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Abstract 

Gesture recognition is an important skill for robots 
that work closely with humans. Gestures help to clar- 
ify spoken commands and are a compact means of re- 
laying geometric information. We have developed a 
real-time, three-dimensional gesture recognition sy,s- 
tern that resides on-board a mobile robot. Using a 
coarse three-dimensional model of a human to guide 
stereo measurements of body parts, the system is ca- 
pable of recognizing six distinct gestures made by an 
unadorned human in an unaltered environment. An 
active vision approach focuses the vision system’s at- 
tention on small, moving areas of space to allow for 
frame rate processing even when the person and/or the 
robot are moving. This paper describes the gesture 
recognition system, including the coarse model and 
the active vision approach. This paper also describes 
how the gesture recognition system is integrated with 
an intelligent control architecture to allow for complex 
gesture interpretation and complex robot action. Re- 
sults from experiments with an actual mobile robot 
are given. 

Introduction 

In order to work effectively with humans, robotsfwill 
need to track and recognize human gestures. Gestures 
are an integral part of communication. They provide 
clarity in situations where speech is ambiguous or noisy 
(Cassell 1995). Gestures are also a compact means 
of relaying geometric information. For example, in 
robotics, gestures can tell the robot where to go, where 
to look and when to stop. We have implemented a real- 
time, three-dimensional gesture recognition system on 
a mobile robot. Our robot uses a stereo vision ‘sys- 
tem to recognize natural gestures such as pointing and 
hand signals and then interprets these gestures within 
the context of an intelligent agent architecture. The 
entire system is contained on-board the mobile robot, 
tracks gestures at frame-rate (30 hz), and identifies ges- 
tures in three-dimensional space at speeds natural to 
a human. 

Gestures , for mobile robots 

Gesture recognition is especially valuable in mobile 
robot applications for several reasons. First, it pro- 
vides a redundant form of communication between the 
user and the robot. For example, the user may say 
“Halt” at the same time that they are giving a halting 
gesture. The robot need only recognize one of the two 
commands, which is crucial in situations where speech 
may be garbled or drowned out (e.g., in space, un- 
derwater, on the battlefield). Second, gestures are an 
easy way to give geometrical information to the robot. 
Rather than give coordinates to where the robot should 
move, the user can simply point to a spot on the floor. 
Or, rather than try to describe which of many objects 
the user wants the robot to grasp, they can simply 
point. Finally, gestures allow for more effective com- 
munication when combined with speech recognition by 
grounding words such as “there” and “it” with recog- 
nizable objects. 

However, mobile robot applications of gesture recog- 
nition impose several difficult requirements on the sys- 
tem. First, the gesture recognition system needs to 
be small enough to fit onto the mobile robot. This 
means that processing power is limited and care must 
be taken to design efficient algorithms. Second, the 
system needs to work when the robot and the user are 
moving, when the precise location of either is unknown 
and when the user may be at different distances from 
the robot. It is also likely that objects will be mov- 
ing in the background of the image. Third, precise 
calibration of cameras is difficult if not impossible on 
a mobile platform that is accelerating and decelerat- 
ing as it moves around. Finally, the system needs to 
work at a speed that is comfortable for human tasks, 
for example the halting gesture needs to be recognized 
quickly enough to halt the robot within a reasonable 
time. In this paper we present a gesture recognition 
system that meets these requirements. 
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Figure 1: A mobile robot with on-board vision system. 

Related work 

Gesture recognition has become a very important re- 
search area in recent years and there are several mature 
implementations. The ALIVE system (Darrell et al. 
1994) allows people to interact with virtual agents via 
gestures. The ALIVE system differs from ours in that 
the cameras are fixed (i.e., not on a mobile platform 
as ours are) and that it requires a known background. 
Similar restrictions hold for a system by Gavrila and 
Davis (Gavrila & Davis 1995). The Perseus system 
(Kahn et d. 1996) uses a variety of techniques (e.g., 
motion, color, edge detection) to segment a person 
and their body parts. Based on this segmentation the 
Perseus system can detect pointing vectors. This sys- 
tem is very similar to ours in that it is mounted on 
a mobile robot and integrated with robot tasks. The 
Perseus system differs from ours in that it requires a 
static background, doesn

’

t 

detect gestures in three di- 
mensions and relies on off-board computation, which 
can cause delays in recognition of gestures. Wilson and 
Bobick (Wilson & Bobick 1995) use a hidden Markov 
model to learn repeatable patterns of human gestures. 
Their system differs from ours in that it requires peo- 
ple to maintain strict constraints on their orientation 
with respect to the cameras. 

