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Abstract 

Average-reward reinforcement learning (ARL) is an 
undiscounted optimality framework that is generally 
applicable to a broad range of control tasks. ARL 
computes gain-optimal control policies that maxi- 
mize the expected payoff per step. However, gain- 
optimality has some intrinsic limitations as an opti- 
mality criterion, since for example, it cannot distin- 
guish between different policies that all reach an ab- 
sorbing goal state, but incur varying costs. A more 
selective criterion is bias optima&y, which can filter 
gain-optimal policies to select those that reach absorb- 
ing goals with the minimum cost. While several ARL 
algorithms for computing gain-optimal policies have 
been proposed, none of these algorithms can guaran- 
tee bias optimality, since this requires solving at least 
two nested optimality equations. In this paper, we 
describe a novel model-based ARL algorithm for com- 
puting bias-optimal policies. We test the proposed 
algorithm using an admission control queuing system, 
and show that it is able to utilize the queue much 
more efficiently than a gain-optimal method by learn- 
ing bias-optimal policies. 

Mot ivat ion 
Recently, there has been growing interest in an undis- 
counted optimality framework called average reward 
reinforcement learning (ARL) (Boutilier & Puter- 
man 1995; Mahadevan 1994; 1996a; Schwartz 1993; 
Singh 1994; Tadepalli & Ok 1994). ARL is well- 
suited to many cyclical control tasks, such as a robot 
avoiding obstacles (Mahadevan 1996a), an automated 
guided vehicle (AGV) transporting parts (Tadepalli 
& Ok 1994), and for process-oriented planning tasks 
(Boutilier & Puterman 1995), since the average re- 
ward is a good metric to evaluate performance in these 
tasks. However, one problem with the average reward 
criterion is that it is not sufficiently selective, both in 
goal-based tasks and tasks with no absorbing goals. 
Figure 1 illustrates the limitation of the average re- 
ward criterion on a simple two-dimensional grid-world 
task. Here, the learner is continually rewarded by +lO 

for reaching and staying in the absorbing goal state 6, 
and is rewarded -1 in all non-goal states. Clearly, all 
control policies that reach the goal will have the same 
average reward. Thus, the average reward criterion 
cannot be used to select policies that reach absorbing 
goals in the shortest time. 

Figure 1: A simple grid-world navigation task to illus- 
trate the unselectivity of the average-reward criterion. 
The two paths shown result in the same average re- 
ward (+lO), but one takes three times as long to get 
to the goal G. 

A more refined metric called bias optima&y (Black- 
well 1962) addresses the unselectivity of the average 
reward criterion. A policy is bias-optimal if it maxi- 
mizes average reward (i.e. it is gain-optimaZ), and also 
maximizes the average-adjusted sum of rewards over 
all states. The latter quantity is simply the sum of re- 
wards received, subtracting out the average reward at 
each step. For example, in Figure 1, the shorter path 
yields an average-adjusted reward of -22, whereas the 
longer path yields an average-adjusted reward of -66. 
Intuitively, bias optimality selects gain-optimal poli- 
cies that maximize the average adjusted sum of rewards 
over the initial transient states (e.g., all non-goal states 
in Figure 1). In many practical problems where the av- 
erage reward criterion is most useful, such as inventory 
control (Puterman 1994) and queueing systems (Klein- 
rock 1976), there may be several gain-optimal policies 
which can differ substantially in their “start-up” costs. 
In all such problems, it is critical to find bias-optimal 
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policies. 

While several ARL algorithms have been previously 
proposed (Schwartz 1993; Singh 1994; Tadepalli & Ok 
1994)) none of these algorithms will yield bias-optimal 
policies in general. In particular, while they can com- 
pute the bias-optimal policy for the simple grid-world 
task in Figure 1, they cannot discriminate the bias- 
optimal policy from the gain-optimal policy for the 
simple S-state Markov decision process (MDP) given 
in Figure 2, or for the admission control queueing task 
shown in Figure 5. The main reason is these algorithms 
only solve one optimality equation, namely the average 
reward Bellman equation. It can be shown (Puterman 
1994) that solving the Bellman equation alone is in- 
sufficient to determine bias-optimal policies, whenever 
there are several gain-optimal policies with different 
sets of recurrent states. The MDP’s given in Figure 2 
and Figure 5 fall into this category. 

