
Evolution-based Discovery of Hierarchical Behaviors 

Justinian P. Rosca and ana H. allard 
Computer Science Department 

University of Rochester 
Rochester, NY 14627 

Email: {rosca,dana)@cs.rochester.edu 

Abstract 

Procedural representations of control policies have 
two advantages when facing the scale-up problem in 
learning tasks. First they are implicit, with poten- 
tial for inductive generalization over a very large set 
of situations. Second they facilitate modularization. 
In this paper we compare several randomized algo- 
rithms for learning modular procedural representa- 
tions. The main algorithm, called Adaptive Represen- 
tation through Learning (ARL) is a genetic program- 
ming extension that relies on the discovery of sub- 
routines. ARL is suitable for learning hierarchies of 
subroutines and for constructing policies to complex 
tasks. ARL was successfully tested on a typical rein- 
forcement learning problem of controlling an agent in a 
dynamic and nondeterministic environment where the 
discovered subroutines correspond to agent behaviors. 

Introduction 
The interaction of a learning system with a complex 
environment represents an opportunity to discover fea- 
turessd invariant properties of the problem that en- 
able it to tune its representations and optimize its be- 
havior. This discovery of modularity while learning 
or solving a problem can considerably speed up the 
task, as the time needed for the system to “evolve” 
based on its modular subsystems is much shorter than 
if the system evolves from its elementary parts (Simon 
1973). Thus machine learning, or machine discovery 
approaches that attempt to cope with non-trivial prob- 
lems should provide some hierarchical mechanisms for 
creating and exploiting such modularity. 

An approach that incorporates modularization 
mechanisms is genetic programming (GP) with auto- 
matically defined functions (ADF) (Koza 1994). In 
ADF-GP computer programs are modularized through 
the explicit use of subroutines. One shortcoming of this 
approach is the need to design an appropriate ~rchi- 
tecture for programs, i.e. set in advance the number 
of subroutines and arguments, as well as the nature of 
references among subroutines. 

A biologically inspired approach to architecture dis- 
covery introduced in (Koza 1995) is based on new op- 
erations for duplicating parts of the genome. Code 

duplication transformations seem to work well in com- 
bination with crossover, as duplication protects code 
against the destructive effects of crossover. Duplica- 
tion operations are performed such that they preserve 
the semantics of the resulting programs. 

This paper presents an alternative, heuristic, solu- 
tion to the problem of architecture discovery and mod- 
ularization, called Adaptive Representation through 
Learning (ARL). ARL adopts a search perspective of 
the genetic programming process. It searches for good 
solutions (representations) and simultaneously adapts 
the architecture (representation system). In GP, the 
representation system or voccsbzslarry is given by the 
primitive terminals and functions. By adapting the 
vocabulary through subroutine discovery, ARL biases 
the search process in the language determined by the 
problem primitives. 

The paper outline is as follows. The next section 
describes the task used throughout the paper: con- 
trolling an agent in a dynamic and nondeterministic 
environment, specifically the Pat-Man game. Section 
3 estimates a measure of the complexity of the task by 
evaluating the performance of randomly generated pro- 
cedural solutions, their iterative improvement through 
an annealing technique and hand-coded solutions. Sec- 
tion 4 presents details of the ARL approach. Its per- 
formance and a comparison of results with other GP 
approaches are described in the following two sections. 
This work is placed into a broader perspective in the 
related work section, before concluding remarks. 

The Application Task 
We consider the problem of controlling an agent in a 
dynamic environment, similar to the well known Pac- 
Man game described in more detail in (Koza 1992)). 
An agent, called Pat-Man, can be controlled to act 
in a maze of corridors. Up to four monsters chase 
Pat-Man most of the time. Food pellets, energizers 
and fruit objects result in rewards of 10, 50 and 2000 
points respectively when reached by Pat-Man. After 
each capture of an energizer (also called “pill”), Pac- 
Man can chase monsters in its turn, for a limited time 
(while monsters are “blue”), for rewards of 500 points 

888 Learning 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



for capturing the first monster, 1000 points for the next 
etc. The environment is nondeterministic as monsters 
and fruits move randomly 20% of the time. 

