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Abstract 

We introduce a model-based average reward Re- 
inforcement Learning method called H-learning 
and compare it with its discounted counterpart, 
Adaptive Real-Time Dynamic Programming, in 
a simulated robot scheduling task. We also in- 
troduce an extension to H-learning, which au- 
tomatically explores the unexplored parts of the 
state space, while always choosing greedy actions 
with respect to the current value function. We 
show that this “Auto-exploratory H-learning” 
performs better than the original H-learning un- 
der previously studied exploration methods such 
as random, recency-based, or counter-based ex- 
ploration. 

Introduction 
Reinforcement Learning (RL) is the study of learn- 
ing agents that improve their performance at some 
task by receiving rewards and punishments from 
the environment. Most approaches to reinforcement 
learning, including Q-learning (Watkins and Dayan 
92) and Adaptive Real-Time Dynamic Programming 
(ARTDP) (Barto, Bradtke, & Singh 95), optimize the 
total discounted reward the learner receives. In other 
words, a reward which is received after one time step is 
considered equivalent to a fraction of the same reward 
received immediately. One advantage of discounting is 
that it yields a finite total reward even for an infinite 
sequence of actions and rewards. While mathemati- 
cally convenient, many real world domains to which 
we would like to apply RL do not have a natural inter- 
pretation or need for discounting. The natural crite- 
rion to optimize in such domains is the average reward 
received per time step. 

Discounting encourages the learner to sacrifice long- 
term benefits for short-term gains, since the impact 
of an action choice on long-term reward decreases ex- 
ponentially with time. Hence, using discounted opti- 
mization when average reward optimization is what is 
required couZd lead to suboptimal policies. Neverthe- 
less, it can be argued that it is appropriate to optimize 
discounted total reward if that also nearly optimizes 
the average reward. In fact, many researchers have 

successfully used discounted learning to optimize av- 
erage reward per step (Lin 92; Mahadevan & Connell 
92). This raises the question whether and when dis- 
counted RL methods are appropriate to use to optimize 
the average reward. 

In this paper, we describe an Average reward 
RL (ARL) method called H-learning, which is an 
undiscounted version of Adaptive Real-Time Dynamic 
Programming (ARTDP) (Barto, Bradtke, & Singh 
95). Unlike Schwartz’s R-learning (Schwartz 93) and 
Singh’s ARL algorithms (Singh 94), it is model-based, 
in that it learns and uses explicit action models. We 
compare H-learning with its discounted counterpart 
ARTDP to optimize the average reward in the task 
of scheduling a simulated Automatic Guided Vehicle 
(AGV), a material handling robot used in manufac- 
turing. Our results show that H-learning is compet- 
itive with ARTDP when the short-term (discounted 
with strong discounting) optimal policy also optimizes 
the average reward. When short-term and long-term n 
this optimal policies are different, ARTDP either fails 
to converge to the optimal average reward policy or 
converges too slowly if discounting is weak. 

Like most other RL methods, H-learning needs ex- 
ploration to find a globally optimal policy. A num- 
ber of exploration strategies have been studied in 
RL, including occasionally executing random actions, 
and preferring states which are least visited (counter- 
based) or actions least recently executed (recency- 
based) (Thrun 94). We introduce a version of H- 
learning which has the property of automatically ex- 
ploring the unexplored parts of the state space while al- 
ways taking a greedy action with respect to the current 
value function. We show that this “Auto-exploratory 
H-learning” outperforms the previous version of H- 
learning under three different exploration strategies, 
including counter-based and recency-based methods. 

The rest of the paper is organized as follows: Section 
2 derives H-learning and compares it with ARTDP. 
Section 3 introduces Auto-exploratory H-learning, and 
compares it with a variety of exploration schemes. Sec- 
tion 4 is a discussion of related work and future re- 
search issues, and Section 5 is a summary. 
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Average Reward Reinforcement 
Learning 

Markov Decision Processes (MDP) are described by a 
set of n discrete states S and a set of actions A available 
to an agent. The set of actions which are applicable in 
a state i are denoted by U(i) and are called admissible. 
The Markovian assumption means that an action u in 
a given state i E S results in state j with some fixed 
probability P~,J (u). There is a finite immediate reward 
Q(U) for executing an action u in state i resulting in 
state j. Time is treated as a sequence of discrete steps 
t = 0,1,2 ).... A policy /-I is a mapping from states to 
actions, such that p(i) E U(i). We only consider poli- 
cies which do not change with time, which are called 
“stationary policies.” 

