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Abstract 

Past work in navigation has worked toward the goal 
of producing an accurate map of the environment. 
While no one can deny the usefulness of such a map, 
the ideal of producing a complete map becomes un- 
realistic when an agent is faced with performing real 
tasks. And yet an agent accomplishing recurring tasks 
should navigate more efficiently as time goes by. We 
present a system which integrates navigation, plan- 
ning, and vision. In this view, navigation supports 
the needs of a larger system as opposed to being a 
task in its own right. Whereas previous approaches 
assume an unknown and unstructured environment, 
we assume a structured environment whose organiza- 
tion is known, but whose specifics are unknown. The 
system is endowed with a wide range of visual capabil- 
ities as well as search plans for informed exploration 
of a simulated store constructed from real visual data. 
We demonstrate the agent finding items while map- 
ping the world. In repeatedly retrieving items, the 
agent’s performance improves as the learned map be- 
comes more useful. 

Introduction 
Past work in navigation has generally assumed that 
the purpose of navigation is to endow a robot with the 
ability to navigate reliably from place to place. How- 
ever, in focusing on this specific problem, researchers 
have ignored a more fundamental question: What is 
the robot’s purpose in moving from place to place? 
Presumably the robot will perform some later-to-be- 
named task: The point of navigation is only to get 
the robot to the intended destination. What happens 
afterwards is not a concern. This notion has led re- 
searchers toward building systems whose sensing ulti- 
mately relies on the lowest common denominator (e.g., 
sonar, dead reckoning). We believe that: (1) Robots 
will use navigation as a store of knowledge in service 
of tasks, and (2) Robots will have semantically rich 
perception in order to perform a wide range of tasks. 
Given these two beliefs we suggest first that: Naviga- 
tion must coexist with a robot’s planning and action 
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mechanisms instead of being a task in and of itself, and 
second that: Rich perception, used for tasks, can also 
be used for constructing a map to make route following 
and place recognition more tractable. 

In this paper we present a system which embodies 
these two notions as they apply to these five areas: 
run-time planning, context-based vision, passive map- 
ping, path planning, and route following. This system 
differs from past navigation research in several ways - 
the principal difference being the integration of a pas- 
sive mapper with a planning system. This notion was 
introduced by Engelson and McDermott (1992). They 
view a mapping system as a resource for a planner: A 
mapping subsystem maintains a map of the world as 
the planner accomplishes tasks. When applicable, the 
planner uses the acquired map information for achiev- 
ing goals. 

In contrast, traditional research has viewed the map- 
ping subsystem as an independent program which ex- 
plores and maps its environment. Eventually the pro- 
gram produces a complete map. While no one can 
doubt the usefulness of such a map, we believe that 
this mapping may be neither realistic nor necessary. 
Previously, we showed that an agent can instead use 
its knowledge of a domain’s organization in order to 
accomplish tasks (Fu et al. 1995). This was shown to 
be effective in a man-made domain - a grocery store. 
Whereas past approaches have assumed an unknown 
and unstructured environment, e.g. (Elfes 1987), our 
approach assumes an environment whose structure is 
known, but whose specifics are unknown. 

For common tasks such as shopping in a grocery 
store, finding a book in a library, or going to an airport 
gate, there is much known about each setting which 
allows the average person to achieve his goals with- 
out possessing prior knowledge of each specific setting. 
For example, people know that: managers of grocery 
stores organize items by their type, how they’re used, 
etc; librarians shelve books according to category; air- 
port architects account for typical needs of travelers by 
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putting signs in relevant areas. People count on these 
regularities in order to act appropriately and efficiently 
without first completely mapping the environment. In 
this sense, the domains are known. Moreover, the do- 
mains are actively structured by someone else so we 
can depend on regularities being maintained. 

We can also rely on certain stable physical prop- 
erties. Previously we showed that grocery stores ex- 
hibit several useful physical properties allowing us 
to build fast and reliable vision sensing routines. 
For example, light comes from above, shelves always 
stock items, items are always displayed facing forward, 
etc. This work is similar to recent research done in 
the areas of context-based (Strat and Fischler 1991; 
Firby et al. 1995) and lightweight (Horswill 1993) vi- 
sion. These paradigms have produced perceptual algo- 
rithms which compute useful information reasonably 
fast so long as the reliability conditions for each per- 
ceptual algorithm are known. An immediate conse- 
quence of these conditions is that at least some of the 
sensing routines don’t have to be run continuously. If 
these routines are used in the navigation process, the 
map must represent the different conditions and re- 
sults of runhing a sensing routine. In contrast, pre- 
vious research has often committed to using uniform 
fixed-cost sensing (e.g., sonar). This commitment al- 
lows the same sensing to be used for both map learning 
and route following. However, since we use conditional 
sensing routines, the map learning and route-following 
methods are markedly different. 

