
loratory Average

DoKyeong Ok and Prasad Tadepalli
Computer Science Department

Oregon State University
Corvallis,Oregon 97331-3202

{okd,tadepalli}@ research.cs.orst.edu

Abstract

We introduce a model-based average reward Re-
inforcement Learning method called H-learning
and compare it with its discounted counterpart,
Adaptive Real-Time Dynamic Programming, in
a simulated robot scheduling task. We also in-
troduce an extension to H-learning, which au-
tomatically explores the unexplored parts of the
state space, while always choosing greedy actions
with respect to the current value function. We
show that this “Auto-exploratory H-learning”
performs better than the original H-learning un-
der previously studied exploration methods such
as random, recency-based, or counter-based ex-
ploration.

Introduction
Reinforcement Learning (RL) is the study of learn-
ing agents that improve their performance at some
task by receiving rewards and punishments from
the environment. Most approaches to reinforcement
learning, including Q-learning (Watkins and Dayan
92) and Adaptive Real-Time Dynamic Programming
(ARTDP) (Barto, Bradtke, & Singh 95), optimize the
total discounted reward the learner receives. In other
words, a reward which is received after one time step is
considered equivalent to a fraction of the same reward
received immediately. One advantage of discounting is
that it yields a finite total reward even for an infinite
sequence of actions and rewards. While mathemati-
cally convenient, many real world domains to which
we would like to apply RL do not have a natural inter-
pretation or need for discounting. The natural crite-
rion to optimize in such domains is the average reward
received per time step.

Discounting encourages the learner to sacrifice long-
term benefits for short-term gains, since the impact
of an action choice on long-term reward decreases ex-
ponentially with time. Hence, using discounted opti-
mization when average reward optimization is what is
required couZd lead to suboptimal policies. Neverthe-
less, it can be argued that it is appropriate to optimize
discounted total reward if that also nearly optimizes
the average reward. In fact, many researchers have

successfully used discounted learning to optimize av-
erage reward per step (Lin 92; Mahadevan & Connell
92). This raises the question whether and when dis-
counted RL methods are appropriate to use to optimize
the average reward.

In this paper, we describe an Average reward
RL (ARL) method called H-learning, which is an
undiscounted version of Adaptive Real-Time Dynamic
Programming (ARTDP) (Barto, Bradtke, & Singh
95). Unlike Schwartz’s R-learning (Schwartz 93) and
Singh’s ARL algorithms (Singh 94), it is model-based,
in that it learns and uses explicit action models. We
compare H-learning with its discounted counterpart
ARTDP to optimize the average reward in the task
of scheduling a simulated Automatic Guided Vehicle
(AGV), a material handling robot used in manufac-
turing. Our results show that H-learning is compet-
itive with ARTDP when the short-term (discounted
with strong discounting) optimal policy also optimizes
the average reward. When short-term and long-term n
this optimal policies are different, ARTDP either fails
to converge to the optimal average reward policy or
converges too slowly if discounting is weak.

Like most other RL methods, H-learning needs ex-
ploration to find a globally optimal policy. A num-
ber of exploration strategies have been studied in
RL, including occasionally executing random actions,
and preferring states which are least visited (counter-
based) or actions least recently executed (recency-
based) (Thrun 94). We introduce a version of H-
learning which has the property of automatically ex-
ploring the unexplored parts of the state space while al-
ways taking a greedy action with respect to the current
value function. We show that this “Auto-exploratory
H-learning” outperforms the previous version of H-
learning under three different exploration strategies,
including counter-based and recency-based methods.

The rest of the paper is organized as follows: Section
2 derives H-learning and compares it with ARTDP.
Section 3 introduces Auto-exploratory H-learning, and
compares it with a variety of exploration schemes. Sec-
tion 4 is a discussion of related work and future re-
search issues, and Section 5 is a summary.

Reinforcement Learning 881

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Average Reward Reinforcement
Learning

Markov Decision Processes (MDP) are described by a
set of n discrete states S and a set of actions A available
to an agent. The set of actions which are applicable in
a state i are denoted by U(i) and are called admissible.
The Markovian assumption means that an action u in
a given state i E S results in state j with some fixed
probability P~,J (u). There is a finite immediate reward
Q(U) for executing an action u in state i resulting in
state j. Time is treated as a sequence of discrete steps
t = 0,1,2).... A policy /-I is a mapping from states to
actions, such that p(i) E U(i). We only consider poli-
cies which do not change with time, which are called
“stationary policies.”