Let a controller using a policy p take the 
agent through states 
with some probability, 

- 
so,..., st - in time 0 
accumulating a total 

thru t, 
reward 

rp (so, t> = Ciz’, rS&(sk)). The expected total re- 
ward, E(+(so, t)), is a good candidate to optimize; 
but if the controller has infinite horizon, i.e., as t tends 
to 00, it can be unbounded. The discounted RL meth- 
ods make this sum finite by multiplying each successive 
reward by an exponentially decaying discount factor 
y. In other words, they optimize the expected dis- 
counted total reward limt-coo E(C:,‘, rkrJb(,$sk))), 
whereO<r< 1. 

Discounting, however, tends to sacrifice bigger long- 
term rewards in favor of smaller short-term-rewards, 
which is undesirable in many cases. A more natural 
criterion is to optimize the average expected reward 
per step over time t as t + 00. For a given starting 
state SO, and policy 1-1, this is denoted by pp(so) and is 
defined as: 

1 

p’l(s0) = JiE jE(r’(s0, t)) 
We say that two states communicate under a policy 

if there is a positive probability of reaching each state 
from the other using that policy. A recurrent set of 
states is a closed set of states that communicate with 
each other, i.e., they do not communicate with states 
not in that set. Non-recurrent set of states are called 
transient. An MDP is ergodic if its states form a sin- 
gle recurrent set under each stationary policy. It is a 
u&chain if every stationary policy gives rise to a sin- 
gle recurrent set of states and possibly some transient 
states. 

For unichain MDPs the expected long-term average 
reward per time step for any policy p is independent 
of the starting state SO. We call it the “gain” of the 
policy p, denoted by p(p), and consider the problem 
of finding a “gain-optimal policy,” /.I*, that maximizes 
p(p) (Puterman 94). 

Derivation of H-learning 
Even though the gain of a policy, p(p), is independent 
of the starting state, the total expected reward in time 
t mav not be. The total reward for a starting state s 

in time t for a policy p can be conveniently denoted 
by p(p)t + Et(s). Although limt,, et(s) may not exist 
for periodic MDPs, the Cesaro-limit of et(s), defined 
as liml,, f c:=, Et(s), always exists, and is called the 
bias of state s, denoted by h(s) (Bertsekas 95). Intu- 
itively, h(i) - h(j) is th e average relative advantage in 
long-term total reward for starting in state i as opposed 
to state j. 

Theorem 1 For unichuin MDPs, there exist a scalar 
p and a real-valued function h over S that satisfy the 
recurrence relation 

n 

Vi E S, h(i) = u~;yi(u) + O~Pi,j(u)h(d~ -P (1) 
.‘-, J’I 

For any solution of (l), p* attains the above muxi- 
mum for each state i, and p is its gain. 

Notice that any one solution to Equation (1) yields 
an infinite number of solutions by adding the same 
constant to all h values. Setting the h value of an ar- 
bitrary recurrent “reference” state to 0, guarantees a 
unique solution for unichain MDPs. In White’s rela- 
tive value iteration method, the resulting equations are 
solved by synchronous successive approximation (Bert- 
sekas 95). Unfortunately, the asynchronous version of 
this algorithm does not always converge, as was shown 
by Tsitsiklis, and cannot be the basis of an ARL al- 
gorithm(Bertsekas 82). Hence, instead of using Equa- 
tion (1) to solve for p, H-learning estimates it from 
on-line rewards (see Figure 1). 

The agent executes the algorithm in Figure 1 in each 
step, where i is the current state, and N(i, u) denotes 
the number of times u is executed in i, out of which 
T(i, u, j) times it resulted in state j. Our implementa- 
tion explicitly stores the current greedy policy in the 
array GreedyActions. This gives a small improvement 
in performance in some domains because the policy is 
more stable than the value function. Before starting, 
the algorithm initializes a to 1, and all other variables 
to 0. GreedyActions are initialized to the set of ad- 
missible actions. 

H-learning can be seen as a cross between R- 
learning, which is model-free and undiscounted, and 
Adaptive RTDP (ARTDP), which is model-based and 
discounted. Like ARTDP, it estimates the probabilities 
pi,j(a) and rewards ri(a) by straightforward frequency 
counting, and employs the “certainty equivalence prin- 
ciple” by using the current estimates as the true values 
while updating the h values using Equation (1). 