Recognizing gestures 
Our gesture recognition system consists of a stereo 
pair of black and white cameras mounted on a 
pan/tilt/verge head that is, in turn, mounted on the 
mobile robot (see Figure 1). The basis of our stereo vi- 
sion work is the PRISM-3 system developed by Keith 
Nishihara (Nishihara 1984). The PRISM-3 system pro- 
vides us with low-level spatial and temporal disparity 
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Proximity Space partially enveloping object 

Figure 2: A proximity space. 

measurements. We use these measurements as input 
to our algorithms for gesture recognition. 

Our gesture recognition process has two compo- 
nents. First, we concentrate our vision system

’

s 

atten- 
tion on small regions of 3-D visual space. We call these 
regions proximity spaces. These spaces are designed to 
react to the visual input much as a robot reacts to its 
sensory input. Second, we spawn multiple proximity 
spaces that attach themselves to various parts of the 
agent and are guided by a coarse, three-dimensional 
model of the agent. The relationships among these 
proximity spaces gives rise to gesture recognition. Each 
of these two components is described in the following 
two subsections and then their application to gesture 
recognition. 

The proximity space method 

The active vision philosophy emphasizes concentrating 
measurements where they are most needed. An impor- 
tant aspect of this approach is that it helps limit the 
number of measurements necessary while remaining at- 
tentive to artifacts in the environment most significant 
to the task at hand. We abide by this philosophy by 
limiting all our measurements in and about cubic vol- 
umes of space called proximity spaces. 

Within the bounds of a proximity space, an array 
of stereo and motion measurements are made in order 
to determine which regions of the space (measurement 
cells) are occupied by significant proportions of surface 
material, and what the spatial and temporal disparities 
are within those regions. Surface material is identified 
by detecting visual texture, i.e., variations in pixel val- 
ues across regions of the LOG (Laplacian of Gaussian) 
filtered stereo pair (see Figure 2). 

The location of a proximity space is controlled by 
behaviors generating vectors that influence its motion 
from frame to frame. Behaviors generate motion vec- 
tors by assessing the visual information within the 
proximity space. There are behaviors for following, 
clinging, pulling, migrating to a boundary and resiz- 
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Figure 3: Coarse 3-D model of a human used 
ture recognition. 

for ges- I 

ing (which does not generate a motion vector, but a 
size for the proximity space). Patterned after the sub- 
sumption architecture (Brooks 1986), these behaviors 
compete for control of the proximity space. In dynamic 
terms, the proximity space acts as an inertial mass and 
the behaviors as forces acting to accelerate that mass 
(see (Huber & Kortenkamp 1995) for a more detailed 
description). 

Chaining multiple proximity spaces u&g 
a human model 

In order to recognize gestures, multiple proximity 
spaces are spawned, which attach themselves to var- 
ious body parts in the image of the gesturing per- 
son. Each of these proximity spaces has its own set 
of behaviors independently controlling its location in 
space. However, these behaviors are constrained by 
a coarse three-dimensional, kinematic model of a hu- 
man that limits their range of motion. With perfect 
tracking there would be no need for a model as the 
proximity spaces would track the body parts in an un- 
constrained manner. However, real-world noise may 
sometimes cause the proximity space to wander off of 
their body parts and begin tracking something in the 
background or another part on the body. While the 
behaviors acting on the proximity spaces continue to 
generate motion vectors independent of the model; the 
final movement of the proximity spaces is overridden 
by the model if the generated vectors are not consistent 
with the model. 