Let a controller using a policy p take the
agent through states
with some probability,

-
so,..., st - in time 0
accumulating a total

thru t,
reward

rp (so, t> = Ciz’, rS&(sk)). The expected total re-
ward, E(+(so, t)), is a good candidate to optimize;
but if the controller has infinite horizon, i.e., as t tends
to 00, it can be unbounded. The discounted RL meth-
ods make this sum finite by multiplying each successive
reward by an exponentially decaying discount factor
y. In other words, they optimize the expected dis-
counted total reward limt-coo E(C:,‘, rkrJb(,$sk))),
whereO<r< 1.

Discounting, however, tends to sacrifice bigger long-
term rewards in favor of smaller short-term-rewards,
which is undesirable in many cases. A more natural
criterion is to optimize the average expected reward
per step over time t as t + 00. For a given starting
state SO, and policy 1-1, this is denoted by pp(so) and is
defined as:

1

p’l(s0) = JiE jE(r’(s0, t))
We say that two states communicate under a policy

if there is a positive probability of reaching each state
from the other using that policy. A recurrent set of
states is a closed set of states that communicate with
each other, i.e., they do not communicate with states
not in that set. Non-recurrent set of states are called
transient. An MDP is ergodic if its states form a sin-
gle recurrent set under each stationary policy. It is a
u&chain if every stationary policy gives rise to a sin-
gle recurrent set of states and possibly some transient
states.

For unichain MDPs the expected long-term average
reward per time step for any policy p is independent
of the starting state SO. We call it the “gain” of the
policy p, denoted by p(p), and consider the problem
of finding a “gain-optimal policy,” /.I*, that maximizes
p(p) (Puterman 94).

Derivation of H-learning
Even though the gain of a policy, p(p), is independent
of the starting state, the total expected reward in time
t mav not be. The total reward for a starting state s

in time t for a policy p can be conveniently denoted
by p(p)t + Et(s). Although limt,, et(s) may not exist
for periodic MDPs, the Cesaro-limit of et(s), defined
as liml,, f c:=, Et(s), always exists, and is called the
bias of state s, denoted by h(s) (Bertsekas 95). Intu-
itively, h(i) - h(j) is th e average relative advantage in
long-term total reward for starting in state i as opposed
to state j.

Theorem 1 For unichuin MDPs, there exist a scalar
p and a real-valued function h over S that satisfy the
recurrence relation

n

Vi E S, h(i) = u~;yi(u) + O~Pi,j(u)h(d~ -P (1)
.‘-, J’I

For any solution of (l), p* attains the above muxi-
mum for each state i, and p is its gain.

Notice that any one solution to Equation (1) yields
an infinite number of solutions by adding the same
constant to all h values. Setting the h value of an ar-
bitrary recurrent “reference” state to 0, guarantees a
unique solution for unichain MDPs. In White’s rela-
tive value iteration method, the resulting equations are
solved by synchronous successive approximation (Bert-
sekas 95). Unfortunately, the asynchronous version of
this algorithm does not always converge, as was shown
by Tsitsiklis, and cannot be the basis of an ARL al-
gorithm(Bertsekas 82). Hence, instead of using Equa-
tion (1) to solve for p, H-learning estimates it from
on-line rewards (see Figure 1).

The agent executes the algorithm in Figure 1 in each
step, where i is the current state, and N(i, u) denotes
the number of times u is executed in i, out of which
T(i, u, j) times it resulted in state j. Our implementa-
tion explicitly stores the current greedy policy in the
array GreedyActions. This gives a small improvement
in performance in some domains because the policy is
more stable than the value function. Before starting,
the algorithm initializes a to 1, and all other variables
to 0. GreedyActions are initialized to the set of ad-
missible actions.