The problem is to learn a controller to drive the Pac- 
Man agent in order to acquire as many points as pos- 
sible and to survive monsters. The agent’s movements 
rely on the current sensor readings, possibly past sen- 
sor readings and internal state or memory. Pat-Man 
knows when monsters are blue and has smell-like per- 
ceptions to sense the distance to the closest food pellet, 
pill, fruit and closest or second closest monster. Overt 
action primitives move the agent along the maze corri- 
dors towards or backwards from the nearest object of 
a given type. 

Representation Approaches 
The Pat-Man problem is a typical reinforcement learn- 
ing (RL) task. In response to actions taken, the agent 
receives rewards. Often rewards are delayed. The task 
in reinforcement learning is to learn a policy maximiz- 
ing the expected future rewards. 

Formally, an agent policy is a mapping 
p:PxS--+A 

where P is the set of perceptions, A the set of actions 
and S the agent state space. When searching for a 
policy, the size of the hypotheses space is the number 
of such mappings i.e. ~~A~~lt’pll’llsll. The number of re- 
quired examples for PAC-learnability is proportional 
to the logarithm of the hypothesis space size . This 
outlines two major problems. First, explicitly repre- 
senting the state space is undesirable from a learnabil- 
ity perspective. Second, the large number of percep- 
tions given by various distance values is critical. In 
contrast to explicit representations, implicit represen- 
tations such as programs have the potential of better 
generalization with a smaller number of training ex- 
amples. This makes GP a candidate approach to learn 
policies.’ 

Besides generalization, an implicit representation of 
the agent policy would improve on two important as- 
pects: compressibility and modularity. Compressibil- 
ity means that a solution is representable in a concise 
form. Also, small solutions may have increased gen- 
erality, according to Ockham’s razor principle. Rep- 
resentation modularity is important from a scale-up 
perspective. Ideally, a modular representation orga- 
nizes the knowledge and competences of the agent 
such that local changes, improvements or tuning do 
not affect the functioning of most other components. 
Researchers in “behavior-based” artificial intelligence 
(Maes 1993) talk about integrated competences or be- 
haviors as given decompositions of the problem. We 
are interested in discovering decompositions that natu- 
rally emerge from the interaction agent-environment. 

‘For the same 
mators have been 
ment learning. 

reason, parameterized function approxi- 
used to replace table lookup in reinforce- 

A general implicit representation that can be made 
modular is a procedural representation. Candidate so- 
lutions are programs. Modules naturally correspond 
to functions or subroutines. 

Pat-Man Procedural epresentations 
Programs that define agent controllers will be built 
based on perception, action and program control primi- 
tives. The agent perception primitives return the Man- 
hattan distance to the closest food pellet, pill, fruit and 
the closest or second closest monster (SENSE-DIS-FOOD 
etc.) The “sense blue” perception is combined with an 
if-then-else control primitive into the if-blue (IFB) lazy 
evaluation function which executes its first argument if 
monsters are blue, otherwise executes its second argu- 
ment. The action primitives advance/retreat the agent 
with respect to the closest object of a given type and 
return the distance’ between the agent and the corre- 
sponding object (ACT-A-PILL/ACT-R-PILL, etc.) 

The above primitives were combined to form pro- 
grams in two ways. In the first alternative (A) we used 
the if-less-than-or-equal (IFLTE) lazy function which 
compares its first argument to its second argument. 
For a “less-than” result the third argument is executed. 
For a “greater-or-equal” result the fourth argument is 
executed. Representation A can develop an intricate 
form of state due to the side effects of actions that 
appear in the condition part of the IFLTE function. 

In the second alternative (B) primitives are typed. 
We used the if-then-else IFTE lazy evaluation function 
that takes a BOOL type as first argument and two more 
ACT type arguments. All actions and control opera- 
tors have type ACT, all logical expressions have type 
BOOL, and distances have type DIST. Relational op- 
erators (<, =, 2, #) and logical operators (AND, OR, 
NOT) are used to generate complex logical expressions. 
The programs that can be written in representation 
B are equivalent to decision trees, which makes them 
easy to understand and analyze. 