As in most RL methods, while using H-learning, the 
agent makes some exploratory moves - moves that do 
not necessarily maximize the right hand side of Equa- 
tion (1) and are intended to ensure that every state in S 
is visited infinitely often during training. These moves 
make the estimation of p slightly complicated. Sim- 
ply averaging immediate rewards over non-exploratory 
moves would not do, because the exploratory moves 
could make the system visit states that it never visits 

882 Learning 



1. Take an exploratory action or a greedy action in the 
current state i. Let a be the action taken, k be the 
resulting state, and rimm be the immediate reward 
received. 

2. N(i, a) t N(i, a) + 1; T(i, a, k) + T(i, a, k) + 1 

3. pi&) + T(i, a, Q/N@, a> 

4. c(a) +- c(a) + (rimm - ri(u))/N(i, a) 

5. GreedyActions +- All actions u E U(i) that max- 
imize {c(u) + CT,, p&+(j)} 

6. If a E GreedyActions( then 

(a) p +-- (1 - a)p + a@@) - h(i) + h(k)) 

04 Ly + & 

7. h(i) + ma~~tqi){r&) + Cj”=, ~&4h(j)) - P 

8. itk 

Figure 1: The H-learning Algorithm 

if it were following the greedy policy and accumulate 
rewards received by optimal actions in these states. 
Instead, we use R-learning’s method of estimating the 
average reward (Schwartz 93). From Equation (1), for 
any “greedy” action u in any state i which maximizes 
the right hand side, p = ri(uj-h(i)+Cy=, pi,j(u)h(j). 
Hence, the current p can be estimated by cumulatively 
averaging ri(u) - h(i) + h(j), whenever a greedy action 
u is executed in state i resulting in state j. 

H-learning is very similar to Jalali and Ferguson’s 
Algorithm B, which is proved to converge to the gain- 
optimal policy for ergodic MDPs (Jalali and Ferguson 
89). Ergodicity assumption allows them to ignore the 
issue of exploration, which is otherwise crucial for con- 
vergence to the optimal policy. Indeed, the role of 
exploration in H-learning is to transform the original 
MDP into an ergodic one by making sure that every 
state is visited infinitely often. Secondly, to make the 
h values bounded, Algorithm B arbitrarily chooses a 
reference state and permanently sets its h value to 0. 
We found that this change slows down H-learning in 
many cases. In spite of these two differences, we be- 
lieve- that the convergence proof of Algorithm B 
extended to H-learning and R-learning as well. 

can be 

Experimental Results on H-learning 

In this section, we assume that we are in a domain 
where gain-optimality is the desired criterion, and ex- 
perimentally study the question whether and when it 
may be appropriate to use discounting. 

Our experimental results are based on comparing H- 
learning with its discounted counterpart ARTDP in 
a simplified task of scheduling simulated Automatic 
Guided Vehicles (AGVs). AGVs are mobile robots 
used in modern manufacturing plants to transport ma- 
terials from one location to another. In our “Delivery 

domain” shown in Figure 2, there are two job gener- 
ators on the left, one AGV, and two destination con- 
veyor belts on the right. Each job generator produces 
jobs and puts them on its queue as soon as it is empty. 
The AGV loads and carries a single job at a time to 
its destination conveyor belt. 

Job @znerattx 2 conveya-bctt 2 

Cl Job F’ackagc 

Figure 2: The Delivery domain 

Each job generator can generate either of two types 
of jobs (when its queue is empty). Job 2, destined to 
belt 2, has a reward of 1 unit, while job 1, destined 
to belt 1, receives a reward K when delivered. The 
probability of generating job 1 is p for generator 1, 
and Q for generator 2. 

The AGV moves on two lanes of 5 positions each, 
and can take one of six actions at a time: do-nothing, 
load, move-up, move-down, change-lane, and unload. 
load and unload can only be executed from the posi- 
tions next to the source and the destination of jobs re- 
spectively. An obstacle randomly moves up and down 
in the right lane. There is a penalty of -5 for collisions 
with the obstacle. 

There are a total of 540 different states in this do- 
main specified by the job numbers in the generator 
queues and the AGV, and the locations of the AGV 
and the obstacle. The goal is to maximize the average 
reward received per unit time. 