H-learning can be seen as a cross between R-
learning, which is model-free and undiscounted, and
Adaptive RTDP (ARTDP), which is model-based and
discounted. Like ARTDP, it estimates the probabilities
pi,j(a) and rewards ri(a) by straightforward frequency
counting, and employs the “certainty equivalence prin-
ciple” by using the current estimates as the true values
while updating the h values using Equation (1).

As in most RL methods, while using H-learning, the
agent makes some exploratory moves - moves that do
not necessarily maximize the right hand side of Equa-
tion (1) and are intended to ensure that every state in S
is visited infinitely often during training. These moves
make the estimation of p slightly complicated. Sim-
ply averaging immediate rewards over non-exploratory
moves would not do, because the exploratory moves
could make the system visit states that it never visits

882 Learning

1. Take an exploratory action or a greedy action in the
current state i. Let a be the action taken, k be the
resulting state, and rimm be the immediate reward
received.

2. N(i, a) t N(i, a) + 1; T(i, a, k) + T(i, a, k) + 1

3. pi&) + T(i, a, Q/N@, a>

4. c(a) +- c(a) + (rimm - ri(u))/N(i, a)

5. GreedyActions +- All actions u E U(i) that max-
imize {c(u) + CT,, p&+(j)}

6. If a E GreedyActions(then

(a) p +-- (1 - a)p + a@@) - h(i) + h(k))

04 Ly + &

7. h(i) + ma~~tqi){r&) + Cj”=, ~&4h(j)) - P

8. itk

Figure 1: The H-learning Algorithm

if it were following the greedy policy and accumulate
rewards received by optimal actions in these states.
Instead, we use R-learning’s method of estimating the
average reward (Schwartz 93). From Equation (1), for
any “greedy” action u in any state i which maximizes
the right hand side, p = ri(uj-h(i)+Cy=, pi,j(u)h(j).
Hence, the current p can be estimated by cumulatively
averaging ri(u) - h(i) + h(j), whenever a greedy action
u is executed in state i resulting in state j.

H-learning is very similar to Jalali and Ferguson’s
Algorithm B, which is proved to converge to the gain-
optimal policy for ergodic MDPs (Jalali and Ferguson
89). Ergodicity assumption allows them to ignore the
issue of exploration, which is otherwise crucial for con-
vergence to the optimal policy. Indeed, the role of
exploration in H-learning is to transform the original
MDP into an ergodic one by making sure that every
state is visited infinitely often. Secondly, to make the
h values bounded, Algorithm B arbitrarily chooses a
reference state and permanently sets its h value to 0.
We found that this change slows down H-learning in
many cases. In spite of these two differences, we be-
lieve- that the convergence proof of Algorithm B
extended to H-learning and R-learning as well.

can be

Experimental Results on H-learning

In this section, we assume that we are in a domain
where gain-optimality is the desired criterion, and ex-
perimentally study the question whether and when it
may be appropriate to use discounting.

Our experimental results are based on comparing H-
learning with its discounted counterpart ARTDP in
a simplified task of scheduling simulated Automatic
Guided Vehicles (AGVs). AGVs are mobile robots
used in modern manufacturing plants to transport ma-
terials from one location to another. In our “Delivery

domain” shown in Figure 2, there are two job gener-
ators on the left, one AGV, and two destination con-
veyor belts on the right. Each job generator produces
jobs and puts them on its queue as soon as it is empty.
The AGV loads and carries a single job at a time to
its destination conveyor belt.

Job @znerattx 2 conveya-bctt 2

Cl Job F’ackagc

Figure 2: The Delivery domain

Each job generator can generate either of two types
of jobs (when its queue is empty). Job 2, destined to
belt 2, has a reward of 1 unit, while job 1, destined
to belt 1, receives a reward K when delivered. The
probability of generating job 1 is p for generator 1,
and Q for generator 2.

The AGV moves on two lanes of 5 positions each,
and can take one of six actions at a time: do-nothing,
load, move-up, move-down, change-lane, and unload.
load and unload can only be executed from the posi-
tions next to the source and the destination of jobs re-
spectively. An obstacle randomly moves up and down
in the right lane. There is a penalty of -5 for collisions
with the obstacle.