While playing the game the learner remembers mis- 
takes that led the game to a premature end (agent 
eaten by a monster). Equally useful is to improve the 
learner’s control skills that were acquired in previous 
runs. Similarly, a machine learning technique aims to 
generate better and better programs that control the 
agent by borrowing fragments from good previously 
learned programs. To facilitate modular learning we 
defined the modular alternatives of representations A 
and B called M-A and M-B. In these cases programs 
were made up of three fragments: two subroutines of 
two arguments each and a main program. Each frag- 
ment had access to the entire problem vocabulary. In 
addition, the second subroutine could also invoke the 
first one, and the main program could invoke either 
subroutine. 

21f the shortest path/closest monster/food are not 
uniquely defined, then a random choice from the valid ones 
is returned by the corresponding function. 

Reinforcement Learning 889 



0 5 10 15 20 25 30 35 40 4s so 5s 

Fitness Class 

Figure 1: Distribution of fitness values over 50000 ran- 
dom programs generated using the ramped-half-and-half 
method from [Koza, 921. Each fitness class covers an inter- 
val of 100 game points. The fitness of each program is the 
average number of game points on three independent runs. 

Programs are simulated and are assigned a fitness 
equal to the number of points acquired by Pat-Man on 
average in several simulated games, which are the fit- 
ness cases. Solution generality was estimated by test- 
ing the learned programs on new cases. 

Next we explore several methods for designing pro- 
grams to represent procedural agent policies. 

First Solutions 

Random Search 

The parse trees of random programs are created recur- 
sively in a top-down manner. First a function is chosen 
as the label of the program root node and then for each 
formal argument of the function new subprograms are 
generated recursively. (Koza 1992) describes a method 
called ramped-half-and-half for generating very diverse 
random tree structures. No particular structure is fa- 
vored due to both randomly choosing node labels and 
randomly varying the tree depth and balance. 

In order to test the Pat-Man representations we gen- 
erated both simple and modular random programs. 
Figure 1 shows the distribution of fitness values ob- 
tained in the four alternative representations. The best 
programs were obtained with problem representation 
B, followed by the modular versions M-A and M-B. 
The worst alternative was A. 
Simulated Annealing 

A simple technique for iterative improvement is sim- 
ulated annealing (SA) (Kirkpatrick, Gelatt, 8z Vec- 
chi 1983). Although SA performs well in continuous 
spaces, it has also been applied to combinatorial op- 
timization problems in search for optima of functions 
of discrete variables. For example, a similar search 
technique, GSAT (Selman & Kautz 1993), offers the 

best known performance for hard satisfiability prob- 
lems. The space of programs is also non-continuous. 
SA has been previously tested on program discovery 
problems (O’Reilly 1995). The SA implementation for 
program search by O’Reilly used a mutation opera- 
tion that modifies subtrees through an insertion, dele- 
tion or substitution sub-operation trying to distort the 
subtree only slightly. In contrast, we define a primitive 
mutation of a program p that replaces a randomly cho- 
sen subtree of with a new randomly generated subtree. 
The SA-based algorithm for iterative improvement of 
programs will be called PSA from now on. 

The cooling schedule is defined by the following pa- 
rameters: the initial temperature To, the final temper- 
ature Tf, the length of the Markov chain at a fixed tem- 
perature L and the number of iterations G (Laarhoven 
1988). PSA used a simple rule to set these parameters: 
“accept the replacement of a parent with a loo-point 
worse successor with a probability of 0.125 at the ini- 
tial temperature and a probability of 0.001 at the final 
temperature.“3 No attempts have been made to opti- 
mize these parameters other than these initial choices. 

Hand-Coding 
We carefully designed modular programs for both rep- 
resentations A and B. This was not as easy as it might 
appear. The best programs were found after a couple 
of hours of code twiddling. Contrary to intuition, sim- 
pler programs proved to be better than the most com- 
plex programs we designed. The performance results 
of these first attempts to learn or design a Pat-Man 
controller are summarized in Table 1. The best result 
was obtained with PSA and representation M-A. 

Table 1: Performance, in average number of game points, 
of best evolved programs and carefully hand-coded pro- 
grams. The maximum depth of randomly generated pro- 
grams was 8. PSA was seeded with the best solution from 
500 randomly generated programs. Training was done on 
three cases and testing on 100 cases. 