We now present the results of comparing H-learning 
with ARTDP in the Delivery domain. p is set to 0.5, 
and Q is set to 0.0. In other words, generator 1 pro- 
duces both types of jobs with equal probability, while 
generator 2 always produces type 2 jobs. We compare 
the results of setting the reward ratio K to 1 and to 5 
(Figure 3.) The results shown are averages of 30 trials. 
For exploration, with 10% probability, we executed a 
randomly chosen admissible action. 

When K = 1, since both jobs have the same reward, 
the gain-optimal policy is to always serve the generator 
2 which produces only type 2 jobs. Since the destina- 
tion of these jobs is closer to their generator than type 
1 jobs, it is also a discounted optimal policy. We call 
this type of domains “short-range domains” where the 
discounted optimal policy for a small value of y coin- 
cides with the gain-optimal policy. In this case, the 
discounted method, ARTDP, converges to the optimal 
policy slightly faster than H-learning, although the dif- 
ference is negligible. 

When K = 5, the gain-optimal policy conflicts with 
the discounted optimal policy when y = 0.9. When- 
ever the AGV is close to belt 2, ARTDP sees a short- 
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Figure 3: Average rewards per step for H-learning and 
ARTDP in the Delivery domain with ~~0.5, q=O.O for 
I<=l(above) and K=5(below). Each point is the mean 
of 30 trials over the last 10K steps for I<=1 and over 
the last 40K steps for 1<=5. 

term opportunity in serving generator 2 and does not 
return to generator 1, thus failing to transport high 
reward jobs. Hence it cannot find the optimal average 
reward policy when y = 0.9. To overcome this diffi- 
culty, y is set to 0.99. Even so, it could not find the 
optimal policy in 2 million steps. This is because high 
values of y reduce the effect of discounting and make 
the temporally far off rewards relevant for optimal ac- 
tion selection.. Since it takes a long time to propagate 
these rewards back to the initial steps, it takes a long 
time for the discounted methods to converge to the 
true optimum. Meanwhile the short-term rewards still 
dominate in selecting the action. Thus, as we can infer 
from Figure 3, in this “long-range” domain, ARTDP 
served generator 2 exclusively in all the trials, getting 
a gain less than 0.1, while H-learning was able to find 
a policy of gain higher than 0.18. 

We found that counter-based exploration improves 
the performances of both ARTDP and H. While 
ARTDP is still worse than H, the difference between 
them is smaller than with random exploration. We 
conclude that in long-range domains where discounted 
optimal policy conflicts with the gain-optimal policy, 
discounted methods such as ARTDP and Q-learning 
either take too long to converge or, if y is too low, con- 
verge to a sub-optimal policy. When there is no such 
conflict, H-learning is competitive with the discounted 
methods. In more exhaustive experiments with 75 dif- 
ferent parameter settings for p, Q and K, it was found 
that H-learning always converges to the gain-optimal 
policy, and does so in fewer steps in all but 16 short- 

range cases, where ARTDP is slightly faster (Tadepalli 
& Ok 94). W e a so 1 f ound similar differences between 
Q-learning and R-learning. Our results are consistent 
with those of Mahadevan who compared Q-learning 
and R-learning in a robot simulator domain and a maze 
domain and found that R-learning can be tuned to per- 
form better (Mahadevan 96a). 

Auto-exploratory 
Recall that H-learning needs exploratory actions to en- 
sure that every state is visited infinitely often during 
training. Unfortunately, actions executed exclusively 
for exploratory purpose could lead to decreased average 
reward, because they do not fully exploit the agent’s 
currently known best policy. 

In this section, we will describe a version of H- 
learning called Auto-exploratory H-learning (AH), 
which avoids the above problem by automatically ex- 
ploring the promising parts of the state space while al- 
ways executing current greedy actions. Our approach 
is similar to Kaelbling’s Interval Estimation (IE) al- 
gorithm, and Koenig and Simmons’s method of rep- 
resenting the reward functions using action-penalty 
scheme (Kaelbling 90; Koenig & Simmons 96). 

