
Sean P. Engelson 
Dept. of Mathematics and Computer Science 

Bar-Ilan University 
52900 Ramat Gan 

Israel 
Email: engelsonQbimacs.cs.biu.ac.il 

Abstract 

We address the problem of learning robust plans for 
robot navigation by observing particular robot behav- 
iors. In this pcaper we present a method which can 
learn a robust reactive plan from a single example of a 
desired behavior. The system operates by translating a 
sequence of events arising from the eflector system into 
a plan which represents the dependencies among such 
events. This method allows us to rely on the underly- 
ing stability properties of low-level behavior processes 
in order to produce robust plans. Since the resultant 
plan reproduces the original behavior of the robot at 
a high level, it generalizes over small environmental 
changes and is robust to sensor and eflector noise. 

Introduction 
Recently, a number of sophisticated ‘reactive’ planning 
formalisms have been developed (Firby 1989; Gat 1991; 
McDermott 1991; Simmons 1994), which allow a great 
deal of flexibility in control flow and explicitly in- 
clude a notion of an intelligent plan execution sys- 
tem. However, the complexity of these plan represen- 
tations makes planning very difficult. Much of the ef- 
fort in developing planners for these new planning lan- 
guages, therefore, has focused on case-based, or truns- 
formationad, planning approaches (Hammond 1986; 
McDermott 1992). In this paradigm, given a set of 
goals to achieve, the planner retrieves a set of plan 
fragments from a plan library which it believes will 
help achieve those goals. The planner combines the 
fragments to form a complete plan, and then adapts 
it to fit the particular task at hand. When the plan- 
ner is satisfied, the plan gets executed. If execution is 
satisfactory, the plan may get stored back in the plan 
library for future reuse. 

An initial case-base is usually constructed by hand, 
to contain plan fragments thought to be useful for a 
particular domain. As more planning problems are 
solved by the system, the plan library grows, contain- 
ing plans that solved previous problems. However, 
under this learning strategy, the library will contain 
only complete cases derived for previously solved tasks, 
without the possibility of learning other types of cases. 
This method thus assumes implicitly that the prob- 
lems that will arise in the future are similar to those 
arising now; it also precludes serendipitous learning, as 
the robot only learns plans relevant to its current task. 

We propose here another method for augmenting 
the plan library, by storing plan fragments derived by 

breaking up the robot’s behavior in ways different from 
those given by its controlling plan. Suppose, for exam- 
ple, that our robot is to go from room A to room B, 
via a hallway which contains a water cooler. In the 
usual case-based learning framework, a plan fragment 
that gets the robot from room A to the water cooler 
would not be learned; in fact, the original plan may 
not mention the water cooler at all. However, if we 
observe the robot’s behavior between room A and the 
water cooler, we may be able to ‘reverse engineer’ a 
useful plan fragment to store in its case library. This 
would enable the system to learn from its incidental 
experience as well as its planned experience. 

Several related problems are beyond our scope in this 
paper: (a) h ow to properly index a new plan in the case 
base (Hammond 1986; Kolodner 1993), (b) how to eval- 
uate if a learned plan is actually useful (Minton 1988; 
Chaudhry & Holder 1996), and (c) how to recognize 
interesting world states (very much an open problem, 
cf. (Benson & Nilsson 1995)). 

In this paper, we describe a method for automati- 
cally constructing usable plan fragments from records 
of executed robot behavior over a period of time. 
Specifically, given observations of the robot’s behav- 
ior over a restricted period of time, our system con- 
structs a reactive plan which reliably repeats the be- 
havior when started in a similar situation. These plans 
are not sensitive to small changes in the environment, 
and are resistant to sensor and effector noise. 

The main idea behind our system is to represent 
robot behavior as a sequence of behavior events, which 
represent qualitative changes in the state of an under- 
lying behavior-based control system. This representa- 
tion corresponds naturally to statements in a modern 
reactive plan language, such that each type of event 
may be translated into a plan fragment for creating or 
handling that type of event. These plan fragments are 
then linked together to form plan which reproduces the 
entire behavior sequence. Our algorithm also incorpo- 
rates several techniques to ensure that the resulting 
plans are robust. We have applied the system in the 
domain of mobile robot navigation, where it produces 
plans which are quite robust. 