Representation A M-A B M-B 
Random 4110.0 3420.0 4916.7 4916.7 
PSA 5436.7 7646.7 5790 5663.3 
Hand-coding - 7460 - 5910 

Architecture Discovery in A 
In the standard genetic programming algorithm (SGP) 
an initial population of randomly generated programs 
are transformed through crossover, occasional muta- 
tion, and fitness proportionate reproduction opera- 

3We obtained TO = 48, Tf = 14. We also chose L = 100 
and G = 25000. The value of G is justified by the desire 
to make similar the overall computational effort (the total 
number of programs evaluated) for PSA and the GP tech- 
niques to be described next. These parameters determine 

=r 
an exponential cooling parameter of: e G 

bl F 
. 

890 Learning 



tions. SGP relies on a hypothesis analogous to the ge- 
netic algorithm (GA) building block hypothesis (Hol- 
land 1992), which states that a GA achieves its search 
capabilities by means of “building block” processing. 
Building blocks are relevant pieces of partial solutions 
that can be assembled together in order to generate 
better partial solutions. 

Our modular representations are modeled after 
the automatically defined functions (ADF) approach 
(Koza 1994). ADF is an extension of GP where in- 
dividuals are represented by a fixed number of com- 
ponents or brunches to be evolved: a predefined num- 
ber of function branches and a main program branch. 
Each function branch (consider for instance three such 
branches called ADFo, ADFI, and ADF2) has a prede- 
fined number of arguments. The main program branch 
(Program-Body) produces the result. Each branch is 
a piece of LISP code built out of a specific vocabu- 
lary and is subject to genetic operations. The set of 
function-defining branches, the number of arguments 
that each of the function possesses and the vocabu- 
lary of each branch define the urchitecture of a pro- 
gram. The architecture imposes the possible hierar- 
chical references between branches. For instance, if 
we order the branches in the sequence ADFo, ADFI , 
ADF2, Program-Body then a branch may invoke any 
component to its left. 

(Rosca 1995) analyzed how this preimposed hierar- 
chical ordering biases the way ADF searches the space 
of programs. In the “bottom-up evolution hypothe- 
sis” he conjectured that ADF representations become 
stable in a bottom-up fashion. Early in the process 
changes are focused towards the evolution of low level 
functions. Later, changes are focused towards higher 
levels in the hierarchy of functions (see also (Rosca & 
Ballard 1995)). ARL will consider a bottom-up ap- 
proach to subroutine discovery as the default. 

The ARL Algorithm 

The nature of GP is that programs that contain use- 
ful code tend to have a higher fitness and thus their 
offspring tend to dominate the population. ARL uses 
heuristics which anticipate this trend to focus search. 

It searches for good individuals (representations) 
while adapting the architecture (representation sys- 
tem) through subroutine invention to facilitate the cre- 
ation of better representations. These two activities 
are performed on two distinct tiers (see Figure 2). GP 
search acts at the bottom tier. The fitness proportion- 
ate selection mechanism of GP favors more fit program 
structures to pass their substructures to offspring. At 
the top tier, the subroutine discovery algorithm selects, 
generalizes, and preserves good substructures. Discov- 
ered subroutines are reflected back in programs from 
the memory (current population) and thus adapt the 
architecture of the population of programs. 

SUBR. DISCOVER 

r__-----___________________ I > 
Memory 

POPULATION 

Figure 2: Two-tier architecture of the ARL algorithm. 

Discovery of Subroutines 

The vocabulary of ARL at generation t is given by the 
union of the terminal set 7, the function set F and the 
set of evolved subroutines St (initially empty). ‘T U F 
represents the set of primitives which is fixed through- 
out the evolutionary process. In contrast, St is a set 
of subroutines whose composition may vary from one 
generation to the next. St extends the representation 
vocabulary in an adaptive manner. New subroutines 
are discovered and the “least useful” ones die out. St is 
used as a pool of additional problem primitives, besides 
‘T and F for randomly generating some individuals in 
the next generation, t + 1. 