In summary, the research presented here differs from 
traditional research in two major ways. First, we view 
map learning and route-following in the context of a 
larger system which performs a wide range of tasks in 
addition to navigation. We present a framework from 
which existing planners can integrate navigation. Sec- 
ond, we assume a known and structured environment 
which enables us to write effective search plans as well 
as to build a wide range of visual capabilities. We 
describe a method for using these capabilities in the 
navigation task. 

Shopper 

In order to study some of the types of knowledge and 
underlying mechanisms involved in everyday tasks, we 
selected grocery store shopping. Shopping is a common 
activity which takes place in a completely man-made 
environment. Previously, we showed how our system, 
SHOPPER, used structural knowledge of the environ- 
ment to quickly find items using a small set of regular- 
ities: items of a similar nature are clustered together 
(e-g-, cereals) as well as items which are often used 
together (e.g., pancake mix and maple syrup). Sev- 

eral regularities were then encoded into search plans 
for finding items. For example, if SHOPPER is looking 
for Aunt Jemima’s pancake-mix and it sees a “syrup” 
sign at the head of an aisle, it executes a plan to search 
an aisle for syrup. After locating the syrup, it executes 
another search plan for finding the pancake mix in the 
local area close to the syrup. 

These plans were tested in GROCERYWORLD; a sim- 
ulator of a real grocery store. GROCERYWORLD pro- 
vides range information from eight sonars plus com- 
pass information. SHOPPER is cylindrical with sonars 
placed equidistant along the circumference. SHOPPER 
also possesses a panning head. Figure 1 shows the 
GROCERYWORLD user interface. The top left pane 
shows SHOPPER in the grocery store with both head 
and body orientations. The top right pane shows the 
body-relative sonar readings while the bottom pane 
shows the sign information available to the agent. If 
the agent is located at the head of an aisle and is facing 
the aisle, GROCERYWORLD can supply sign data. 

Figure 1: User Interface 

GROCERYWORLD differs from most robot simulators 
in that it supplies real color images taken from a local 
grocery store. Camera views are restricted to four car- 
dinal directions at each point in the store. Altogether, 
the domain consists of 75,000 images. Figure 2 shows 
example views. 

GROCERYWORLD also differs from past simulators 
in that travel is limited to moving along one dimen- 
sion, except at intersections. However, stores, like 
office environments, don’t have much free space; in 
fact, hallways and store aisles constrain movement to 
be in two obvious directions. Kortenkamp and Wey- 
mouth (1994) h s owed that a robot could stay centered 
in an office hallway with less than 3.5 degrees of ori- 
entation error. In light of this fact, we do not be- 
lieve the one-dimensional travel restriction is a serious 
shortcoming since we actually prefer SHOPPER to stay 
centered in an aisle for consistent vision perception. 
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Navigation 
SHOPPER'S navigation system is comprised of four sub- 
systems: RETRIEVER, PATH PLANNER, FOLLOWER, 
and PASSIVE MAPPER. These subsystems are shown 
in Figure 3. Initially a goal item is given to the RE- 
TRIEVER which uses similarity metrics and the current 
map to select a destination and a search plan to ex- 
ecute on arrival. The PATH PLANNER replaces the 
destination with a sequence of nodes (created on pre- 
vious visits) leading from the current location to the 
destination. The nodes denote intersections and places 
of interest. Each node is annotated with accumulated 
sensor information associated from past visits. Next, 
the FOLLOWER uses the sequence to follow the path. 
Vision algorithms are selected and run to ensure cor- 
respondence between the predicted sensor information 
and the current perception. Once the path has been 
followed, the PLAN INTERPRETER executes the search 
plan. The PASSIVE MAPPER updates the map during 
the time the search plan is executed. 

Figure 2: Example views. Left: A typical view down 
an aisle. Right: A view to the side. Two horizontal 
lines denote shelf locations. Color regions are enclosed 
by the larger rectangle. The smaller rectangle around 
Corn Pops denotes identification. 

SHOPPER'S perceptual apparatus is primarily suited 
towards moving around and identifying objects in an 
image. Below we outline the various sensing routines 
and explain their use. 