The Execution Architecture 
Our system learns reactive plans within the context of 
the two-level control architecture depicted in Figure 1 
(similar to those of (Gat 1991) and (Firby 1994)). This 

Reinforcement Learning 869 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Figure 1: Our robot control architecture. 

architecture divides robot control into two levels: ‘sym- 
bolic’ and ‘behavioral’. The behavioral level consists of 
(a) a set of behavior processes, which implement contin- 
uous low-level controllers (eg, wall-following or grasp- 
ing), and (b) a set of sensing processes, which imple- 
ment object recognition and tracking. The symbolic 
level consists of a transformational (case-based) plan- 
ner and reactive execution system (as in (McDermott 
1992)), as well as the learning system described in this 
paper. In addition to control flow code, plans consist 
of activation and deactivation commands to behavior 
and sensing processes, as well as handlers for signals 
from those processes. 

Sensing processes are connected to behavior pro- 
cesses via designators (McDermott 1991), which are 
data structures which refer to particular objects in the 
local environment. They thus form a sort of deictic 
representation (Agre 1988). When a behavioral pro- 
cess is activated, it may be provided with a designator 
upon which to act. It will then control the robot using 
the continuously updated state of the designator. 

Events and behavior traces 
Both sensing and behavioral processes signal eflector 
events to the symbolic level. One type of event is a 
termination event, signaling the termination of a pro- 
cess’s execution, either as a success or a failure (with 
some error code). Another type of signal is used to 
return values from a sensing process, eg, a designator 
(which can then be given as a parameter to a behav- 
ior process). Many other kinds of events can also be 
accommodated; for example, a wall-following process 
may signal the presence of openings in the wall, which 
would enable a plan to count doorways. A sequence 
of effector events constitutes a behavior truce, which 
records the evolution of the behavioral level’s state over 
some time interval. An event specification contains of 
the name of the process producing the event, the event 
type (activation, completion with error code, etc.), the 
robot resources required (such as a camera or an arm), 
and the values of any parameters or signaled values. 

The RPL Plan Language 
Our goal is to translate a behavior trace into a plan 
which will reproduce the original behavior robustly, 
without being affected unduly by low-level failures or 
small changes in the environment. The plan notation 
we used for this work is a subset of McDermott’s RPL, 
a reactive plan language developed for transforma- 

tional planning (McDermott 1991 . RPL is a full par- 
allel programming language base d on Lisp. The lan- 
guage contains facilities for sequential and parallel ex- 
ecution, including explicit process control. Most com- 
munication between processes is accomplished through 
fluents, including receiving signals from sensing and be- 
havior processes. Plan failure is expressed explicitly, so 
that plans can fail cognizantly (Firby 1989). 

Behavior Traces to Reactive Plans 
In this section, we describe our algorithm for translat- 
ing a behavior trace into a RPL plan. Since behavior 
processes are nearly stateless, to a first approximation 
we can translate a behavior trace into a RPL plan by 
translating each event in sequence to a short sequence 
of RPL statements. Individual event specifications are 
translated by a set of translation rules, whose left- 
hand-sides are event specifications with variables to be 
instantiated. The right-hand-side of each rule is a plan 
fragment with variables to be substituted for. 

The plans we construct are sequences consisting of 
three sorts of steps: process activation, receiving a re- 
turn value, and testing required conditions. Activa- 
tions provide parameters to sensor and behavior pro- 
cesses, while signals and completion events supply both 
values the plan can later use and conditions that must 
be tested in order for the plan to continue safely (such 
as error codes). 

The way the translation rules is roughly as follows 
(more detail may be found in (Engelson 1996)): 

An activation event becomes a plan step which ac- 
tivates a sensor or behavior process and supplies it 
with its parameters. It also initializes any fluents 
needed for receiving signals from the new process. 
A condition handling plan step waits for a signal of 
the right type from a given process, tests any error 
code, and ensures that return values are as expected. 
If the value is needed later in the plan, it is bound to 
a local plan variable. The value-testing code ensures 
that if the values signaled at run-time do not match 
those in the original plan, the plan fails appropri- 
ately. 

Variabilization: The use of plan variables allows 
plan steps to depend on one another by identifying val- 
ues produced and used at different points in the trace. 
Value identification is impossible in general, without 
extensive knowledge, so our system simply assumes 
that equal values are meant to be logically identical. 
Quantities that are unequal are assumed to be unre- 
lated; while this may be false, there is no way for us to 
resolve the ambiguity. 