We are primarily interested in non-ergodic MDPs 
here because ergodic MDPs do not need exploration. 
Unfortunately, the gain of a stationary policy for a 
multichain (non-unichain) MDP depends on the ini- 
tial state (Puterman 94). Hence we consider some re- 
stricted classes of MDPs. An MDP is communicating if 
for every pair of states i, j, there is a stationary policy 
under which they communicate. For example, our De- 
livery domain is communicating. A weakly communi- 
cating MDP also allows a set of states which are tran- 
sient under every stationary policy in addition (Put- 
erman 94). Although the gain of a stationary policy 
for a weakly communicating MDP also depends on the 
initial state, the gain of an optimal policy does not. 
AH-learning exploits this fact, and works by using p 
as an upper bound on the optimal gain. It does this 
by initializing p to a high value and by slowly reducing 
it to the gain of the optimal policy. AH is applicable 
to find gain-optimal policies for weakly communicating 
MDPs, a strict superset of unichains. 

There are two reasons why H-learning needs explo- 
ration: to learn accurate action and reward models, 
and to learn correct h values. Inadequate exploration 
could adversely affect the accuracy of either of these, 
making the system converge to a suboptimal policy. 

The key observation in the design of Auto- 
exploratory H-learning (AH) is that the current value 
of p affects how the h values are updated for the 
states in the current greedy policy. Let p be the cur- 
rent sub-optimal greedy policy, and p(p) be its gain. 
Consider what happens if the current value of p is 
less than p(p). Recall that h(i) is updated to be 
ma~Eu(i){~&) + Eyzl p&+(j)} - p. Ignoring the 
changes to p itself, the h values for states in the current 
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greedy policy tend to increase on the average, because 
the sum of immediate rewards for this policy in any n 
steps is likely to be higher than np (since p < p(p)). It 
is possible, under these circumstances, that the h val- 
ues of all states in the current policy increase or stay 
the same. Since the h values of states not visited by 
this policy do not change, this implies that by execut- 
ing the greedy policy, the system can never get out of 
this set of states. If the optimal policy involves going 
through states not visited by the greedy policy, it will 
never be learned. 

meve(0,O.S) 

Figure 4: The Two-State domain. The notation m(r, p) 
on the arc from state a to b indicates that T iS the 
immediate reward and P is the probability of the next 
state being b when action m is executed in state a. 

This is illustrated clearly in the Two-State MDP in 
Figure 4, which is a communicating multichain. In this 
domain, the optimal policy p* is taking the action move 
in state 1 and stay in state 2 with p(p*) = 2. Without 
any exploration, H-learning finds the optimal policy in 
approximately half of the trials for this domain - those 
t&ls in which the stay action in state 2 is executed 
before the stay action in state 1. If the stay action in 
state 1 is executed before that in state 2, it receives a 
reward of +l and updates h( 1) to 1 + h( 1) - p. Since 
p is between 0 and 1, this increases the value of h(l) 
in every update until finally p converges to 1. S&k 
greedy action choice always results in the stay action 
Fn state 1, H-learning never visits state 2 and therefore 
converges to a suboptimal policy. 

Now consider what happens if p > p(p) for the cur- 
rent greedy policy /-1. In this case, by the same ar- 
gument as before, the 1% values of the states in the 
current greedy policy must decrease on the average. 
This means that eventually the states outside the set 
of states visited by the greedy policy will have their h 
values higher than some of those visited by the greedy 
policy. Since the MDP is assumed to be weakly com- 
municating, the states with higher h values are reach- 
able from the states with decreasing h values, and even- 
tually will be visited, ignoring the transient states that 
do not affect the gain. Thus, as long as p > p(p), there 
is no danger of getting stuck in a sub-optimal policy 
p. This siggests-changing H-learning so-that it starts 
with a high initial p value, po, high enough so that it 
never gets below the gain of any &b-opt&al 

In the preceding discussion, we ignored the 
policy. 
changes 

to the p value itself. In fact, p is constantly changing 
at a rate determined by CX. Hence, even though p was 
initially higher than p(p), because it is now decreasing, 

it can become smaller than p(p) after a while. To make 
the previous argument work, we have to adjust (Y so 
that p changes slowly compared to the h values. This 
can be done by starting with a sufficiently low initial 
a value, (~0. We denote H-learning with the initial 
values po and (~0 by Hpojcuo. Hence, the H-learning of 
the previous section is Ho)‘. 

So far, we have considered the effect of lack of ex- 
ploration on the h-values. We now turn to its effect 
on the accuracy of action models. For the rest of the 
discussion, it is useful to define the utility R(i, u) of a 
state action pair (i, u) to be 

R(i, u) = c(u) + &i,j(+(j) - p. (2) 
j=l 

Hence, the greedy actions in state i are actions that 
maximize the R value in state i. 