In this paper we propose a novel model-based ARL 
algorithm that is explicitly designed to compute bias- 
optimal policies. This algorithm is related to previ- 
ous ARL algorithms but significantly extends them 
by solving two nested optimality equations to deter- 
mine bias-optimal policies, instead of a single equation. 
We present experimental results using an admission 
control queuing system, showing that the new bias- 
optimal algorithm is able to learn to utilize the queue 
much more efficiently than a gain-optimal algorithm 
that only solves the Bellman equation. 

Gain and Bias Optimality 

We assune the standard Markov decision process 
(MDP) framework (Puterman 1994). An MDP con- 
sists of a (finite or infinite) set of states S, and a (finite 
or infinite) set of actions A for moving between states. 
In this paper we will assume that S and A are finite. 
We will denote the set of possible actions in a state 
x by A(x). Associated with each action a is a state 
transition matrix P(u), where pZy(u) represents the 
probability of moving from state x to y under action a. 
There is also a reward or payoff function T : S x A + 72, 
where r(x, a) is the expected reward for doing action a 
in state 2. 

A stationary deterministic policy is a mapping x : 
S + A from states to actions. In this paper we con- 
sider only such policies, since a stationary determinis- 
tic bias-optimal policy exists. Two states x and y com- 
municate under a policy x if there is a positive prob- 
ability of reaching (through zero or more transitions) 
each state from the other. A state is recurrent under 
a policy x if starting from the state, the probability of 
eventually reentering it is 1. Note that this implies that 
recurrent states will be visited forever. A non-recurrent 

state is called transient, since at some finite point in 
time the state will never be visited again. A recurrent 
class of states is a set of recurrent states that all com- 
municate with each other, and do not communicate 
with any state outside this class. An MDP is termed 
unichain if the transition matrix corresponding to ev- 
ery policy contains a single recurrent class, and a (pos- 
sibly empty) set of transient states. Many interesting 
problems involve unichain MDP’s, such as stochastic 
grid-world problems (Mahadevan 1996a), the admis- 
sion control queueing system shown in Figure 5, and 
an AGV transporting parts (Tadepalli & Ok 1994). 

\h +o 
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Figure 2: A simple 3-state MDP that illustrates the 
unselectivity of the average reward criterion in MDP’s 
with no absorbing goal states. Both policies in this 
MDP are gain-optimal, however only the policy that 
selects action al in state A is bias-optimal. 

Average reward MDP aims to compute policies that 
yield the highest expected payoff per step. The average 
reward p”(x) associated with a particular policy r at 
a state x is defined as 

p”(x) = Jiil E (CL1 Jw4) 
N 

, QXE s, 

where RF(x) is the reward received at time t starting 
from state x, and actions are chosen using policy 7r. 
E( .) denotes the expected value. A gain-optimal policy 
X* is one that maximizes the average reward over all 
states, that is, p”*(x) 2 p”(x) over all policies 7r and 
states 2. Note that in unichain MDP’s, the average 
reward of any policy is state independent. That is, 
p”(x) = p”(y) = p”, vx,y E s,v7r. 

As shown in Figure 1, gain-optimality is not suffi- 
ciently selective in goal-based tasks, as well as in tasks 
with no absorbing goals. A more selective criterion 
called bias optimality addresses this problem. The av- 
erage adjusted sum of rewards earned following a policy 
7r (assuming an aperiodic MDP) is 

N-l 

VT(s) = jiliWE x vm) - P”> 7 
t=o 

where p” is the average reward associated with policy 
K. .4 policy X* is termed bias-optimal if it is gain- 
optimal, and it also maximizes the average-adjusted 
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values, that is VT* (2) 2 Vr( x) over all x E S and 
policies X. The relation between gain-optimal and bias- 
optimal policies is depicted in Figure 3. 

Figure 3: This diagram illustrates the relation between 
gain-optimal and bias-optimal policies. 

In the example 3-state MDP in Figure 2, both poli- 
cies are gain-optimal since they yield an average re- 
ward of 1. However, the policy r that selects action 
al in state A generates bias values V”(A) = 0.5, 
V”(B) = -0.5, and V”-(C) = 1.5. The policy x is 
bias-optimal because the only other policy is 7r’ that 
selects action a2 in state A, and generates bias values 
VT’(A) = -0.5, VT’(B) = -1.5, and Y’(C) = 0.5. 