There are a total of 540 different states in this do-
main specified by the job numbers in the generator
queues and the AGV, and the locations of the AGV
and the obstacle. The goal is to maximize the average
reward received per unit time.

We now present the results of comparing H-learning
with ARTDP in the Delivery domain. p is set to 0.5,
and Q is set to 0.0. In other words, generator 1 pro-
duces both types of jobs with equal probability, while
generator 2 always produces type 2 jobs. We compare
the results of setting the reward ratio K to 1 and to 5
(Figure 3.) The results shown are averages of 30 trials.
For exploration, with 10% probability, we executed a
randomly chosen admissible action.

When K = 1, since both jobs have the same reward,
the gain-optimal policy is to always serve the generator
2 which produces only type 2 jobs. Since the destina-
tion of these jobs is closer to their generator than type
1 jobs, it is also a discounted optimal policy. We call
this type of domains “short-range domains” where the
discounted optimal policy for a small value of y coin-
cides with the gain-optimal policy. In this case, the
discounted method, ARTDP, converges to the optimal
policy slightly faster than H-learning, although the dif-
ference is negligible.

When K = 5, the gain-optimal policy conflicts with
the discounted optimal policy when y = 0.9. When-
ever the AGV is close to belt 2, ARTDP sees a short-

Reinforcement Learning 883

0.25
I-

ARTDP WI garnma~.~ =

0.1

t----.

0.05

v
OY I I I I

0 I OOK 200K 300K
StCpS

0.25 c
ARTDP WI gatnma~0.6: =r

04 ’ ’ ’ ’ ’ ’ ’ ’ ’
0 400K 600K 1.2e+O6 1 .se+os 2e+O6 steps

Figure 3: Average rewards per step for H-learning and
ARTDP in the Delivery domain with ~~0.5, q=O.O for
I<=l(above) and K=5(below). Each point is the mean
of 30 trials over the last 10K steps for I<=1 and over
the last 40K steps for 1<=5.

term opportunity in serving generator 2 and does not
return to generator 1, thus failing to transport high
reward jobs. Hence it cannot find the optimal average
reward policy when y = 0.9. To overcome this diffi-
culty, y is set to 0.99. Even so, it could not find the
optimal policy in 2 million steps. This is because high
values of y reduce the effect of discounting and make
the temporally far off rewards relevant for optimal ac-
tion selection.. Since it takes a long time to propagate
these rewards back to the initial steps, it takes a long
time for the discounted methods to converge to the
true optimum. Meanwhile the short-term rewards still
dominate in selecting the action. Thus, as we can infer
from Figure 3, in this “long-range” domain, ARTDP
served generator 2 exclusively in all the trials, getting
a gain less than 0.1, while H-learning was able to find
a policy of gain higher than 0.18.

We found that counter-based exploration improves
the performances of both ARTDP and H. While
ARTDP is still worse than H, the difference between
them is smaller than with random exploration. We
conclude that in long-range domains where discounted
optimal policy conflicts with the gain-optimal policy,
discounted methods such as ARTDP and Q-learning
either take too long to converge or, if y is too low, con-
verge to a sub-optimal policy. When there is no such
conflict, H-learning is competitive with the discounted
methods. In more exhaustive experiments with 75 dif-
ferent parameter settings for p, Q and K, it was found
that H-learning always converges to the gain-optimal
policy, and does so in fewer steps in all but 16 short-

range cases, where ARTDP is slightly faster (Tadepalli
& Ok 94). W e a so 1 f ound similar differences between
Q-learning and R-learning. Our results are consistent
with those of Mahadevan who compared Q-learning
and R-learning in a robot simulator domain and a maze
domain and found that R-learning can be tuned to per-
form better (Mahadevan 96a).

Auto-exploratory
Recall that H-learning needs exploratory actions to en-
sure that every state is visited infinitely often during
training. Unfortunately, actions executed exclusively
for exploratory purpose could lead to decreased average
reward, because they do not fully exploit the agent’s
currently known best policy.

In this section, we will describe a version of H-
learning called Auto-exploratory H-learning (AH),
which avoids the above problem by automatically ex-
ploring the promising parts of the state space while al-
ways executing current greedy actions. Our approach
is similar to Kaelbling’s Interval Estimation (IE) al-
gorithm, and Koenig and Simmons’s method of rep-
resenting the reward functions using action-penalty
scheme (Kaelbling 90; Koenig & Simmons 96).