We have chosen a model that resembles the human 
skeleton, with similar limitations on joint motion. The 
model, shown in Figure 3, consists of a head connected 

to two shoulder joints. There are four proximity spaces 
that are tracking various parts of the body. The first 
proximity space (PSl) is tracking the head. Its be- 
haviors allow it to move freely, but are also biased to 
migrate it upward. The second proximity space (PS2) 
tracks the shoulder. PSl and PS2 are connected by two 
links, Ll and L2. These links are stiff springs that al- 
low very little movement along their axes. The lengths 
of Ll and L2 are set at the start of tracking and do not 
change during tracking. We have a procedure for auto- 
matically determining the lengths of the links from the 
height of the person being tracked, which is described 
later in the paper. The connection between Ll and L2 
(Jl) acts as a ball joint. The motion of L2 relative 
to Ll (and thus, PS2 relative to PSl) is constrained 
by this joint to be Odeg in the up-down direction (i.e., 
shrugging of the shoulders will not affect the location 
of the proximity space). The joint Jl also constrains 
the movements of L2 relative to Ll by f38 deg in the 
in-out direction (i.e., towards and away from the cam- 
era). This means that the person must be facing the 
cameras to within 38 deg for the gesture recognition 
system to work correctly. 

The third proximity space (PS3) is tracking the end 
of the upper arm and is connected to PS2 by the link 
L3. Again, L3 is modeled as a very stiff spring with a 
length fixed at the start of tracking. L3 is connected 
to L2 with a ball joint (52). L3 can move relative to 
L2 up at most 75 deg and down at most 70 deg. It can 
move into or out-of perpendicular to the camera by at 
most f45 deg. This means that a pointing gesture that 
is towards or away from the robot by more than 45 deg 
will not be recognized. Finally, the fourth proximity 
space (PS4) tracks the end of the lower arm (essentially 
the hand) and is connected to PS3 with link L4 at joint 
53. The range of motion of L4 relative to L3 at 53 is up 
at most 110 deg, down at most -10 deg and into or out- 
of perpendicular with the camera by at most f45 deg. 
All of the links in the model are continuously scaled 
based on the person’s distance from the cameras. 

One limitation of our gesture recognition system is 
that it can only track one arm at a time. There are 
two reasons for this limitation. First, we do not have 
enough processing power to calculate the locations of 
seven proximity spaces at frame rate. Second, when 
both arms are fully extended the hands fall out of the 
field of view of the cameras. If the person backs up to 
fit both hands into the field of view of the cameras then 
the pixel regions of arms are too small for tracking. 
The arm to be tracked can be specified at the start of 
the tracking process and can be switched by the user. 
While Figure 3 only shows the model of the right arm 
for simplicity, the model for the left arm is simply a 
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Figure 4: Recognizable gestures. 

mirror image of the right. 
Experiments, which are described in more detail 

later, show that our system can recognize gestures from 
distances as close as 1.25 meters from the camera (at 
which point the person’s arm extends out of the field 
of view of the cameras) to as far as 5 meters away 
from the robot. The system can track a fully extended 
arm as it moves at speeds up to approximately 36 deg 
per second (i.e., a person can move their arm in an arc 
from straight up to straight down in about five seconds 
without the system losing track). 

Acquisition and reacquistion using the model 
Gesture recognition is initiated by giving the system a 
camera-to-person starting distance and a starting arm. 
Four proximity spaces are spawned and lay dormant 
waiting for some texture to which to attach themselves. 
As a person steps into the camera at approximately the 
starting distance the head proximity space will attach 
itself to the person and begin migrating towards the 
top, stopping when it reaches the boundary of the per- 
son. The other three proximity spaces are pulled by 
their links up along with the head. While the person’s 
arm is at their side, these proximity spaces are contin- 
ually sweeping arcs along the dashed arrows shown in 
Figure 3 looking for texture to which to attach them- 
selves. When the arm is extended the three proximity 
spaces “lock onto” the arm and begin tracking it. If 
they lose track (e.g., the arm moves to fast or is oc- 
cluded) they begin searching again along the dashed 
arcs shown in Figure 3. If the head proximity space 
loses track it begins an active search starting at’the 
last known location of the head and spiraling outward. 
Many times this re-acquisition process works so quickly 
that the user never realizes that tracking was lost. 