Post facto parameterization: In order to produce 
robust plans, we must also account for effector noise. 
For example, a command to turn the robot 90’ may 
actually turn the robot 94.6’. If the command to turn 
the robot 90’ is repeated some other time, it may end 
up turning the robot 85.2’, introducing a repetition 
error that is larger than strictly necessary. To avoid 
this problem, the original “turn 90’” should be trans- 
lated as “turn 94.6’“. This phenomenon also arises in 
perceptual routines, where such ‘post facto parameter- 
ization’ is needed. For example, when the robot looks 
for a doorway and two are in its field-of-view, the direc- 
tion of the designator which is found and used should 

870 Learning 



be inserted into the plan step for finding the doorway 
so that the correct doorway is found. We address this 
problem by allowing translation rules to refer to other 
relevant events in the trace to instantiate needed pa- 
rameters. 

TraceTranslate(T = (el, e2,. . . , e,)): 

1. Let P = 0; 

hash-table, associating constants to 2. Let H be a null 
variable names; 

Irrelevant events: One further complication is that 
some trace steps reflect actions which do not affect the 
results of the original behavior in any way. This can 
cause problems if these actions are unreliable. In such 
a case, requiring the action to be performed (and its 
results to be consistent with the original trace) will 
cause the new plan to fail needlessly. The solution is 
to remove those steps from the behavior trace before 
translation., so that they can’t affect the results. This 
is difficult m general, since nearly any action could be 
relevant. However, some perceptual events are clearly 
not needed and can be removed. For example, if the 
robot acquires a designator that is never used in the 
behavior trace, the acquisition event is removed. 

3. Find completion events in T with no corresponding ac- 
tivation events, and prefix appropriate activations to 
T; 

4. Elide irrelevant events from T; 
5. For each event e+ E T: 

(a) Find the translation rule r matching ei; 

(b) another event in T, retrieve If T requires values from 
those values from T; 

(4 the associated For each constant in e;, substitute 
variable name from H (if one exists); 

Dangling act ivat ion: A more serious problem re- 
quiring trace preprocessing is dangling activation. 
Consider the case of an behavior trace meant to repre- 
sent the robot’s behavior between two corridor inter- 
sections. If the robot did not stop at the first intersec- 
tion, but simply continued to follow the wall, activation 
of the wall-following behavior will not be reflected in 
the trace produced by observing behavior events only 
between the intersections. Simply translating the trace 
will result in a plan that does not move the robot at 
all. Dangling activation can be dealt with by adding 
a virtual activation event for the dangling process at 
the beginning of the trace. This works because be- 
havior processes are essentially stateless, so appropri- 
ately activating the process at an intermediate point 
will produce similar behavior. 

(d) Let S be the plan fragment resulting from translating 
e; according to r; 

(e) P + append(P,S); 
(f) If ei is a signaling event, create a variable name for 

each new constant, and store them in H; 

6. Bind all variable names in H around P and return the 
resulting plan. 

esults 

Prefixing requires taking a snapshot of the state 
of the behavior system when trace recording starts- 
which processes are active (and their parameters). 
Currently this is not implemented; a simpler form of 
prefixing is used which examines the trace for end 
events without matching activation events, and pre- 
fixes appropriate activation events to the trace. This 
works only if the dangling behavior process completes 
within the trace; in our tests, this was the case. A 
similar method is used by Torrance (1994) to deal with 
dangling activation, for a trajectory-based plan repre- 
sentation. 

We evaluated our plan-learning system using the ARS 
MAGNA mobile robot simulator. The simulator pro- 
vides a robot movin in a 2-dimensional environment 
containing walls an % objects of various types. The 
robot is equipped with a set of basic behaviors such 
as “follow wall” and “go to designator”, as well as a 
full set of sensing processes such as “acquire designator 
on door”. All of these processes incorporate noise- 
behavior processes may fail randomly and sensing pro- 
cesses may return noisy or erroneous data. Details of 
the simulator can be found in (Engelson & Bertani 
1992). 

In this section we will examine the performance of 
the trace translation technique described above on sev- 
eral navigational plans, using ARS MAGNA. Our tests 
demonstrate how our system produces robust repeti- 
tion of robot behavior. 