Consider the following run of H6po.2 in the Two-State 
domain, where, in step 1, the agent executes the action 
stay in state 1. It reduces h( 1) = R( 1, stay) to 1 - p 
and takes the action move in the next step. Assume 
that move takes it to state 1 because it has 50% fail- 
ure rate. With this limited experience, the system as- 
sumes that both the actions have the same next state 
in state 1, and stay has a reward +l while move has 0. 
Hence, it determines that R( 1, stay) = 1 + h(1) - p > 
O+h(l)-p = R(l, move) and continues to execute stay, 
and keeps decreasing the value of h(1). Even though 
h(2) > h(l), the agent cannot get to state 2 because 
it does not have the correct action model. Therefore, 
it cannot learn the correct action model for move, and 
keeps executing stay. Unfortunately, this problem can- 
not be fixed by changing po or c~. 

The solution we have implemented, called “Auto- 
exploratory H-Learning” (AH-learning), starts with a 
high po and low a0 (AHP”jCYo), and stores the R val- 
ues explicitly. In H-learning, all R values of the same 
state are effectively updated at the same time by up- 
dating the h value, which sometimes makes it converge 
to incorrect action models. In AH-learning, R(i, u) is 
updated by the right hand side of Equation (2) only 
when action u is taken in state i. 

When p is higher than the gain of the current greedy 
policy, the R value of the executed action is decreased, 
while the R values of the other actions remain the 
same. Therefore, eventually, the unexecuted actions 
appear to be the best in the current state, forcing the 
system to explore such actions. 

We experimented with AH and H with different pa- 
rameters po and cxo in our Two-State domain with- 
out any exploratory moves. Out of the 100 trials 
tested AH6j0.2 found the optimal policy in all of them, 
where& Hot1 , and H6fo.2 found it in 57 and 69 trials 
respectively. This confirms our hypothesis that AH- 
learning explores the search space effectively while al- 
ways executing greedy actions. 
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Experimental Results on AH-learning 
In this section, we compare AH-learning with some 
other exploration strategies in the Delivery domain of 
Figure 2. Unlike H-learning, our implementation of 
AH-learning does not explicitly store the policy. 

We compared AH to three other exploration meth- 
ods: random exploration, counter-based exploration 
and recency-based exploration (Thrun 94). Random 
exploration was used as before, except that we opti- 
mized the probability with which random actions are 
selected. In counter-based exploration, in any state 
i, an action a is chosen that maximizes R(i,a) + 

where c(i) is the number of times 

state i is visited, and S is a small positive constant. 
In recency-based exploration, an action a is selected 
which maximizes R(i, a) + cdm, where n(i, a) is 
the number of steps since the action a is executed in 
state i last, and E is a small constant. In all the three 
cases, the parameters were tuned by trail and error 
until they gave the best performance. 

The parameters for the Delivery domain, p, q and 
I<, were set to 0.5, 0.0 and 5. Proper exploration is 
particularly important in this domain for the follow- 
ing reasons: First, the domain is stochastic; second, 
it takes many steps to propagate high rewards; and 
third, there are many sub-optimal policies with gain 
close to the optimal gain. For all these reasons, it is 
difficult to maintain p consistently higher than the gain 
of any sub-optimal policy, which is important for AH- 
learning to find the optimal policy. It gave the best 
performance with po = 2 and og = 0.0002. 

0.31 , , , , , , , , , , 

0.28 

0.26 t 

0.24 - 

0.22 - 

0.2 - 

0.18 - 

0.16 - 

0.14 - 

0.12 - 

0.1 If’, ’ ’ ’ ’ ’ ’ ’ ’ J 
0 1 OOK 200K 300K 400K 500K steps 

Figure 5: The on-line mean rewards of the last 10K 
steps averaged over 30 trials for AH2jo.0002, Hl~‘.“l, 
and H”jl without exploration, and Hop1 with random, 
recency-based, and counter-based exploration strate- 
gies in the Delivery domain with p=O.5, q=O.O, and 
IC=5. 

Figure 5 shows the on-line mean rewards of 30 trials 
of AH2~0*0002 H1jO.OO1, and H”)l with no exploratory 
actions, and of H”jl with 3 different exploration meth- 
ods: 8% random exploration, counter-based explo- 
ration with S = 0.05, and recency-based exploration 
with E = 0.02. 