Defining gestures 

Figure 4 shows the gestures that are currently rec- 
ognized by the system. These gestures are very eas- 
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ily determined by looking at the relative angles be- 
tween the links L2, L3 and L4 at the joints 52 and 
53 (see Figure 3). Let’s call the angle between L2 
and L3 (i.e., the upper arm angle) 01 and the an- 
gle between L3 and L4 (i.e., the lower arm angle) 
02. Odeg is straight out to the left or right. Then, 
if 01 < -5Odeg and 02 < 45deg the gesture is re- 
Iwed. If 01 < -50 deg and 02 > 45 deg the gesture is 
thumbing. If -5Odeg < 01 < 45deg and 02 < 45deg 
the gesture is pointing. If -50 deg < 01 < 45 deg and 
02 > 45 deg the gesture is halt. If 01 > 45 deg and 
02 < 45 deg the gesture is raised. If 01 > 45 deg and 
02 > 45deg the gesture is arched. Thus, the person 
is always producing some kind of gesture based on the 
joint angles. 

Gesture recognition is not immediate as that may 
lead to many spurious gestures. Confidence in a ges- 
ture is built up logarithmically over time as the an- 
gles stay within the limits for the gesture. When the 
logarithmic confidence passes a threshold (0.8 in our 
experiments) then the gesture is reported by the sys- 
tem. That gesture continues to be reported until the 
confidence drops below the threshold. 

This gesture recognition technique does not cur- 
rently support recognizing gestures that occur over 
time (e.g., a waving gesture). We believe that our ap- 
proach, because it is active, lends itself to this and we 
are working towards implementing it. 

Connecting gestures to robot action 
Simply recognizing gestures is not enough for them to 
be useful; they need to be connected to a specific robot 
actions. For the last several years we have been work- 
ing on an intelligent control architecture, known as $I’, 
which can integrate reactive vision and robot processes 
with more deliberative reasoning techniques to pro- 
duce intelligent, reactive robot behavior (Bonasso et 
al. 1995). The architecture consists of three layers of 
control: skills, sequencing and planning. Only the first 
two layers (skills and sequencing) have been used in 
the system described in this paper. The next two sub- 
sections will describe the skills of our robot and how 
those skills can be intelligently sequenced to perform 
tasks. 

Visual skills 

Skills are the way in which the robot interacts with 
the world. They are tight loops of sensing and acting 
that seek to achieve or maintain some state. Skills can 
be enabled or disabled depending on the situation and 
the set of enabled skills forms a network in which in- 
formation passes from skill to skill. Figure 5 shows the 
skill network for our work in gesture recognition. The 



Figure 5: Mobile robot skills for gesture recognition. 

skills labeled vf h are obstacle avoidance and robot mo- 
tion skills base on the Vector Field Histogram method 
(Borenstein & Koren 1991). They take a goal location, 
generated from any skill, and move the robot to that 
goal location. The move-to-point, the track-agent 
and the recognize-gesture skills allow can provide 
goal locations to the vfh skills. 

The recognize-gesture skill encapsulates the pro- 
cesses described in the previous section and produces 
one of the five gestures or no gesture as output. It 
also generates as output the (x,y,z) locations of the 
four proximity spaces when the gesture was recognized. 
The next several subsections described the more inter- 
esting gesture recognition skills in detail. 

Moving to a point This skill produces an (x,y) goal 
for the robot corresponding to the location at which the 
person is pointing. This skill takes the (x,y,z) location 
of the centroid of the shoulder proximity space (PS2 
in Figure 3) and the hand proximity space (PS4 in 
Figure 3) and computes a three-dimensional vector. It 
then determines the intersection point of this vector 
with the floor. Assuming the vector does intersect with 
the floor, the skill begins generating a goal for the robot 
and the motion control and obstacle avoidance skills 
move the robot to that point. 

We conducted a number of experiments to determine 
the accuracy of the pointing gesture. The experimental 
set-up was to have a person point to a marked point 
on the floor. The vision system would recognize’ the 
pointing gesture and the move-to-point skill would 
determine the intersection of the pointing vector with 
the floor. We would then compare this point with the 
actual location of the target. We choose eight different 
target points on the floor in various directions and at 
various distances. We pointed five times at each target 
point. Two different people did the’ point, both of them 
familiar with the system. No feedback was given to the 
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Figure 6: A sample of experimental results. The per- 
son is standing directly in front of the robot and point- 
ing at different points on the floor (black circles). The 
‘X’ is the point that the robot calculated as the inter- 
section between the pointing gesture and the floor. 

user between trials. Figure 6 shows a sample of those 
points and the system’s performance. 