Hand-generated behavior 
The algorithm: The full behavior trace translation We first test the stable repetition of a short behav- 
algorithm for a trace 7’ is given as TraceTranslate. 
First, activation events are added for any dangling ac- 

ior. The robot behavior was generated by hand; the 
experimenter manually activated sensor and effector 

tivations. Second, irrelevant trace steps are elided. processes in sequence. 
Then, the steps in a behavior trace are translated se- 

Figure 2(a) shows the original 
trajectory of the robot in a simple world with no ob- 

quentially by applicable translation rules. When a post stacles. The behavior trace generated by this behav- 
facto parameterizable step is encountered, the rest of ior contained 48 event specifications. The translated 
the trace is searched for the needed parameter, which is RPL plan was run ten times in each of two situations, 
inserted in the translation. If an event signals a value, where the initial location of the robot was the same 
a new variable name is created, which is indexed un- as in the original run. These runs are summarized in 
der the value in a variable table. Then, when a value Figure 2(b), which depicts the robot’s trajectories on 
is used as a parameter, the value’s variable name is those ten runs. Note the variance in the precise trajec- 
inserted, if it exists, otherwise the value is assumed to tories the robot followed, due to noise. The plan failed 
be a hard-wired constant. After all the steps are trans- in just one of these runs, when the robot lost track 
lated, they are wrapped in a let form binding the local of the final corner on its approach due to perceptual 
variables in the plan. This implicitly executes the plan noise. The plan was also tested with the addition of 
steps in the same order that they appear in the trace. some obstacles (Figure 2(c)). As is clear from the fig- 

Reinforcement Learning 871 



Figure 3: Robot trajectories for one test of plan generation 
from an automatically generated behavior trace. The robot 
was started in the rightmost doorway facing down. (a) Ini- 
tial trajectory generated by random wandering. (b) Com- 
posite of trajectories of 10 test runs. 

Figure 2: Robot trajectories and behavior repetition tests 
for a manually given behavior. (a) Original trajectory; the 
robot was started in the center of the first room. (b) Com- 
posite of trajectories of 10 executions of the translated 
plan. (c) Composite of trajectories of 10 tests with ob- 
stacles (squares) added. 

ure, low-level obstacle avoidance enabled the robot to 
stably repeat its original behavior. Note that different 
trajectories were followed on different runs, depend- 
ing on how the robot (locally) decided to go around 
the obstacles. One of these ten runs also failed, when 
the robot lost track of the third door in its trajectory 
due to perceptual noise. Note that both plan failures 
could not have been avoided without much more do- 
main knowledge. 

Automatically generated behaviors 
The next two experiments dealt with behaviors gen- 
erated by a random wandering plan. Figure 3 shows 
the robot’s trajectories during execution of the initial 
behavior (a) and the learned plan (b) for the first test 
case. The robot started in the rightmost doorway fac- 
ing down, and ended up, as shown, in a corner of the 
rightmost upper room. The behavior trace contained 
72 event specifications. Despite the variance in the 
robot’s trajectory out of the door, 9 of the 10 tests 
succeeded. The one failure occurred when the robot 
failed to acquire a designator for the door on its re- 
turn; it ended up in the upper-right corner of the lower 
room, as shown. 

The second test case for automatically-generated be- 
havior is depicted in Figure 4(a). The robot was 
started in the second doorway from the left, facing 
right. While describing a longer and more complex 
behavior than the last example, the behavior trace gen- 
erated here was shorter, with 60 events in all. The be- 
havior in this example was also less robust than those 
in the other tests, because it depends on the robot 
heading for the door it started from and then losing 
track of it due to occlusion. (This happens at the kink 
in the robot’s trajectory, where it begins heading for 
the lower doorway.) Ten test runs were run on this 
example, with obstacles in different places than when 
the behavior was originally generated. Three of the 
test runs failed because the robot mistakenly headed 

Figure 4: Robot trajectories for another example of 
plan generation from an automatically generated behav- 
ior trace. The robot was started in the center of the second 
room. (a) Initial trajectory generated by random wander- 
ing. (b) Composite of trajectories of 10 test runs. 

for the lower doorway first. In all the other runs,. the 
robot attained its 
of the obstacles. 1 

oal, despite the different positions 
lso note that the trajectories fol- 

lowed by the robot on different trials differed greatly, 
though the overall effect was the same. 

Limitations and Extensions 
While the trace translation algorithm works well in 
many cases (as demonstrated above), it has some im- 
portant limitations. Some can be remedied by simple 
extensions to the algorithm, while others are inherent 
in the current approach. In this section, we sketch 
some extensions to the approach which should correct 
for many of the limitations of the current approach. 