Compass: SHOPPER moves and looks in four cardinal 
directions. We use a compass as an aid to mapping 
the environment. For example, if SHOPPER knows 
there is a “soup” sign in view at a particular inter- 
section, it can turn to that direction and attempt to 
sense the sign. 

Sonar: We have sonar sensing continuously for clas- 
sifying intersections and verifying proximity to 
shelves. 

Signs: When SHOPPER is looking down an aisle and 
attempts to detect signs, GROCERYWORLD supplies 
the text of the signs. In Figure 2 a diamond-like sign 
can be seen above the aisle. However, the image res- 
olution, sign transparency, and specularity prohibit 
any useful reading. 

Shelf Detection: This sensor finds the vertical lo- 
cation of steep gradient changes in an image by 
smoothing and thresholding for large gradients. 

Color Histogram Intersection: Sample color his- 
tograms (Swain and Ballard 1991) are taken suc- 
cessively above a shelf and compared to a sought 
object

’

s 

histogram in order to identify potential re- 
gions according to the intersection response. 

Edge Template Matcher: Given an image of ob- 
ject, we use an edge image template matching rou- 
tine using the Hausdorff distance (Rucklidge 1994) 
as a similarity metric. This sensor is the most expen- 
sive, so it processes areas first filtered by the shelf 
and color histogram detectors. 

All of the above vision algorithms have been imple- 
mented and are used by SHOPPER. 

‘

I 

I 
World 0 Model 

/ / / / / / / / / / / / 
WORLD 

Figure 3: SHOPPER'S Architecture. Arrows indicate 
data flow from one module to another. 

In the following sections we describe the four sub- 
systems. Later, using examples, we explain how they 
interact with each other as well as with the rest of the 
system. 

Passive Mapping 

The purpose of the PASSIVE MAPPER subsystem is to 
maintain a topological map of the world. This sub- 
system is active when the agent is exploring the world 
via search plans by monitoring the EXECUTOR as it 
performs visual and physical actions. The actions and 
results are used for creating the map. For each physical 
action the agent performs, it commits, as a policy, to 
perform a fixed-cost sensing procedure consisting of a 
compass reading and sonar readings. When the agent 
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knows where it is and exactly where it’s going, the 
PASSIVE MAPPER is disabled since the current map 
will suffice for route following. 

Map Representation. Our map representation 
draws from previous navigation work using topological 
maps (Brooks 1985; Engelson and McDermott 1992; 
Kortenkamp and Weymouth 1994; Kuipers and Byun 
1988; Mataric 1992). These maps use relations be- 
tween places (aka landmarks, distinctive places, gate- 
ways, waypoints) for navigation. These methods re- 
quire the robot be able to recognize a place, and travel 
from place to place. 

We use a topological map consisting of distinctive 
places and connecting edges. In Kuipers and Byun’s 
NX model, distinctive places are local maxima accord- 
ing to a geometric criterion. Examples of these can 
be: beginnings of open space, transitions from differ- 
ent spaces, dead ends, etc. Essentially, a distinctive 
place is a landmark which a robot can recognize and 
use for map learning and route following. In contrast, 
our notion of a distinctive place is closely coupled to a 
place’s usefulness to the agent, either as a navigation 
point where an agent may move into a different space, 
or a location that is somehow relevant to the agent. In 
the GROCERYWORLD domain these places are, respec- 
tively, intersections (INTER’s) and places of interest 
(POPS). 

Recall that SHOPPER is constrained to move along 
one dimension at a time. It can move in another dimen- 
sion only at intersections. One example of a distinctive 
place is an intersection. Similar to Kortenkamp and 
Weymouth, we categorize intersections qualitatively as 
T-SHAPE, CROSS, and CORNER. These descriptions of 
space are based only on sonar readings. Examples are 
illustrated in Figure 4. The other example of a distinc- 
tive place is a place of interest. These places denote 
locations important to the agent’s goals. For SHOP- 
PER, each place of interest corresponds to a 
where SHOPPER found a sought item. 

locat ion 

Figure 4: Qualitative descriptions of space: T-SHAPE, 
CROSS, CORNER, and CORRIDOR. 

As SHOPPER encounters new distinctive places, it 
updates its map by storing perceptual information as- 
sociated with the distinctive place. The distinctive 
place description, describing both intersections and 
places of interest, is a set of tuples (T, 5’ x C, A, R) 

where: 

C E (0, 1,2,3} is a compass direction. 