We are primarily interested in non-ergodic MDPs
here because ergodic MDPs do not need exploration.
Unfortunately, the gain of a stationary policy for a
multichain (non-unichain) MDP depends on the ini-
tial state (Puterman 94). Hence we consider some re-
stricted classes of MDPs. An MDP is communicating if
for every pair of states i, j, there is a stationary policy
under which they communicate. For example, our De-
livery domain is communicating. A weakly communi-
cating MDP also allows a set of states which are tran-
sient under every stationary policy in addition (Put-
erman 94). Although the gain of a stationary policy
for a weakly communicating MDP also depends on the
initial state, the gain of an optimal policy does not.
AH-learning exploits this fact, and works by using p
as an upper bound on the optimal gain. It does this
by initializing p to a high value and by slowly reducing
it to the gain of the optimal policy. AH is applicable
to find gain-optimal policies for weakly communicating
MDPs, a strict superset of unichains.

There are two reasons why H-learning needs explo-
ration: to learn accurate action and reward models,
and to learn correct h values. Inadequate exploration
could adversely affect the accuracy of either of these,
making the system converge to a suboptimal policy.

The key observation in the design of Auto-
exploratory H-learning (AH) is that the current value
of p affects how the h values are updated for the
states in the current greedy policy. Let p be the cur-
rent sub-optimal greedy policy, and p(p) be its gain.
Consider what happens if the current value of p is
less than p(p). Recall that h(i) is updated to be
ma~Eu(i){~&) + Eyzl p&+(j)} - p. Ignoring the
changes to p itself, the h values for states in the current

884 Learning

greedy policy tend to increase on the average, because
the sum of immediate rewards for this policy in any n
steps is likely to be higher than np (since p < p(p)). It
is possible, under these circumstances, that the h val-
ues of all states in the current policy increase or stay
the same. Since the h values of states not visited by
this policy do not change, this implies that by execut-
ing the greedy policy, the system can never get out of
this set of states. If the optimal policy involves going
through states not visited by the greedy policy, it will
never be learned.

meve(0,O.S)

Figure 4: The Two-State domain. The notation m(r, p)
on the arc from state a to b indicates that T iS the
immediate reward and P is the probability of the next
state being b when action m is executed in state a.

This is illustrated clearly in the Two-State MDP in
Figure 4, which is a communicating multichain. In this
domain, the optimal policy p* is taking the action move
in state 1 and stay in state 2 with p(p*) = 2. Without
any exploration, H-learning finds the optimal policy in
approximately half of the trials for this domain - those
t&ls in which the stay action in state 2 is executed
before the stay action in state 1. If the stay action in
state 1 is executed before that in state 2, it receives a
reward of +l and updates h(1) to 1 + h(1) - p. Since
p is between 0 and 1, this increases the value of h(l)
in every update until finally p converges to 1. S&k
greedy action choice always results in the stay action
Fn state 1, H-learning never visits state 2 and therefore
converges to a suboptimal policy.

Now consider what happens if p > p(p) for the cur-
rent greedy policy /-1. In this case, by the same ar-
gument as before, the 1% values of the states in the
current greedy policy must decrease on the average.
This means that eventually the states outside the set
of states visited by the greedy policy will have their h
values higher than some of those visited by the greedy
policy. Since the MDP is assumed to be weakly com-
municating, the states with higher h values are reach-
able from the states with decreasing h values, and even-
tually will be visited, ignoring the transient states that
do not affect the gain. Thus, as long as p > p(p), there
is no danger of getting stuck in a sub-optimal policy
p. This siggests-changing H-learning so-that it starts
with a high initial p value, po, high enough so that it
never gets below the gain of any &b-opt&al

In the preceding discussion, we ignored the
policy.
changes

to the p value itself. In fact, p is constantly changing
at a rate determined by CX. Hence, even though p was
initially higher than p(p), because it is now decreasing,

it can become smaller than p(p) after a while. To make
the previous argument work, we have to adjust (Y so
that p changes slowly compared to the h values. This
can be done by starting with a sufficiently low initial
a value, (~0. We denote H-learning with the initial
values po and (~0 by Hpojcuo. Hence, the H-learning of
the previous section is Ho)‘.