Basic extensions 
Timing: One limitation of our technique is the fact 
that the plans it produces have no notion of time; they 
are purely reactive. If two events A and B are adjacent 
in a trace, the translated plan will execute B right after 
A, even though there may have been a period of time 
between A’s completion and B’s start in the original 
behavior. This can cause problems if, in the original 
behavior, the world state changed significantly after A 
completed, such as if the robot was moving. One so- 
lution would be to add a timing ‘behavior process’, so 
that when the execution system wishes to wait for a 
period of time, it activates the timing process with the 
desired wait time, which process then signals when the 
time is up and the plan should continue. These events 
go into the behavior trace like any other and become a 
part of the translated plan, causing the robot to wait 
appropriately upon repetition. If, however, the wait is 

872 Leilming 



implicit, caused by waiting for a computation, another 
approach is required. In navigation, the main prob- 
lem with getting the timing wrong comes about if the 
robot is moving between events A and B, so that it is at 
the wrong place to do B if it doesn’t wait. This prob- 
lem may be ameliorated by using odometry to mea- 

.sure the movement between adjacent trace events. If 
the distance moved is significant, the plan waits before 
performing B until the robot has moved the requisite 
amount. 
Effect or failure: When plans failed in our experi- 
ments, the main cause was effector failures, such as 
losing track of a designator or getting stuck following 
a wall. The effects of such runtime failures can be ame- 
liorated heuristically. RPL contains a construct known 
as a policy, which serves to maintain a needed condi- 
tion for a subplan. For example, if the robot needs to 
carry a box from A to H, after picking up the box, it 
will move from A to B with a policy to pick up the box 
if, for any reason, it finds itself not holding the box. 
This will (usually) ensure that the robot arrives at B 
with the box. A set of such heuristic policies could be 
designed for the different types of plan steps produced 
by the translation algorithm, to make these steps more 
robust. For example, if a trace contains a “go to desi - 
nator” event, the translated plan may contain, in a % - 
dition to an activation of “go to designator”, a policy 
which attempts to recover the proper designator if it 
is lost before “go to designator” properly completes. 
Such policies can be developed for many common run- 
time failures, improving greatly the robustness of the 
resultant plans. 

Plans as a resource for learning 

Fundamentally, the limitations of our approach are due 
to the fact that it assumes no knowledge aside from 
the translation rules which encode the relationships 
between different events. This means that the sys- 
tem does not understand the complete context of each 
event, and hence how the plan should be constructed 
in a global fashion. In this section, we sketch a pro- 
posed method for using the base plan, which originally 
generated the behavior to be modeled, as a resource 
for constructing more robust plans. 

The idea is that a behavior trace that the learn- 
ing system is given is a subsequence of that arising 
from the execution of some known plan. Let us con- 
ceive of that plan as a hierarchical decomposition of 
the robot’s high-level goals into meaningful subplans, 
including partial ordering constraints among the sub- 
plans. In particular, execution of a RPL plan results 
in a task network, whose nodes are subplans and whose 
arcs are relationships between them. For example, the 
node for (seq A B C) will have three children, one 
for each subplan, and will contain the constraints that 
A is before B is before C. 

Now, suppose first that we wanted to generalize a 
behavior trace generated by a complete run of a given 
plan. The best generalization (assuming our planner is 
reliable) would be the original plan itself. (This corre- 
sponds to case-based learning by storing newly-created 
plans in memory.) In our case, however, we are in- 
terested in only some part of a complete run which 
achieves some intermediate state of affairs. In this case, 
we wish, rather than translating behavior events indl- 

vidually, to abstract up the tree, to find the highest 
subplans whose execution was confined to the interval 
of interest. By doing so, and properly propagating pa- 
rameter values, we can create a new plan which dupli- 
cates the intended behavior during the period of inter- 
est, inheriting the robustness properties of the original 
plan. What this means is that some of the effort used 
in making the original plan more robust can be saved 
when using the new plan as a building block in later 
case-based planning. At the same time, the flexibility 
of the system is enhanced by repackaging the behavior 
in new ways. 