T E {T-SHAPE, CROSS, CORNER, CORRIDOR} x 
C is the distinctive place type and orientation. 

S E {sign, shelf, color, template matcher} is a 
sensing routine. S x C also accounts for the 
head’s direction at the time the routine was 
executed. 

A is a set of parameter arguments supplied to the 
sensing routine. 

R is the output of the routine. 

Note that fixed-cost sensors compass and sonar are 
automatically associated with each distinctive place. 
For the agent’s location in Figure 1, an example sign 
sensing tuple is: ((T-SHAPE, 2), (sign, 0), 8, { Aisle-S, 
Baby-foods, Asian, Mexican, Middle-east-foods, Canned- 
meals, Tuna, Rice, Pasta}). 

Landmark Disambiguation. As the PASSIVE 
MAPPER encounters a new distinctive place, it at- 
tempts to determine whether or not it’s been there 
before. For passive mapping, there are two problems 
to landmark disambiguation: passivity and disparate 
sensing. 

A tension exists between keeping a mapper passive 
(so as not to interfere with plan execution) and supply- 
ing enough information to the mapper for dependable 
navigation. There are two ways to alleviate this ten- 
sion: 

Maintain possible distinctive places. This method, 
proposed by Engelson and McDermott , requires pos- 
sibilities to be eventually culled as the agent moves 
about in the world. Map updates are delayed until 
the agent has disambiguated its position. 

Assume rich sensing. The only reason the PASSIVE 
MAPPER is activated is precisely because it’s explor- 
ing the environment. If the agent knows where it is, 
it would be following a route instead. Basically, if 
SHOPPER doesn’t know where it is, assume it will 
“look around” (Ishiguro et al. 1994). Since the PAS- 
SIVE MAPPER is active when SHOPPER executes a 
search plan, we adopt this assumption in the PAS- 
SIVE MAPPER as it appears tenable for the time be- 
ing. 

A related problem surfaces when a passive mapper 
uses a wider range of sensing routines. Since SHOPPER 
does not run all its sensing routines all the time, we 
can’t guarantee any other sensing routines were run 
except for the fixed costs of compass and sonar. For 
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SHOPPER, the plans that are run are search plans. 
Consequently, we depend on there being additional 
sensing information as the agent explores the envi- 
ronment. If the agent were executing a different set 
of plans which involve movement, there might be an 
altogether different set of sensing routines run. If, 
however, we commit to changing the agent’s location 
only through search plans or route following, distinc- 
tive places will not be confused with each other. 

Retriever 

Given a goal item, search plans, and similarity met- 
rics, the RETRIEVER selects a target destination and 
search plan to execute once SHOPPER arrives. Table 1 
lists conditions for selecting a particular destination 
and search plan. 

Recall earlier that SHOPPER uses regularities of a do- 
main in order to find items via its search plans. Regu- 
larities are also used for deciding on a destination. For 
the examples discussed later, we use two regularities: 
type and counterpart. The type relationship denotes 
a category made up of items of the same type. The 
counterpart relation denotes a category of items that 
are often used together; e.g., pancake mix and maple 
syrup. 

As an example of how the type relationship is used, 
Surf and CheerFree are types of laundry detergents. 
Items of the same type are likely to be physically close. 
If, in a previous visit, SHOPPER found Surf and now 
wants to find CheerFree, it selects a place of interest 
(Surf) as the destination as well as a LOCAL SAME- 
SIDE search plan. This particular search plan looks for 
an item hypothesized to be nearby on the same side of 
the aisle as the previously found item. 

Path Planning 

Given a target destination from the RETRIEVER and 
the current location from the map, the PATH PLANNER 
plans a route that will get the agent from the current 
location to the destination. Because the map is orga- 
nized in terms of nodes and edges, the path planner 
uses Dijkstra’s algorithm for finding a shortest path. 
No metrical information is stored, so each edge is of 
equal cost. After the nodes along the route have been 
selected, the PATH PLANNER then annotates each node 
with all the sensing information gathered from past vis- 
its. These annotations are used by the FOLLOWER. 

Route Following 

The FOLLOWER receives a path and search plan from 
the PATH PLANNER. The FOLLOWER'S purpose is to 
follow the path and then pass the search plan to the 
PLAN INTERPRETER. In order to follow a path the 

FOLLOWER must verify that the current sensing is con- 
sistent with the predicted sensing. The stored sensing 
is processed according to the particular place predic- 
tion. Recall these are a set of tuples (T, S x C, A, R). 

