenever the next goal in the 
set is solved through simple extension of the previous de- 
cision sequence, no case is stored which includes that goal. 
This means that each new case that is stored corresponds 
to either a single-goal problem or to a multi-goal problem 
containing negatively interacting goals. Moreover, all of 
the plan derivations stored from a single problem-solving 
episode are different in that no decision sequence stored in 
the library is a prefix of another stored case. 

This strategy drastically reduces the size of the library. 
It means that goals that interact positively in that they can 
be solved through one or more common steps are stored 
individually in single cases. Goals that are negatively 
interacting (in that solving one means having to alter 
the solution to the other) are stored together as multi- 
goal cases. The more experience that the planner has in 
problem-solving, the more of these multi-goal cases are 
discovered and stored, and the less likely it is that the 
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initial conditions: 
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I derivation 1 1 1 derivation 2 1 
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failure reasons: L-l rl /\ r2 

Figure 6: Local organization of the case library. 

planner has to backtrack over its replayed paths. The aim 
is to store a minimum number of cases such that all of 
the problems encountered in the future may be achieved 
through sequential replay of multiple stored cases. 

Multi-goal cases are indexed in the library so as to censor 
the retrieval of their corresponding single-goal subprob- 
lems. The discrimination net depicted in Figure 6 indexes 
one fragment of the case library. This fragment includes 
all of the cases which solve a single input goal. Individual 
cases which solve this goal are represented one level lower 
in the net. Each case is indexed by its relevant initial state 
conditions. When one of these cases is retrieved for replay 
and the case fails, the alternative derivation corresponding 
to the additional interacting goal is added to the library and 
indexed directly under the failing case so as to censor its 
future retrieval. Before the case that experienced a failure is 
retrieved again, the retriever checks whether the extra goals 
responsible for the failure are present under the same initial 
conditions. If so, the retrieval process returns the alternative 
case containing these extra goals. The case failure reason is 
thus used to direct retrieval away from the case which will 
repeat a known failure, and towards the case that avoids it. 

Multi-case replay can result in a lower quality plan if 
care is not taken to avoid redundancy in step addition. 
When derivations for positively-interacting goals are stored 
individually, replaying each case in sequence may result 
in superfluous steps in the plan. When the first retrieved 
derivation is replayed, none of its replayed step additions 
will result in redundancy. However, when subsequent goals 
are solved through replay of additional cases, some step 
additions may be unnecessary in that there are opportunities 
for linking the open conditions they achieve to earlier 
established steps. 

We solved this problem and obtained shorter plans by 
increasing the justification for replaying a step addition 
decision. In order to take advantage of linking opportunities, 
before replaying a new step addition, the replay process 
takes note of any links which are currently available but 
were not present in the previous case. When new linking 
opportunities are detected, the decision to add a new step is 
rejected. After replay, the new links are explored through 
the normal course of plan refinement. This careful screening 
of the step addition decisions improves the quality of plans 
in terms of the number of steps they contain. The next 
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Figure 7: Replay performance in the logistics transportation 
domain. The cumulative CPU time (in sets) on problem 
sets of increasing problem size (I to 6 goals) is plotted for 
each level of training (0 to 120 training problems solved). 
The insert shows total CPU time on all of the 6 test sets 
after increasing amounts of training 

section describes an empirical study demonstrating the 
performance improvements provided by multi-case replay. 

Experimental Setup: We tested the improvement in 
planning performance provided by multi-case replay on 
problems drawn from the logistics transportation domain 
(Veloso & Carbonell 1993). Problem test sets increasing in 
problem size were randomly generated from this domain. 
The initial state of each problem described the location of 6 
packages, and 12 transport devices (6 planes and 6 trucks) 
within 6 cities, each containing a post office and an airport. 
See (Ihrig 1996) for similar tests on larger problems in a 15 
city domain. 