Related Work 
In the context of the development of a system for intel- 
ligent ‘teleassistance’, Pook (1995) describes a method 
for ‘learning by watching’ with similar goals to the 
current work. The system learns to perform an egg- 
flipping task from examples of master-slave teleopera- 
tion of a Utah/MIT hand. A coarse prior model of the 
task is given m the form of a Hidden Markov Model 
(HMM). For each example, the system segments sig- 
nals from the hand’s tendons into ‘actions’ by finding 
points of qualitative change. These sequences of ac- 
tions are then matched to the HMM, and its param- 
eters are estimated to form a complete model for the 
task. The primary difference between our work and 
Pook’s is that her system relies on a prior model of 
the specific task, while ours makes use of predefined 
control primitives (sensing and behavior processes). 

Our goal of learnmg plans to achieve particular goals 
from observing robot behavior is also related to re- 
cent work in learning action models for planning (Shen 
1994; Wang 1994). Most of this work assumes discrete 
actions, unlike the present work. One significant ex- 
ception is the TRAIL system described by Benson and 
Nilsson (1995). Their system learns models of ‘teleo- 
operators’, which are a kind of continuous version of 
STRIPS operator descriptions. These teleo-operators 
can then be used as the building blocks in construct- 
ing ‘teleo-reactive’ plans. TRAIL repeatedly attempts 
to achieve a given goal (possibly conjunctive), learning 
from both successful and failed attempts. The learn- 
ing module uses inductive logic programming to induce 
from a set of execution records which achieve a given 
goal models of primitive operators that achieves that 
goal (Benson 1995 . 

Another relate d area of research is that apply- 
ing case-based reasoning (CBR) to robotic control 
(Kopeikina, Brandau, & Lemmon 1988; Ram et al. 
1992). In this work, the results of robot actions are ob- 
served, and formed into ‘cases’ which inform future be- 
havior. In particular, Ram and Santamaria 1993), de- 

6 scribe a system which learns how to adjust t e param- 
eters of a local behavior-based control system (using 
motor schemas (Arkin 1989)), based on sensor read- 
ings, in order to effectively navigate in crowded envi- 
ronments. By contrast, our work in this paper focuses 
on learning high-level reactive plans which combine 
and sequence multiple behaviors. The two approaches 
could probably be combined beneficially. 

Finally, the problem of learning plans from ob- 
served behavior is particularly important in the con- 
text of topological mapping. Most previous work on 
topological mapping has assumed atomic action labels 

Reinforcement Learning 873 



(eg, (Dean et al. 1994; Kortenkamp, Baker, & Wey- 
mouth 1992; Kuipers & Byun 1988)). This approach, 
however, is not robust to even small environmental 
changes. Kuipers and Byun (1988) and Mataric (1990) 
both represent actions by activations of low-level be- 
haviors, but only one behavior is represented per link, 
so they need not consider interactions between multi- 
ple behaviors. 

Conclusions 
We have developed a system which learns reactive 
plans from traces of robot behavior. This problem 
arises both in the context of case-based planning sys- 
tems (learning new cases) and in topological mapping 
(associating plans with links). In each case, we need to 
represent behavior over some period of time in a way 
that will enable it to be reliably repeated in the future. 
The idea is to store useful fragments of behavior in a 
way that will allow them to be reused in the future. For 
reliable repetition, the plans that are thus derived must 
be robust with respect to sensor and effector noise, as 
well as small changes in the environment. 

Our system processes traces of the activity in a 
robot’s behavioral control system, reducing plans in 
a complex reactive plan language RPL). Our results P 
on learning navigation plans show the resulting plans 
to reliably repeat the original behavior, even in the 
presence of noise and non-trivial environmental modi- 
fications. The power of the approach comes from the 
choice of ‘behavior events’ as an action model. Rather 
than assume that a continuous action results from rep- 
etition of some discrete action, we take as given contin- 
uous control processes which signal the symbolic level 
regarding significant events. Our results show that 
this representation provides a natural level of abstrac- 
tion for connecting symbolic (planning) and continuous 
(control) processes in intelligent robotic control. 

Acknowledgements Thanks to Drew McDermott and 
Michael Beetz for many interesting and helpful discussions. 
The author is supported by a fellowship from the Fulbright 
Foundation. The bulk of this work was performed while the 
author was at Yale University, supported by a fellowship 
from the Fannie and John Hertz Foundation. 