Bias-Optimality Equations 
The key difference between gain and bias optimality 
is that the latter requires solving two nested optimal- 
ity equations for a unichain MDP. The first equation 
is the well-known average-reward analog of Bellman’s 
optimality equation. 

Theorem 1 For any MDP that is either unichain or 
communicating, there exists a value function V* and a 
scalar p* satisfying the equation over all states 

such that the greedy policy rr* resulting from V* 
achieves the optimal average reward p* = pX* where 

P=* 2 pr over all policies n. 

Here, “greedy” policy means selecting actions that 
maximize the right hand side of the above Bellman 
equation. There are many algorithms for solving this 
equation, ranging from DP methods (Puterman 1994) 
to ARL methods (Schwartz 1993). However, solving 
this equation does not suffice to discriminate between 
bias-optimal and gain-optimal policies for a unichain 
MDP. In particular, none of the previous ARL algo- 
rithms can discriminate between the bias-optimal pol- 
icy and the gain-optimal policy for the 3-state MDP 
in Figure 2. A second optimality equation has to be 
solved to determine the bias-optimal policy. 

Theorem 2 Let V be a value function and p be a 
scalar that together satisfy Equation 1. Define Av(i) C 
A(i) to be the set of actions that maximize the right- 
hand side of Equation I. There exists a function 
W : S + R satisfying the equation over all states 

such that any policy formed by choosing actions in Av 
that maximize the right-hand side of the above equation 
is bias-optimal. 

These optimality equations are nested, since the set 
Av of actions over which the maximization is sought 
in Equation 2 is restricted to those that maximize the 
right-hand side of Equation 1. The function W, which 
we will refer to as the bias oflset, holds the key to policy 
improvement, since it indicates how close a policy is to 
achieving bias-optimality. 

A Model-based ias-Opt imality 
Algorithm 

We now describe a model-based algorithm for com- 
puting bias-optimal policies for a unichain MDP. The 
algorithm estimates the transition probabilities from 
online experience, similar to (Jalali & Ferguson 1989; 
Tadepalli & Ok 1994). However, unlike these previous 
algorithms, the proposed algorithm solves both opti- 
mality equations (Equation 1 and Equation 2 above). 
Since the two equations are nested, one possibility is 
to solve the first equation by successive approximation, 
and then solve the second equation. However, stop- 
ping the successive approximation process for solving 
the first equation at any point will result in some finite 
error, which could prevent the second equation from 
being solved. A better approach is to interleave the 
successive approximation process and solve both equa- 
t ions simultaneously (Federgruen & Schweitzer 1984). 

The bias optimality algorithm is described in Fig- 
ure 4. The transition probabilities P;j(u) and expected 
rewards r(i, a) are inferred online from actual transi- 
tions (steps 7 through 10). The set h(i) represents all 
actions in state i that maximize the right-hand side of 
Equation 1 (step 3). The set w(i), on the other hand, 
refers to the subset of actions in h(i) that also maxi- 
mize the right-hand side of Equation 2. The algorithm 
successively computes A(i,e,) and w(i,cn), the set of 
gain-optimal actions that are within E, of the maxi- 
mum value, and the set of bias-optimal actions within 
this gain-optimal set. This allows the two nested equa- 
tions to be solved simultaneously. Here, E, is any series 
of real numbers that slowly decays as n + 00, similar 
to a “learning rate”. Note that since the algorithm is 
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based on stochastic approximation, some residual error 
is unavoidable, and thus e‘n should be decayed only up 
to some small value > 0. 

The algorithm normalizes the bias values and bias 
offset values by grounding these quantities to 0 at a 
reference state. This normalization bounds these two 
quantities, and also improves the numerical stability 
of average reward algorithms (Puterman 1994). In the 
description, we have proposed choosing the reference 
state that is recurrent under all policies, if such exists, 
and is known beforehand. For example, in a standard 
stochastic grid-world problem (Mahadevan 1996a), the 
goal state satisfies this condition. In the admission 
control queueing task in Figure 5, the state (0,O) sat- 
isfies this condition. The policy output by the algo- 
rithm maximizes the expected bias offset value, which, 
as we discussed above, is instrumental in policy im- 
provement . 