For the five points that were between 2.5 and 4.5 
meters away from the person, the mean error distance 
from the target to the vector intersection was 0.41 me- 
ters, with a standard deviation of 0.17. As the distance 
from the person to the target grew the error also grew 
rapidly, up to a mean error of over 3 meters at 5.5 
meters away. 

These results need to be taken with a grain of salt. 
There are several factors that can introduce errors into 
the system and that cannot be accounted for, includ- 
ing: how accurately a person can actually point at a 
spot; the initial accuracy of the robot both in position 
and orientation; and the tilt of the robot due to an 
uneven floor. 

Acquiring along a vector When this skill is en- 
abled, a pointing gesture will result in the vision sys- 
tem searching along the pointing vector and stopping 
if it acquires a distinct object. The vision system then 
begins tracking that object. This skill takes the (x,y,z) 
location of the centroid of the shoulder proximity space 
and the hand proximity and computes a three dimen- 
sional vector. The skill then causes the vision system 
to search along through a tube of space surrounding 
that vector until a patch of significant texture is en- 
countered. The skill stops searching after a certain 
distance, which is passed to the skill as a parameter 
at run time. Informal experiments allowed two people 
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standing about 2 meters apart to “pass control” of the 
system back and forth by pointing at each other. The 
system successfully moved from person to person over 
10 consecutive times. 

Tracking an agent While the vision system is rec- 
ognizing gestures it tracks the person’s head. The po- 
sition of the person’s head is converted to a goal for 
the robot and the robot moves, under local obstacle 
avoidance towards that goal. The speed of the robot 
is set at a maximum of 0.4 meters per second, but 
the robot moves more slowly as it approaches the per- 
son it is tracking or as it maneuvers to avoid obsta- 
cles. We have successfully tracked people for periods 
of twenty to thirty minutes in previous work (Huber 
& Kortenkamp 1995). For this work we added gesture 
recognition and allowed the person to stop the robot 
by giving the “halting” gesture. When the robot de- 
tects this gesture it stops moving, but the robot’s head 
continues to track the person and the vision system 
continues to perform gesture recognition. The robot 
resumes moving when the person gives a “raised” ges- 
ture. 

Determining tracking height The coarse 3-D 
model used for gesture recognition requires a rough 
estimate of the height of the person. For this reason 
we have implemented a skill that will automatically 
acquire the height of a person being tracked and reset 
the 3-D model on-the-run. This skill uses height of the 
centroid of the head proximity space as the height of 
the person. Experiments on five people ranging from 
1.60m to 1.90m tall showed that the system estimated 
their height to within an average error of 0.07m. This 
is well within the gesture recognition system’s toler- 
ance for tracking based on a fixed model. 

Interpreting gestures in task contexts 

Our target environments involve robots working with 
astronauts in space or on planetary surfaces. Recently, 
in support of these environments, we have begun to in- 
vestigate human-robot interaction through gesturing. 
Wanting to exploit the skills described above in as 
many situations as possible, we have observed that in 
many tasks a human pointing gesture can have a wide 
range of interpretations depending on the task. The 
middle layer of our $I’ architecture is the RAPS system 
(Firby 1994). A reactive action package (RAP) spec- 
ifies how and when to carry out routine procedures 
through conditional sequencing. As such, a RAP pro- 
vides a way to interpret gestures through context lim- 
iting procedures of action. 

Finding an agent to track One example of inter- 
preting the same gesture in two different contexts can 
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(define-rap (respond-to-gesture ?agent) 
(method motion-gesture 

(context (or (current-gesture “Pointing”) 
(current-gesture “Halting”))) 

(task-net 
(t 1 (interpret-gesture-for-motion ?agent)))) 

(method normal-acquisition 
(context (current-gesture “Raised”)) 
(task-net 

(sequence 
(tl (speak “Point to the agent’s feet”)) 
(t2 (interpret-gesture-for-tracking ?agent))))) 

(method long-range-acquisition 
(context (current-gesture “Arched”)) 
(task-net 

(sequence 
(tl (speak “Point at the agent”)) 
(t2 (find-agent-along-vector ?agent)))))) 