References 
Agre, P. E. 1988. The Dynamic Structure of Everyday 
Life. Ph.D. Dissertation, MIT Artificial Intelligence Lab- 
oratory. 
Arkin, R. C. 1989. Motor schema-based mobile robot 
navigation. International Journal of Robotics Research. 
Benson, S., and Nilsson, N. J. 1995. Reacting, planning, 
and learning in an autonomous agent. In Furukawa, K.; 
Michie, D.; and Muggleton, S., eds., Machine Intelligence 
14. Oxford: Clarendon Press. 
Benson, S. 1995. Inductive learning of reactive action 
models. In Proc. Int’l Conf. on Machine Learning. 
Chaudhry, A., and Holder, L. B. 1996. An empirical 
approach to solving the general utility problem in speedup 
learning. In Anger, F. D., and Ali, M., eds., Machine 
Reasoning. Gordon and Breach Science Publishers. 
Dean, T.; Angluin, D.; Basye, K.; Engelson, S.; Kael- 
bling, L.; Kokkevis, E.; and Maron, 0. 1994. Inferring 
finite automata with stochastic output functions and an 
application to map learning. Machine Learning. 

Engelson, S. P., and Bertani, N. 1992. ARS MAGNA: 
The abstract robot simulator manual. Technical Re- 
port YALEU/DCS/TR-928, Yale University Department 
of Computer Science. 
Engelson, S. P. 1996. Single-shot learning of reactive 
navigation plans. Technical report, Department of Math- 
ematics and Computer Science, Bar-Ilan University. 
Firby, R. J. 1989. Adaptive Execution in Complex Dy- 
namzc Worlds. Ph.D. Dissertation, Yale University. Tech- 
nical Report 672. 
Firby, R. J. 1994. Architecture, representation and inte- 
gration: An example from robot navigation. In Proceed- 
ings of the 1994 AAAI Fall Symposium Series Workshop 
on the Control of the Physical World by Intelligent Agents. 
Gat, E. 1991. Reliable Goal-Directed Reactive Control of 
Autonomous Mobile Robots. Ph.D. Dissertation, Virginia 
Polytechnic Institute and State University. 
Hammond, K. J. 1986. Case-based Planning: An Inte- 
grated Theory of Planning, Learning and Memory. Ph.D. 
Dissertation, Yale University Department of Computer 
Science. 
Kolodner, J. 1993. Case-Based Reasoning. Morgan Kauf- 
mann. 
Kopeikina, L.; ‘Brandau, R.; and Lemmon, A. 1988. Case- 
based reasoning for continuous control. In Proc. Workshop 
on Case-Based Reasoning. 
Kortenkamp, D.; Baker, L. D.; and Weymouth, T. 1992. 
Using gateways to build a route map. In Proc. IEEE/RSJ 
Int 1 Workshop on Intelligent Robots and Systems. 
Kuipers, B., and Byun, Y.-T. 1988. A robust qualitative 
method for robot snatial reasoning. In Proc. National 
Conference on Artificial Intelligen;, 774-779. 
Mataric, M. J. 1990. A distributed model for mobile robot 
environment-learning and navigation. Technical Report 
1228, MIT Artificial Intelligence Laboratory. 
McDermott, D. 1991. A reactive plan language. Techni- 
cal Report 864, Yale University Department of Computer 
Science. 
McDermott, D. V. 1992. Transformational plannin of 
reactive behavior. Technical Report YALEUICSDBRR 
#941, Yale University Department of Computer Science. 
Minton, S. 1988. Quantitative results concerning the util- 
ity of explanation-based learning. In Proc. National Con- 
ference on Artificial Intelligence. 
Pook, P. 1995. Teleassistance: Using Deictic Gestures to 
Control Robot Action. Ph.D. Dissertation, University of 
Rochester. 
Ram, A., and Santamaria, J. C. 1993. Multistrategy learn- 
ing m reactive control systems for autonomous robotic 
navigation. Informatica 17(4). 
Ram, A.; Arkin, R. C.; Moorman! K.; and Clark, R. J. 
1992. Case-based reactive navigation. Technical Report 
GIT-CC-92/57, College of Computing, Georgia Institute 
of Technology. 
Shen, W.-M. 1994. Autonomous Learning from the En- 
vironment. Computer Science Press, W. H. Freeman and 
co. 
Simmons, R. 1994. Structured control for autonomous 
robots. Proc. Int’l Conf. on Robotics and Automation 
10(l). 
Torrance, M. C. 1994. Natural communication with 
robots. Master’s thesis, MIT Artificial Intelligence Labo- 
ratory. 
Wang, X. 1994. Learning planning operators by observa- 
tion and practice. In Proc. 2nd Int’l Conf. on AI Planning 
Sys terns. 

874 Learning 