Bias Optimality in an Admission 
Control Queuing System 

We now present some experimental results of the pro- 
posed bias optimality algorithm using an admission 
control system, which is a well-studied problem in 
queueing systems (Kleinrock 1976). Generally speak- 
ing, there are a number of servers, each of which pro- 
vides service to jobs that are arriving continuously ac- 
cording to some distribution. In this paper, for the sake 
of simplicity, we assume the M/M/l queuing model, 
where the arrivals and service times are independent, 
memoryless, and distributed exponentially, and there 
is only 1 server. The arrival rate is modeled by param- 
eter X, and the service rate by parameter ,Y. At each 
arrival, the queue controller has to decide whether to 
admit the new job into the queue, or to reject it. If ad- 
mitted, each job immediately generates a fixed reward 
R for the controller, which also incurs a holding cost 
f(j) for the j jobs currently being serviced. 

The aim is to infer an optimal policy that will maxi- 
mize the rewards generated by admitting new jobs, and 
simultaneously minimize the holding costs of the exist- 
ing jobs in the queue. Stidham(Stidham 1978) proved 
that if the holding cost function f(j) is convex and non- 
decreasing, a control limit policy is optimal. A control 
limit policy is one where an arriving new job is admit- 
ted into the queue if and only if there are fewer than 
L jobs in the system. Recently, Haviv and Puterman 
(Haviv & Puterman ) show that if the cost function 
f(j) = cj, there are at most two gain-optimal control 
limit policies, namely admit Z and admit L + 1, but 
only one of them is also bias-optimal (admit L+ 1). In- 
tuitively, the admit L+ 1 policy is bias-optimal because 
the additional cost of the new job is offset by the extra 
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Initialization: Let n = 0, bias function V(x) = 0, 
and bias-offset function W(x) = 0. Let the initial 
state be i. Initialize N(i, a) = 0, the number of times 
action a has been tried in state i. Let T(i, a, k) = 0, 
the number of times action a has caused a transition 
from i to k. Let the expected rewards r(i,u) = 0. 
Let s be some reference state, which is recurrent 
under all policies. 

Let H(i,u) = r(i,u) + Cj P;j(u)V(j), Vu E A(i). 

Let h(i) = {a E A(i)ju maximizes H(i,u)}. Let 
A(i,E,) be the set of actions that are within en of 
the maximum H(i, a) value. 

Let w(i, e,) = {a E A(i,E,)lu maximizes 

cj P;jwwJJ~. 

With probability 1 --pezp, select action A to be some 
a, E w(i, en). Otherwise let action A be any random 
action a, E A(i). 

Carry out action A. Let the next state be k, and 
immediate reward be +(i, a). 

N(i, A) t N(i, A) + 1. 

T(i, A, k) t T(i, A, k) + 1. 

P&A) t w. 

&A) + r(4 -A)(1 - &--& + &+,a). 

v@> + fnaXaEA(i)(H(i7 a>> - maXaEA(s) (H(% a>>. 

w@> + maXaEA(i,c,) (xi Pij(a)W(j) - v(i)) - 

maXuEA(s,Q (Cj %WW~) - VW). 

If n < MAXSTEPS, set n t n + 1, and i t k 
and go to step 5. 

Output n(i) E w(i,e,). 

Figure 4: A model-based algorithm for computing bias- 
optimal policies for unichain MDP’s. 



reward received. Note that since rejected jobs never 
return, a policy that results in a larger queue length is 
better than one that results in a smaller queue length, 
provided the average reward of both policies are equal. 

Since the M/n/r/l queuing model is a continuous 
time MDP, we first convert it by uniformization (Put- 
erman 1994) into a discrete time MDP. Figure 5 illus- 
trates the general structure of the uniformized M/M/l 
admission control queuing system. States in the figure 
are pairs (s, j), where s represents the number of jobs 
currently in the queue, and j is a boolean-valued vari- 
able indicating whether a new job has arrived. In states 
(s, l), there are two possible actions, namely reject the 
new job (a = 0), or admit the new job (a = 1). In 
states (s,O), there is only one possible action, namely 
continue the process (a = 0). Theoretically, there is an 
infinite number of states in the system, but in practice, 
a finite upper bound needs to be imposed on the queue 
size. Note that the two gain-optimal policies (admit L 
and admit L+ 1) have different sets of recurrent states, 
just as the 3-state MDP in Figure 2. States (0,~) to 
(L - 1, x) form a recurrent class in the admit L policy, 
whereas states (0, x) to (L, x) form the recurrent class 
in the admit L + 1 policy. 