Figure 7: RAP that uses task context to interpret a 
gesture. 

be shown in the task of pointing out an agent to be 
tracked. In our research we have noted that the desig- 
nator agent can simply point to the designated agent’s 
feet and the robot can use the move-to-point skill. 
But when the designated agent is some distance away 
from the designator, the acquire-along-vector skill, 
while slower, is less error prone. We devised a two 
step gesture approach wherein the first gesture tells the 
robot the method to be used to designate the agent to 
be tracked, and the second gesture would be the point- 
ing gesture itself. Figure 7 shows this RAP (simplified 
for the purposes of this paper). 

This RAP assumes a gesture has been received. If 
it is a pointing or halting gesture, a lower level RAP 
is called to stop the robot or to move to a point on 
the floor. If the gesture received is “raised”, the usual 
tracking RAP will be invoked (interpret-gesture-for- 
tracking) which gets a pointing gesture, computes the 
point on the floor, and then looks for an agent at the 
appropriate height above that point. If, on the other 
hand, the arched gesture is detected, the find-agent- 
along-vector RAP will be invoked to get a pointing ges- 
ture and find an agent somewhere along the indicated 
vector. That RAP also enables the tracking skill. 

The higher level RAP in Figure 8 sets up a single ges- 
ture (such as go to place) or the first of a two gesture 
sequence. This RAP has three methods depending on 
whether there is a gesture stored in the RAP memory. 
Normally, there is no current gesture and the robot 
must look for the designating agent, get a gesture, 
and respond appropriately (as described in the previ- 
ous RAP). Once a gesture task is completed, memory 
rules associated with lower level RAPS will remove the 



[define-rap (get-and-respond-to-gesture ?agent) 
(succeed (or (last-result timeout) (last-result succeed))) 
(method no-current-gesture 

(context (not (current-gesture ?g))) 
(task-net 

(sequence 
(tl (find-agent ?agent)) 
(t2 (get-gesture ?agent)) 
(t3 (respond-to-gesture ?agent))))) 

(method useful-current-gesture 
(context (and (current-gesture ?g) (not (= ?g “Halting”))) 
(task-net 

(sequence 
(t 1 (recognize-gesture ?agent)) 
(t2 (respond-to-gesture ?agent))))) 

(method current-halt-gesture 
(context (and (current-gesture ?g) (= ?g “Halting”))) 
(task-net 

(sequence 
(tl (speak “I need another gesture”)) 
(t2 (find-agent-at ?agent)) 
(t3 (get-gesture ?agent)) 
(t4 (respond-to-gesture ?agent)))))) 

Figure 8: RAP that sets up the gesture recognition 
process. 

used gestures from the RAP memory. 
But sometimes a lower level RAP will fail, e.g., 

when the designated agent can’t be found, and a ges- 
ture such as “Raised” will remain in the RAP mem- 
ory. .Thus, in the second method, an other than 
halting gesture is current and the robot will turn on 
the recognize-gesture skill (for subsequent gestures) 
and attempt to carry out (retry) the task indicated by 
the current gesture. 

In some cases, the robot will receive an emergency 
halting gesture before a lower level RAP is completed 
such as in the middle of a movement. If this happens 
the robot’s last recollection of a gesture will be “‘Halt- 
ing.” In these cases, the robot tells the designating 
agent that they need to start over, and continues as in 
the first method. These RAPS do not show the details 
of enabling actual skills, see (Bonasso et al. 1995) for 
details of how this works. 

Conclusions 

Our goal is to develop technologies that allow for ef- 
fective human/robot teams in dynamic environments. 
The ability to use the human’s natural communication 
tendencies allows the robot to be more effective and 
safer when working among humans. The contributions 
of our system include a demonstration of gesture recog- 
nition in real-time while on-board a mobile robot. The 
system does not require the user to wear any special 
equipment nor does it require that the robot, user or 
background be static. Our contributions also include 

integrating the gesture recognition system with an in- 
telligent agent architecture that can interpret complex 
gestures within tasks contexts. This complete system 
is a first step towards realizing effective human/robot 
teams. In the future we hope to extend the system 
by recognizing gestures over time and by integrating 
gesture recognition with speech recognition. 
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