The subroutine discovery tier of the ARL architec- 
ture attempts to automatically discover useful subrou- 
tines and adapt the set St. New subroutines are cre- 
ated using blocks of genetic material from the popula- 
tion pool. The major issue is the detection of “useful” 
blocks of code. The notion of usefulness is defined by 
two concepts, differential jitness, and block uctivution 
which are defined next. The subroutine discovery al- 
gorithm is presented in Figure 3. 
Differential Fitness The concept of differential fit- 
ness is a heuristic which focuses block selection on pro- 
grams that have the biggest fitness improvement over 
their least fit parent. Large differences in fitness are 
presumably created by useful combinations of pieces of 
code appearing in the structure of an individual. This 
is exactly what the algorithm should discover. Let i 
be a program from the current population having raw 
fitness F(i). Its differential fitness is defined as: 

DiffFitness(i) = F(i) - minpEParents(i){F(P)l (l) 

Blocks are selected 
following property: 

from those programs satisfying the 

mai { DiffFitness(i)} > 0 (2) 

Figure 4 shows the histogram of the differential fit- 
ness defined above for a run of ARL on the Pat-Man 
problem. Each slice of the plot for a fixed generation 
represents the number of individuals (in a population 
of size 500) vs. differential fitness values. The figure 
shows that only a small number of individuals improve 
on the fitness on their parents. ARL will focus on such 
individuals in order to discover salient blocks of code. 

Reinforcement Learning 891 



subroutine-Discovery(Pt, S”““, ?$‘@) 

I. Initialize the set of new subroutines Snew = 0. 
Initialize the set of duplicate individuals ptdUp = 0 

2. Select a subset of promising individuals: 

B = ma~~(DiffFitness (i)} > 0 

3. For each node of program i E f?, determine the number 
of activations in the evaluation of i on all fitness cases 

4. Create a set of candidate building blocks f?B, by se- 
lecting all blocks of small height, high activation, and 
with no inactive nodes(Z3); 

5. For each block in the candidate set, b E B&, repeat: 

(a) Let b E i. Generalize the code of block b: 
i. Determine the terminal subset Tb used in the 
block(b); 

ii. Create a new subroutine s having as parameter-z 
a random subset of Tb and as body the block@, Tb) 

(b) Create a new program pdup making a copy of 1 
having block b replaced with an invocation of tht 
new subroutine s. The actual parameters of the cal 
to s are given by the replaced terminals. 

(c) Update S”“” and P,““: 
i. Snew = Snew U (s) 
ii. Pp”” = Pfup U {pduP} 

6. Results Snew, PeUp 

Figure 3: ARL extension to GP: the subroutine discovery 
algorithm for adapting the problem representation. S”“” 
is the set additions to St. Duplicate individuals PtdzLp are 
added to the population before a next GP selection step. 

Block Activation During repeated program evalu- 
ation, some blocks of code are executed more often 
than others. The more active blocks become “candi- 
date” blocks. Block activation is defined as the number 
of times the root node of the block is executed. Salient 
blocks are active blocks of code from individuals with 
the highest differential fitness. In addition, we require 
that all nodes of the block be activated at least once 
or a minimum percentage of the total number of acti- 
vations of the root node.4 

Generalization of Blocks The final step is to for- 
malize the active block as a new subroutine and add it 
to the set St. Blocks are generalized by replacing some 
random subset of terminals in the block with variables 
(see Step 5a in Figure 3). Variables become formal 
arguments of the created subroutine.5 

4This condition is imposed in order to eliminate from 
consideration blocks containing introns and hitch-hiking 
phenomena (Tackett 1994). It is represented by the prun- 
ing step (4) in Figure 3. 

5 In the typed implementation block generalization addi- 
tionally assigns a signature to each subroutine created. The 
subroutine signature is defined by the type of the function 
that labels the root of the block and the types of the ter- 

Fliness Class 
20 40 60 

Figure 4: Differential fitness distributions over a run of 
ARL with representation A on the Pat-Man problem. At 
each generation, only a small fraction of the population has 
DiEFitness > 0. 
Subroutine Utility 
ARL expands the set of subroutines St whenever it 
discovers new subroutine candidates. All subroutines 
in St are assigned utility values which are updated ev- 
ery generation. A subroutine’s utility is estimated by 
observing the outcome of using it. This is done by ac- 
cumulating, as rewurd, the average fitness values of all 
programs that have invoked s over a fixed time window 
of W generations, directly or indirectly. 