So far, we have considered the effect of lack of ex-
ploration on the h-values. We now turn to its effect
on the accuracy of action models. For the rest of the
discussion, it is useful to define the utility R(i, u) of a
state action pair (i, u) to be

R(i, u) = c(u) + &i,j(+(j) - p. (2)
j=l

Hence, the greedy actions in state i are actions that
maximize the R value in state i.

Consider the following run of H6po.2 in the Two-State
domain, where, in step 1, the agent executes the action
stay in state 1. It reduces h(1) = R(1, stay) to 1 - p
and takes the action move in the next step. Assume
that move takes it to state 1 because it has 50% fail-
ure rate. With this limited experience, the system as-
sumes that both the actions have the same next state
in state 1, and stay has a reward +l while move has 0.
Hence, it determines that R(1, stay) = 1 + h(1) - p >
O+h(l)-p = R(l, move) and continues to execute stay,
and keeps decreasing the value of h(1). Even though
h(2) > h(l), the agent cannot get to state 2 because
it does not have the correct action model. Therefore,
it cannot learn the correct action model for move, and
keeps executing stay. Unfortunately, this problem can-
not be fixed by changing po or c~.

The solution we have implemented, called “Auto-
exploratory H-Learning” (AH-learning), starts with a
high po and low a0 (AHP”jCYo), and stores the R val-
ues explicitly. In H-learning, all R values of the same
state are effectively updated at the same time by up-
dating the h value, which sometimes makes it converge
to incorrect action models. In AH-learning, R(i, u) is
updated by the right hand side of Equation (2) only
when action u is taken in state i.

When p is higher than the gain of the current greedy
policy, the R value of the executed action is decreased,
while the R values of the other actions remain the
same. Therefore, eventually, the unexecuted actions
appear to be the best in the current state, forcing the
system to explore such actions.

We experimented with AH and H with different pa-
rameters po and cxo in our Two-State domain with-
out any exploratory moves. Out of the 100 trials
tested AH6j0.2 found the optimal policy in all of them,
where& Hot1 , and H6fo.2 found it in 57 and 69 trials
respectively. This confirms our hypothesis that AH-
learning explores the search space effectively while al-
ways executing greedy actions.

Reinforcement Learning 885

Experimental Results on AH-learning
In this section, we compare AH-learning with some
other exploration strategies in the Delivery domain of
Figure 2. Unlike H-learning, our implementation of
AH-learning does not explicitly store the policy.

We compared AH to three other exploration meth-
ods: random exploration, counter-based exploration
and recency-based exploration (Thrun 94). Random
exploration was used as before, except that we opti-
mized the probability with which random actions are
selected. In counter-based exploration, in any state
i, an action a is chosen that maximizes R(i,a) +

where c(i) is the number of times

state i is visited, and S is a small positive constant.
In recency-based exploration, an action a is selected
which maximizes R(i, a) + cdm, where n(i, a) is
the number of steps since the action a is executed in
state i last, and E is a small constant. In all the three
cases, the parameters were tuned by trail and error
until they gave the best performance.

The parameters for the Delivery domain, p, q and
I<, were set to 0.5, 0.0 and 5. Proper exploration is
particularly important in this domain for the follow-
ing reasons: First, the domain is stochastic; second,
it takes many steps to propagate high rewards; and
third, there are many sub-optimal policies with gain
close to the optimal gain. For all these reasons, it is
difficult to maintain p consistently higher than the gain
of any sub-optimal policy, which is important for AH-
learning to find the optimal policy. It gave the best
performance with po = 2 and og = 0.0002.

0.31 , , , , , , , , , ,

0.28

0.26 t

0.24 -

0.22 -

0.2 -

0.18 -

0.16 -

0.14 -

0.12 -

0.1 If’, ’ ’ ’ ’ ’ ’ ’ ’ J
0 1 OOK 200K 300K 400K 500K steps

Figure 5: The on-line mean rewards of the last 10K
steps averaged over 30 trials for AH2jo.0002, Hl~‘.“l,
and H”jl without exploration, and Hop1 with random,
recency-based, and counter-based exploration strate-
gies in the Delivery domain with p=O.5, q=O.O, and
IC=5.