The consistency check is based on a match function 
for each sensing routine: 

VsdEIm, : A x R x A x R + {True, False) 

where m, is the match function for sensing routine s. 
The match functions compare the arguments and re- 
sults of the past and current sensing routine to ensure 
the agent is on course. If the results are consistent, 
the match function returns a match (True), otherwise 
no match (False). For example, suppose SHOPPER is 
checking if shelf positions match. After the Shelf De- 
tector is run on the current image, the arguments (hor- 
izontal subsampling) and currently found shelves (ver- 
tical image positions) are passed to the shelf match 
function as well as the stored shelf information com- 
posed of the same arguments and vertical image posi- 
tions. For this particular match function, we require 
one-third of the shelf positions in the current image be 
within twenty pixels of the stored shelf positions, and 
vice versa. If both match correctly, the shelf match 
function returns True otherwise False. 

The consistency check is done by using the match 
functions over the sensing routines common to both 
the past and current perception. Let P be the set 
of stored perception at a place, and let Q be the set 
of current perception. Place consistency is defined to 
be equivalent distinctive place types and a match on 
all the common sensing between P and Q. Figure 5 
illustrates this method as a procedure. If the procedure 
returns True, the two locations are consistent. If False, 
the two locations are different. 

procedure Consistency-Check( P, Q) 
for all sensors s E S 

for all compass directions c E C 
if (t, (s, c),a,r) E P and 

(t’, (s, c), a’,r’) E Q and 
m,(a, T, a’, T’) = False then 
re$urn 

return t 1 t’ 
False 

Figure 5: Procedure for determining consistency be- 
tween places P and Q. 

This procedure is at the heart of the PASSIVE MAP- 
PER. The FOLLOWER performs the stored sensing rou- 
tines, and then makes use of the procedure to ensure it 
is on course. At an intersection the FOLLOWER checks 
for consistency by alternating between a consistency 
check and executing a sensing routine. After the in- 
tersection matches, the FOLLOWER orients the agent 
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Strategy Name Conditions Destination Search Plan 
EXACT Ii was found before. PO1 with 11 None 
TYPE Similar item I2 was found before. PO1 with 12 LOCAL SAME-SIDE 
COUNTERPART II and 12 are counterparts. PO1 with 12 LOCAL 

12 previously found. 
SIGN-TYPE Sign S seen. 11 is a type of S. INTER with S AISLE 
SIGN-COUNTERPART Sign S seen. Ii and S are counterparts. INTER with S AISLE 
DEFAULT None None BASIC 

Table 1: In order of preference: strategy names, their conditions, destination, and search plan for locating item Ii. 

to move toward the next distinctive place. A similar 
method is employed for finding a place of interest, ex- 
cept that a consistency check failure is allowed owing 
to the agent not being in the right place yet. Currently 
SHOPPER does not handle the case when it fails to find 
a place of interest. 

Examples 
We select three items to demonstrate SHOPPER’S navi- 
gation capabilities: Solo laundry detergent, Corn Pops 
cereal, and Downy fabric softener. 

Solo Initially in first coming to the store, SHOP- 
PER’S map is empty. Given an empty map, Solo laun- 
dry detergent, and preferences shown in Table 1, the 
RETRIEVER picks a null destination and BASIC search 
plan as the DEFAULT strategy. The BASIC search plan 
is simple: go to the beginning of an aisle, move across 
aisles until a relevant sign is seen, go into that aisle, 
look left and right until the item is found. 

On receiving the null destination with search plan, 
the PATH PLANNER outputs a null path and BASIC 
search plan. The FOLLOWER has no path to follow, so 
it passes control and the search plan to the PLAN IN- 
TERPRETERstarts executing the search plan starting at 
the store entrance in front of Aisle 1. The BASIC search 
plan instructs SHOPPER to move around the outside 
perimeter of the store reading signs and moving until 
it finds a relevant sign. For example, in Aisle 4, the 
sign reads: Aisle-4 Salad-dressing Canned-soup Sauce Nut 
Cereal Jam Jelly Candy. Eventually Solo is found on the 
left side of Aisle 6 since there is a “laundry aid” sign 
in front of that aisle. During the time this search was 
done, the PASSIVE MAPPER recorded the intersection 
types of Aisles 1 through 6 plus visual (sign) infor- 
mation. A place of interest is created where Solo was 
found. The PO1 is defined according to the shelf po- 
sitions, color region, and item identification as output 
by the sensing routines. 