The set of subroutines co-evolves with the main pop- 
ulation of solutions through creation and deletion op- 
erations. New subroutines are automatically created 
based on active blocks as described before. Low util- 
ity subroutines are deleted in order to keep the total 
number of subroutines below a given number.6 

ARL inherited the specific GP parameters.7 In addi- 
tion, ARL used our implementation of typed GP for 
runs with representation B. It was run only for a max- 
imum of 50 generations. The ARL-specific parameters 
are the time window for updating subroutine utilities 
(10) and the maximum number of subroutines (20). 
Next we describe a typical trace of ARL on a run with 
representation B, which obtained the best overall re- 
sults, and present statistical results and comparisons 
among SGP, ADF, PSA, and random generation of 
programs. 

minals selected to be substituted by variables. 
61n order to preserve the functionality of those programs 

invoking a deleted subroutine, calls to the deleted subrou- 
tine are substituted with the actual body of the subroutine. 

7For SGP and ADF population size = 500, the number 
fitness cases = 3, the crossover rate = 90% (20% on leaves), 
reproduction rate = lo%, number of generations = 100. 

892 L4xrning 



Generation 3. 

o SlW33 (ACT 1 (BOOL)) (LAMBDA (AO) (IFTE (NOTE- 
QuAL (SENSE-DIS-PILL) ~0) (ACT-A-FOOD) (ACT-A- 
PILL) 1) 

Generation 10. 

o S1749 (ACT 0) (LAMBDA () (IFTE (< (SENSE-DIS- 
FRUIT) 50) (ACT-A-FRUIT) (ACT-A-MON-1))) 

Generation 17. 

e s1765 (ACT i (~1s)) (LAMBDA (~0) (IFTE (< (SENSE- 
DIS-FRUIT) AO) (ACT-A-FRUIT) (ACT-R-PILL))) 

o S1766 (BOOL 1 (DIS)) (LAMBDA (AO) (< (SENSE-DIS- 
FRUIT) AO)) 

Generation 30. 

0 si997(~~~0) (LAMBDA() (IFTE(< (SENSE-DIS-FOOD) 
(SENSE-DIS-PILL)) (ACT-A-FOOD) (s1765 19))) 

Generation 33. Best-of-run individual: 

o (IFB (IFTE (S1766 21) (ACT-A-FRUIT) (IFB (S1997) 
(S166321)))(IFB (IFTE (S1766 22)(ACT-A-FRUIT)(ACT- 
A-FOOD)) (IFTE (S1766 22) (ACT-A-PILL) (IFTE (< 
(SENSE-DIS-FOOD) (SENSE-DIS-PILL)) (ACT-A-FOOD) 
W749))))) 

Programs evolves d by ARL are m odular. ARL usu- 
ally evolves tens of subroutines in one run, only twenty 
of which are preserved in St at any given time t. Sub- 
routines have small sizes due to the explicit bias to- 
wards small blocks of code. The hierarchy of evolved 
subroutines allows a program to grow in effective size 
(i.e. in expanded structural complexity, see (Rosca & 
Ballard 1994)) if this offers an evolutionary advantage. 

For instance, the best-of-generation program evolved 
by ARL in one run with problem representation B is 
extremely modular. ARL discovered 86 subroutines 
during the 50 generations while it ran. Only 5 subrou- 
tines were invoked by the best-of-run program which 
was discovered in generation 33. These useful subrou- 
tines form a three-layer hierarchy on top of the primi- 
tive functions. Each of the five subroutines is effective 
in guiding Pat-Man for certain periods of time. A trace 
of this run is given in Table 2. 

The five subroutines define interesting “behaviors.” 
For example, S1749 is successfully used for attracting 
monsters. S1765, invoked with the actual parameter 
value of 19 defines a fruit-chasing behavior for blue 
periods. The other subroutines are: an applicability 
predicate for testing if a fruit exists (S1766), a food- 
hunting behavior (S1997)) and a pill-hunting behavior 
(S1663). Th e main program decides when to invoke 
and how to combine the effects of these behaviors, in 
response to state changes. 