Figure 5 shows the on-line mean rewards of 30 trials
of AH2~0*0002 H1jO.OO1, and H”)l with no exploratory
actions, and of H”jl with 3 different exploration meth-
ods: 8% random exploration, counter-based explo-
ration with S = 0.05, and recency-based exploration
with E = 0.02.

Without any exploration, H”jl could not find the op-

timal policy even once. By proper tuning of po and (~0,
it improved significantly, and was only slightly worse
than AH, which found the optimal policy in all 30
trials. Counter-based exploration appears much bet-
ter than random exploration for this domain, while
recency-based exploration seems worse. AH achieved a
much better on-line reward than all other exploration
methods, and did so more quickly than others.

This result suggests that with proper initialization of
p and o, AH-learning automatically explores the state
space much more effectively than the other exploration
schemes tested. A particularly attractive feature of
AH-learning is that it does so without sacrificing any
gain, and hence should be preferred to other meth-
ods. Although AH-learning does involve tuning two
parameters p and CY, it appears that at least p can be
automatically adjusted. One way to do this is to keep
track of the currently known maximum immediate re-
ward over all state-action pairs, and reinitialize p to
something higher than this value whenever it changes.

iscussion and Future Work
There is an extensive literature on average reward
optimization using dynamic programming approaches
(Howard 60; Puterman 94; Bertsekas 95). (Mahadevan
96a) gives a useful survey of this literature from Re-
inforcement Learning point of view. Bias-optimality,
or Schwartz’s T-optimality, is a more refined notion
that seeks to find a policy that maximizes the cu-
mulated discounted total reward for all states as the
discount factor y -+ 1. All bias-optimal policies are
also gain-optimal, but the converse does not hold. H-
learning and R-learning can find the bias-optimal poli-
cies if and only if all gain-optimal policies give rise
to the same recurrent set of states, and the transient
states are repeatedly visited by some trial-based ex-
ploration strategy. To find bias-optimal policies for
more general unichains, it is necessary to select bias-
optimal actions from among the gain-optimal ones
in every state using more refined criteria. Mahade-
van extends both H-learning and R-learning to find
the bias-optimal policies for general unichains, and il-
lustrates that they improve their performance in an
admission control queuing system (Mahadevan 96b;
Mahadevan 96c).

Auto-exploratory H-learning is similar in spirit to
the action-penalty representation of reward functions
analyzed by Koenig and Simmons (Koenig & Simmons
96). They showed that a minimax form of Q-learning,
which always takes greedy actions, can find the short-
est cost paths from all states to a goal state in O(n3)
time, where n is the size of the state space. An ana-
lytical convergence result of this kind for AH-learning
would be very interesting. In the Interval Estimation
algorithm (IE) of Kaelbling (Kaelbling 90), which is
similar, the agent maintains a confidence interval of the
value function, and always chooses an action that max-
imizes its upper bound. This ensures that the chosen

886 Learning

action either has a high utility, or has a large confi-
dence interval which needs exploration to reduce it.

The idea of Auto-exploratory learning can be
adapted to R-learning as well. However, in our prelim-
inary experiments we found that the value of p fluctu-
ates much more in R-learning than in H-learning, un-
less c~ is initialized to be very small. Making a small
will have the consequence of slowing down learning.
Although we have not seen this to be a problem with
H-learning, the tradeoff between the need for explo-
ration and slow learning due to small cr value deserves
further study.

To scale H-learning to large domains, it is necessary
to approximate its value function and action models.
Elsewhere, we describe our results of learning action
models in the form of conditional probability tables of
a Bayesian network, and using local linear regression
to approximate its value function (Tadepalli & Ok 96).
Both these extensions improve the space requirement
of H-learning and the number of steps needed for its
convergence. We also plan to explore other ways of ap-
proximating the value function which can be effective
in multi-dimensional spaces.