The experiments were run in six phases. At the start 
of each phase n the library was cleared and thirty test 
problems, each with n goals, were randomly generated. 
The planner was then repeatedly tested on these problems 
after increasing amounts of training on randomly generated 
problems of the same size. During training, problems 
were solved and their plan derivations were stored as 
described above. Multi-goal problems were stored only 
when retrieved cases failed. In these instances the failure 
information was used to extract the subset of input goals 
responsible for the failure, and a case which solved these 
goals alone was stored in the library. 
Experimental Res ts: The results are shown in Figure 7 
and 8. Figure 7 plots replay performance measured as the 
cumulative CPU time taken in solving the 30-problem sets 
tested in the 6 phases of the experiment. The figure plots 
replay performance (including case retrieval time) for the 
various levels of training prior to testing. For example, level 
0 represents planning performance after no training. Since 
in this instance the case library is empty, level 0 represents 
from-scratch planning on the problem test set. Level 20 
represents testing after training on 20 randomly generated 
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Figure 8: Percentage of test problems solved with the time 
limit (500 set) is plottedfor 30-problem test sets containing 
problems of 1, 3 and 5 goals. This percentage increased 
with training (0 to 120 training problems solved). The 
insert shows the corresponding increase in the size of the 
case library. 

problems of the same size as the test set. The results 
indicate that this relatively small amount of training pro- 
vided substantial improvements in planning performance. 
Moreover, performance improved with increased levels of 
training. The improvements provided by multi-case replay 
more than offset the added cost entailed in retrieving and 
matching stored cases. 

Figure 8 reports the percentage of test problems solved 
within the time limit which was imposed on problem solv- 
ing. It shows how training raised the problem-solving 
horizon, particularly in the later phases of the experiment 
when larger problems were tested. Storing cases on the 
basis of case failure kept the size of the library low (see 
insert, Figure 8) and retrieval costs were minimal. In the 
next section, we discuss the relationship to previous work 
in case storage and retrieval. 

elated Work and Discussion 
The current work complements and extends earlier treat- 
ments of case retrieval (Kambhampati & Hendler 1992; 
Veloso & Carbonell 1993). Replay failures are explained 
and used to avoid the retrieval of a case in situations where 
replay will mislead the planner. Failures are also used to 
construct repairing cases which are stored as alternatives to 
be retrieved when a similar failure is predicted. 

CHEF (Hammond 1990) learns to avoid execution-time 
failures by simulating and analyzing plans derived by 
reusing old cases. In contrast, our approach attempts to 
improve planning efficiency by concentrating on search 
failures encountered in plan generation, We integrate re- 
play with techniques adopted from the planning framework 
provided by SNLP+EBL (Kambhampati, Katukam, & Qu 
1996). This framework includes methods for constructing 
conditions for predicting analytical failures in its search 
space. 

EBL techniques have been previously used to learn from 

problem-solving failures (Kambhampati, Katukam, & Qu 
1996; Minton 1990; Mostow & Bhatnagar 1987). However, 
the goal of EBL has been to construct generalized control 
rules that can be applied to each new planning decision. 
Here we use the same analysis to generate case-specific 
rules for case retrieval. Rather than learn from all failures, 
we concentrate on learning from failures that result in 
having to backtrack over the replayed portion of the search 
path. As learned information is used as a censor on retrieval 
rather than as a pruning rule, soundness and completeness 
of the EBL framework are not as critical. Furthermore, 
keeping censors on specific cases avoids the utility problem 
commonly suffered by EBL systems. 

Conclusion 
In this paper, we described a framework for a case-based 
planning system that is able to exploit case failure to 
improve case retrieval. A case is considered to fail in a new 
problem context when the skeletal plan produced through 
replay cannot be extended by further planning effort to 
reach a solution. EBL techniques are employed to explain 
plan failures in the subtree directly beneath the skeletal 
plan. These failure explanations are then propagated up the 
search tree and collected at the root. The regressed plan 
failures form the reason for case failure which is used to 
censor the case and to direct the retriever to a repairing 
case. Our results provide a convincing demonstration of the 
effectiveness of this approach. 
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