Table 2: Evolutionary trace of an ARL run on the Pac- 
Man problem (representation B). For each discovered sub- 
routine the table shows the signature (type, number of ar- 
guments and type of arguments if any), and the subroutine 
definition. 

Comparison of Results 
In order to detect differences in performance and qual- 
itative behavior from PSA, the current SGP experi- 

Table 3: Comparison of generalization performance of dif- 
ferent Pat-Man implementations: average fitness of evolved 
solutions over 100 random test cases. 

Rep. Rand PSA SGP ADF ARL Hand 

A 1503 2940 2906 1569 3611 2424 
B 2321 4058 3370 3875 4439 2701 

ments used crossover as its only genetic operation and 
a zero mutation rate. 

Most importantly, we are interested in the general- 
ity of the best solutions obtained with random, PSA, 
SGP, ADF and ARL approaches (see Table 3). For 
the random and PSA cases we took the results of the 
runs with representations M-A and M-B which were 
the best. We tested all solutions on the same 100 ran- 
dom test cases. ARL achieved the best results. Hand 
solutions were improved from the initial ones reported 
in Section 3. We also determined the 95% confidence 
interval in the average number of points of a solution. 
For example, the ARL solution for representation B 
has an interval of f9Opoints) i.e. the true average is 
within this interval relative to the average with 95% 
confidence. From the modularity perspective solu- 
tions, ADF modularity is confined by the fixed initial 
architecture. ARL modularity emerges during a run as 
subroutines are created or deleted. SGP solutions are 
not explicitly modular. 

Tackett studied, under the name “gene banking,” ways 
in which programs constructed by genetic search can be 
mined off-line for subexpressions that represent salient 
problem traits (Tackett 1994). He hypothesized that 
traits which display the same fitness and frequency 
characteristics are salient. Unfortunately, many subex- 
pressions are in a hierarchical “part-of” relation. Thus 
it may be hard to distinguish “hitchhikers” from true 
salient expressions, Heuristic reasoning was used to in- 
terpret the results, so that the method cannot be auto- 
mated in a direct manner. In contrast, in ARE salient 
blocks have to be detected efficiently, on-line. This is 
possible because candidate blocks are only searched for 
among the blocks of small height present in individuals 
with the highest differential fitness. 

Functional programming languages, such as LISP, 
treat code and data equivalently. ARL takes advan- 
tage of this feature to analyze the behavior of the code 
it constructs and to decide when and how subroutines 
can be created. More generally, pure functional lan- 
guages such as the ML language treat functions and 
values according to a formal set of rules. As a conse- 
quence, the process of formal reasoning applied to pro- 
gram control structures can be automated. One recent 
example of such an attempt is ADATE (Olsson 1995). 
ADATE iteratively transforms programs in a top-down 
manner, searching the space of programs written in 
a subset of ML for a program that explains a set of 

Reinforcement Learning 893 



initial training cases. ADATE creates new predicates 
by abstraction transformations. Algorithms that use 
predicate invention are called constructive induction 
algorithms. Predicate invention is also a fundamen- 
tal operation in inductive logic programming where it 
helps to reduce the structural complexity of induced 
structures due to reuse. More importantly, invented 
predicates may generalize over the search space thus 
compensating for missing background knowledge. A 
difficult problem is evaluating the quality of new pred- 
icates (Stahl 1993). 

The predicate invention problem is related to the 
more general problem of bias in machine learning. In 
GP, the use of subroutines biases the search for good 
programs besides offering the possibility to reuse code. 
An adaptive learning system selects its bias automat- 
ically. An overview of current efforts in this active re- 
search area appeared recently in (Gordon & DesJardins 
1995). 

Conclusions 
Although the Pat-Mati is a typical reinforcement learn- 
ing task it was successfully approached using GP. GP 
worked well for the task because it used an implicit 
representation of the agent state space. Therefore, GP 
solutions acquire generality and can be modularized. 
This last feature was particularly exploited in ARL. 
Programs, as structures on which GP operates, are 
symbolically expressed as compositions of functions. 
By applying the differential fitness and block activa- 
tion heuristics, the ARL algorithm manages to dis- 
cover subroutines and evolve the architecture of so- 
lutions which increase its chances of creating better 
solutions. 