Figure 5: This diagram illustrates the MDP represen- 
tation of the uniformized M/M/l admission control 
queuing system for the average reward case. 

The reward function for the average reward version 
of the admission control queuing system is as follows. 
If there are no jobs in the queue, and no new jobs have 
arrived, the reward is 0. If a new job has arrived and 
admitted in state s, the reward equals to the difference 
between the fixed payoff R for admitting the job and 
the cost of servicing the s + 1 resulting jobs in the 
queue. Finally, if the job is not admitted, the reward 
is the service cost of the existing s jobs. There is an 
additional multiplicative term X + p that results from 

the uniformization process. 

r((O,O),O) = r( (0, 1), 0) = 0. 

r((s,l),l) = [R-f(s+l)](X+& ~29 

7’@, Oh 0) = r((s, l),O) = -f(s)@ + /& s r 1. 

Table 1 compares the performance of the bias- 
optimal algorithm with a simplified gain-optimal al- 
gorithm for several sets of parameters for the admis- 
sion control system. We selected these from a total 
run of around 600 parameter combinations since these 
produced the largest improvements. Each combination 
was tested for 30 runs, with each run lasting 200,000 
steps. Of these 600 parameter sets, we observed im- 
provements of 25% or more in a little over 100 cases. In 
all other cases, the two algorithms performed equiva- 
lently, since they yielded the same average reward and 
average queue length. In every case shown in the table, 
there is substantial improvement in the performance 
of the bias-optimal algorithm, as measured by the in- 
crease in the average size of the queue. What this 
means in practice is that the bias-optimal algorithm 
allows much better utilization of the queue, without in- 
creasing the cost of servicing the additional items in the 
queue. Note that the improvement will occur whenever 
there are multiple gain-optimal policies, only one of 
which is bias-optimal. If there is only one gain-optimal 
policy, the bias optimality algorithm will choose that 
policy and thus perform as well as the gain-optimal 
algorithm. 

4 4 12 1 48.0% 
2 2 15 1 47.9% 

Table 1: This table compares the performance of 
the model-based bias-optimal algorithm with a (gain- 
optimal) simplification of the same algorithm that only 
solves the Bellman equation. 

Related Work 
To our knowledge, the proposed bias optimality algo- 
rithm represents the first ARL method designed explic- 
itly for bias optimality. However, several previous algo- 
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rithms exist in the DP and OR literature. These range 
from policy iteration (Veinott 1969; Puterman 1994) 
to linear programming (Denardo 1970). Finally, Feder- 
gruen and Schweitzer (Federgruen & Schweitzer 1984) 
study successive approximation methods for solving a 
general sequence of nested optimality equations, such 
as Equation 1 and Equation 2. We expect that bias- 
optimal ARL algorithms, such as the one described in 
this paper, will scale better than these previous non- 
adaptive bias-optimal algorithms. Bias-optimal ARL 
algorithms also have the added benefit of not requiring 
detailed knowledge of the particular MDP. However, 
these previous DP and OR algorithms are provably 
convergent, whereas we do not yet have a convergence 
proof for our algorithm. 

Future Work 

This paper represents the first step in studying bias 
optimality in ARL. Among the many interesting issues 
to be explored are the following: 

Model-free Bias Optimality Algorithm: We have also 
developed a model-free bias optimality algorithm 
(Mahadevan 1996b), which extends previous model- 
free ARL algorithms, such as R-learning (Schwartz 
1993), to compute bias optimal policies by solving 
both optimality equations. 

Scale-up Test on More Realistic Problems: In this 
paper we only report experimental results on an ad- 
mission control queuing domain. We propose to test 
our algorithm on a wide range of other problems, 
including more generalized queuing systems (Klein- 
rock 1976) and robotics related tasks (Mahadevan 
1996a). 
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