Summary
The premise of our work is that many real-world do-
mains demand optimizing average reward per time
step, while most work in Reinforcement Learning is
focused on optimizing discounted total reward. We
presented a model-based average reward RL method
called H-learning that demonstrably performs better
than its discounted counterpart. We also presented
Auto-exploratory H-learning, which automatically ex-
plores while always picking greedy actions with respect
to its current value function. We showed that it out-
performs many currently known exploration methods.
Value function approximation for ARL systems is cur-
rently under investigation.

References
Barto, A. G., Bradtke, S. J., and Singh, S. P. 1995.
Learning to Act using Real-Time Dynamic Program-
ming. Artificial Intelligence, 73(l), 81-138.

Bertsekas, D. P. 1982. Distributed Dynamic Program-
ming. In IEEE Transactions in Automatic Control,
AC-27(3).
Bertsekas, D. P. 1995. Dynamic Programming and
Optimal Control, Athena Scientific, Belmont, MA.

Howard, R. A. 1960. Dynamic Programming and
Markov Processes. MIT press, Cambridge, MA.
Jalali, A. and Ferguson, M. 1989. Computationally
Efficient Adaptive Control Algorithms for Markov
Chains. In IEEE Proceedings of the 28’th Conference
on Decision and Control, Tampa, FL.
Kaelbling, L. P. 1990. Learning in Embedded Systems,
MIT Press, Cambridge, MA.

Koenig, S., and Simmons, R. G. 1996. The Effect of
Representation and Knowledge on Goal-Directed Ex-
ploration with Reinforcement-Learning Algorithms.
Machine Learning, 22, 227-250.
Lin, L-J. 1992 Self-improving Reactive Agents Based
on Reinforcement Learning, Planning, and Teaching.
Machine Learning, 8, 293-32 1.
Mahadevan, S. and Connell, J. 1992. Automatic Pro-
gramming of Behavior-based Robots Using Reinforce-
ment Learning. Artificial Intelligence, 55:31 l-365.
Mahadevan, S. 1996a. Average Reward Reinforce-
ment Learning: Foundations, Algorithms, and Em-
pirical Results. Machine Learning, 22, 159-195.
Mahadevan, S. 199613. An Average Reward Rein-
forcement Learning Algorithm for Computing Bias-
optimal Policies. In Proceedings of AAAI-96, Port-
land, OR.
Mahadevan, S. 1996~. Sensitive Discount Optimal-
ity: Unifying Discounted and Average Reward Rein-
forcement Learning. In Proceedings of International
Machine Learning Conference, Bari, Italy.
Puterman, M. L. 1994. Markov Decision Processes:
Discrete Dynamic Stochastic Programming. John Wi-
ley.
Schwartz, A. 1993. A Reinforcement Learning
Method for Maximizing Undiscounted Rewards. In
Proceedings of International Machine Learning Con-
ference, Morgan Kaufmann, San Mateo, CA.
Singh, S. P. 1994. Reinforcement Learning Algorithms
for Average-Payoff Markovian Decision Processes. In
Proceedings of AAAI-94, MIT press.
Tadepalli, P. and Ok, D. 1994. H-learning: A Re-
inforcement Learning Method for Optimizing Undis-
counted Average Reward. Technical Report, 94-30- 1,
Dept. of Computer Science, Oregon State University.
Tadepalli, P. and Ok, D. 1996. Scaling Up Average
Reward Reinforcement Learning by Approximating
the Domain Models and the Value Function. In Pro-
ceedings of International Machine Learning Confer-
ence, Bari, Italy.
Thrun, S. 1994. The Role of Exploration in Learning
Control. In Handbook of Intelligent Control: Neu-
ral, Fuzzy, and Adaptive Approaches, Van Nostrand
Reinhold.
Watkins, C. J. C. H. and Dayan, P. 1992. &-learning.
Machine Learning, 8:279-292.

Acknowledgments
We gratefully acknowledge the support of NSF under
grant number IRI-9520243. We thank Tom Dietterich,
Sridhar Mahadevan, and Toshi Minoura for many in-
teresting discussions on this topic. Thanks to Sridhar
Mahadevan and the reviewers of this paper for their
thorough and helpful comments.

Reinforcement Learning 887