Evolved subroutines form a hierarchy of “behaviors.” 
On average, ARL programs perform better than the 
ones obtained using other techniques. A comparison 
among solutions obtained using the PSA, GP, ADF 
and ARL algorithms with respect to search efficiency 
and generalization is ongoing on the Pat-Man domain 
as well as other problems. Additionally, a compari- 
son with memoryless and state-maintaining reinforce- 
ment learning algorithms is also worth further investi- 
gation. ARL can be studied as an example of a system 
where procedural bias interacts with representational 
bias (Gordon & DesJardins 1995). This may shed ad- 
ditional light on how GP exploits structures and con- 
structs solutions. 

References 
Gordon, D. F., and DesJardins, M. 1995. Evaluation 
and selection of biases in machine learning. Machine 
Learning 2015-22. 
Holland, J. H. 1992. Adaptation in Natural and Artifi- 
cial Systems, An Introductory Analysis with Applica- 
tions to Biology, Control and Artificial Intelligence. 
Cambridge, MA: MIT Press. Second edition (First 
edition, 1975). 

Kirkpatrick, S.; Gelatt, C.; and Vecchi, M. 1983. Op- 
timization by simulated annealing. Science 220:671- 
680. 
Koza, J. R. 1992. Genetic Programming: On the 
Programming of Computers by Means of Natural Se- 
lection. MIT Press. 
Koza, J. R. 1994. Genetic Programming II. MIT 
Press. 
Koza, J. R. 1995. Gene duplication to enable genetic 
programming to concurrently evolve both the archi- 
tecture and work-performing steps of a computer pro- 
gram. In Mellish, C. S., ed., IJCAI, volume 1, 734- 
740. Morgan Kaufmann. 
Laarhoven, v. P. J. M. 1988. Theoretical and compu- 
tational aspects of simulated annealing. Netherlands: 
Centrum voor Wiskunde en Informatica. 
Maes, P. 1993. Behavior-based artificial intelligence. 
In SAB-2. MIT Press. 
Olsson, R. 1995. Inductive functional programming 
using incremental program transformation. Artificial 
Intelligence 74155-81. 
O’Reilly, U.-M. 1995. An Analysis of Genetic Pro- 
gramming. Ph.D. Dissertation, 
stitute for Computer Science. 

bttawa-Carleton In- 

Rosca, J. P., and Ballard, D. H. 1994. Hierarchi- 
cal self-organization in genetic programming. In 11th 
ICML, 251-258. Morgan Kaufmann. 
Rosca, J. P., and Ballard, D. H. 1995. Causality in 
genetic programming. In Eshelman, L., ed., ICGA95, 
256-263. San Francisco, CA., USA: Morgan Kauf- 
mann. 
Rosca, J. P. 1995. Genetic programming exploratory 
power and the discovery of functions. In McDonnell, 
J. R.; Reynolds, R. G.; and Fogel, D. B., eds., Evo- 
lutioncary Programming IV Proceedings of the Fourth 
Annual Conference on Evolutionary Programming, 
719-736. San Diego, CA, USA: MIT Press. 
Russell, S. J., and Norvig, P. 1995. Artificial Intel- 
ligence: A Modern Approach. Englewood Cliffs, New 
Jersey: Prentice Hall. 
Selman, B., and Kautz, H. A. 1993. An empirical 
study of greedy local search for satisfiability testing. 
In AAAI. AAAI Press/The MIT Press. 46-51. 
Simon, H. A. 1973. The organization of complex 
systems. In Howard H. Pattee, G. B., ed., Hierar- 
chy Theory; The Challenge of Complex Systems. New 
York. 3-27. 
Stahl, I. 1993. Predicate invention in ILP - an 
overview. In Brazdil, P. B., ed., ECML, 313-322. 
Springer-Verlag. 
Tackett, W. A. 1994. Recombination, Selection 
and the Genetic Construction of Computer Programs. 
Ph.D. Dissertation, University of Southern California. 

894 Learning 