Corn Pops Next, we give SHOPPER the goal of 
finding Corn Pops. The RETRIEVER recalls that a “ce- 
real” sign was seen in front of Aisle 4 and selects the 

SIGN-TYPE strategy. The target destination is now 
the beginning of Aisle 4, and the search plan is AISLE. 
The PATH PLANNER plans a path from the current 
location (a POI) to Aisle 4 (an INTER). The FOL- 
LOWER starts by verifying it’s at the current place. The 
current accumulated sensor information is a match to 
the stored perception. SHOPPER now orients its body 
to the beginning of Aisle 6 and goes there. Once it 
reaches the beginning, the intersection is verified to be 
Aisle 6 by matching the intersection type and turn- 
ing the head around to match sign information. Using 
a similar method, SHOPPER continues to the begin- 
nings of Aisle 5, then Aisle 4. The AISLE search plan 
and control is now passed to the PLAN INTERPRETER. 
The PLAN INTERPRETER searches Aisle 4 and eventu- 
ally finds Corn Pops where it creates a PO1 similar to 
Solo. 

Downy Finally, we give SHOPPER the goal of find- 
ing Downy fabric softener. Since fabric softener is 
used with laundry detergent, SHOPPER uses the COUN- 
TERPART strategy. The intended destination now be- 
comes the PO1 containing Solo, with the search plan 
as LOCAL. In a similar fashion, the FOLLOWER fol- 
lows a route from the current PO1 to the intended 
POI. When the agent is at the beginning of Aisle 6, 
the FOLLOWER then runs the PO1 sensing routines 
and compares results associated with Solo while mov- 
ing down the aisle. Once Solo is reached, a LOCAL 
search plan is executed. This plan allows SHOPPER 
to search on the left and right of Solo as well as the 
other side of the aisle as tries to find Downy. In this 
instance, Downy is on the other side. SHOPPER finds 
Downy and creates a new POI. 

Status 
SHOPPER has been tested successfully on fourteen 
items ranging over cereals, laundry aids, cake mixes, 
cleaning materials, and storage supplies. SHOPPER can 
quickly compute routes to likely areas and reliably ar- 
rive there. For the items SHOPPER cannot find - and 
there are many - it has been the case that its sensors 
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failed to detect the item. So long as SHOPPER reaches 
a close enough proximity to point the camera at an 
item, we do not consider the navigation system faulty. 

Currently the FOLLOWER uses a static procedure for 
following routes. Because our search plans are declara- 
tive and can account for opportunistic types of behav- 
ior (e.g., recognizing a sought item unexpectedly), we 
would like the FOLLOWER to use a similar representa- 
tion for coping with contingencies during the naviga- 
tion process, c.f. (Simmons 1994). 

Earlier we cited the possibility of the system using 
different or new sensing routines, not necessarily hav- 
ing any overlap with previously stored sensing. We 
believe that landmark disambiguation is simpler if the 
PASSIVE MAPPER is sometimes active by signaling an 
ambiguity before the agent moves away. Then it du- 
plicates perceptual actions and compares the results to 
past perception. This method appears to be promising 
since Kortenkamp and Weymouth, in using a visual 
representation of vertical lines, were able to success- 
fully disambiguate locations without traveling away 
from the location. 

Another possible way to disambiguate position is to 
use dead reckoning. Currently SHOPPER'S map data 
does not indicate relative distances between places. 
So when sensor data alone indicates that SHOPPER 
could be in one of several places, dead reckoning al- 
lows SHOPPER to reject many places before needing 
more information. 

The navigation method we have presented here as- 
sumes that major errors in sensing will not hap- 
pen. For a specific set of items, our sensing rou- 
tines have empirically shown to be sufficient and re- 
liable in our particular domain. For integration with 
existing robots, this may not be a realistic assump- 
tion. However, we view errors in sensing as being just 
that: errors in sensing. We do not believe a map- 
per should bear the burden of coping with an incor- 
rect map because of error-prone and/or semantic-poor 
data. Surely there are instances in real life where one 
can become genuinely lost because of sheer size, or ab- 
sence of distinguishable cues. Although every naviga- 
tion system must handle those inevitable situations, 
we believe those instances are rare simply because we 
live and depend on a culturally rich world (Agre and 
Horswill 1992) full of distinguishing cues to support 
everyday activity - one of them being navigation. 
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