Without any exploration, H”jl could not find the op- 

timal policy even once. By proper tuning of po and (~0, 
it improved significantly, and was only slightly worse 
than AH, which found the optimal policy in all 30 
trials. Counter-based exploration appears much bet- 
ter than random exploration for this domain, while 
recency-based exploration seems worse. AH achieved a 
much better on-line reward than all other exploration 
methods, and did so more quickly than others. 

This result suggests that with proper initialization of 
p and o, AH-learning automatically explores the state 
space much more effectively than the other exploration 
schemes tested. A particularly attractive feature of 
AH-learning is that it does so without sacrificing any 
gain, and hence should be preferred to other meth- 
ods. Although AH-learning does involve tuning two 
parameters p and CY, it appears that at least p can be 
automatically adjusted. One way to do this is to keep 
track of the currently known maximum immediate re- 
ward over all state-action pairs, and reinitialize p to 
something higher than this value whenever it changes. 

iscussion and Future Work 
There is an extensive literature on average reward 
optimization using dynamic programming approaches 
(Howard 60; Puterman 94; Bertsekas 95). (Mahadevan 
96a) gives a useful survey of this literature from Re- 
inforcement Learning point of view. Bias-optimality, 
or Schwartz’s T-optimality, is a more refined notion 
that seeks to find a policy that maximizes the cu- 
mulated discounted total reward for all states as the 
discount factor y -+ 1. All bias-optimal policies are 
also gain-optimal, but the converse does not hold. H- 
learning and R-learning can find the bias-optimal poli- 
cies if and only if all gain-optimal policies give rise 
to the same recurrent set of states, and the transient 
states are repeatedly visited by some trial-based ex- 
ploration strategy. To find bias-optimal policies for 
more general unichains, it is necessary to select bias- 
optimal actions from among the gain-optimal ones 
in every state using more refined criteria. Mahade- 
van extends both H-learning and R-learning to find 
the bias-optimal policies for general unichains, and il- 
lustrates that they improve their performance in an 
admission control queuing system (Mahadevan 96b; 
Mahadevan 96c). 

Auto-exploratory H-learning is similar in spirit to 
the action-penalty representation of reward functions 
analyzed by Koenig and Simmons (Koenig & Simmons 
96). They showed that a minimax form of Q-learning, 
which always takes greedy actions, can find the short- 
est cost paths from all states to a goal state in O(n3) 
time, where n is the size of the state space. An ana- 
lytical convergence result of this kind for AH-learning 
would be very interesting. In the Interval Estimation 
algorithm (IE) of Kaelbling (Kaelbling 90), which is 
similar, the agent maintains a confidence interval of the 
value function, and always chooses an action that max- 
imizes its upper bound. This ensures that the chosen 
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action either has a high utility, or has a large confi- 
dence interval which needs exploration to reduce it. 

The idea of Auto-exploratory learning can be 
adapted to R-learning as well. However, in our prelim- 
inary experiments we found that the value of p fluctu- 
ates much more in R-learning than in H-learning, un- 
less c~ is initialized to be very small. Making a small 
will have the consequence of slowing down learning. 
Although we have not seen this to be a problem with 
H-learning, the tradeoff between the need for explo- 
ration and slow learning due to small cr value deserves 
further study. 

To scale H-learning to large domains, it is necessary 
to approximate its value function and action models. 
Elsewhere, we describe our results of learning action 
models in the form of conditional probability tables of 
a Bayesian network, and using local linear regression 
to approximate its value function (Tadepalli & Ok 96). 
Both these extensions improve the space requirement 
of H-learning and the number of steps needed for its 
convergence. We also plan to explore other ways of ap- 
proximating the value function which can be effective 
in multi-dimensional spaces. 

Summary 
The premise of our work is that many real-world do- 
mains demand optimizing average reward per time 
step, while most work in Reinforcement Learning is 
focused on optimizing discounted total reward. We 
presented a model-based average reward RL method 
called H-learning that demonstrably performs better 
than its discounted counterpart. We also presented 
Auto-exploratory H-learning, which automatically ex- 
plores while always picking greedy actions with respect 
to its current value function. We showed that it out- 
performs many currently known exploration methods. 
Value function approximation for ARL systems is cur- 
rently under investigation. 
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