
Recognizing and inter reting gestures on a obile robot

David Kortenkamp, Eric her, and R. Peter Bonasso
Metrica, Inc.

Robotics and Automation Group
NASA Johnson Space Center - ER2

Houston, TX 77058
kortenQmickey.jsc.nasa.gov

Abstract

Gesture recognition is an important skill for robots
that work closely with humans. Gestures help to clar-
ify spoken commands and are a compact means of re-
laying geometric information. We have developed a
real-time, three-dimensional gesture recognition sy,s-
tern that resides on-board a mobile robot. Using a
coarse three-dimensional model of a human to guide
stereo measurements of body parts, the system is ca-
pable of recognizing six distinct gestures made by an
unadorned human in an unaltered environment. An
active vision approach focuses the vision system’s at-
tention on small, moving areas of space to allow for
frame rate processing even when the person and/or the
robot are moving. This paper describes the gesture
recognition system, including the coarse model and
the active vision approach. This paper also describes
how the gesture recognition system is integrated with
an intelligent control architecture to allow for complex
gesture interpretation and complex robot action. Re-
sults from experiments with an actual mobile robot
are given.

Introduction

In order to work effectively with humans, robotsfwill
need to track and recognize human gestures. Gestures
are an integral part of communication. They provide
clarity in situations where speech is ambiguous or noisy
(Cassell 1995). Gestures are also a compact means
of relaying geometric information. For example, in
robotics, gestures can tell the robot where to go, where
to look and when to stop. We have implemented a real-
time, three-dimensional gesture recognition system on
a mobile robot. Our robot uses a stereo vision ‘sys-
tem to recognize natural gestures such as pointing and
hand signals and then interprets these gestures within
the context of an intelligent agent architecture. The
entire system is contained on-board the mobile robot,
tracks gestures at frame-rate (30 hz), and identifies ges-
tures in three-dimensional space at speeds natural to
a human.

Gestures , for mobile robots

Gesture recognition is especially valuable in mobile
robot applications for several reasons. First, it pro-
vides a redundant form of communication between the
user and the robot. For example, the user may say
“Halt” at the same time that they are giving a halting
gesture. The robot need only recognize one of the two
commands, which is crucial in situations where speech
may be garbled or drowned out (e.g., in space, un-
derwater, on the battlefield). Second, gestures are an
easy way to give geometrical information to the robot.
Rather than give coordinates to where the robot should
move, the user can simply point to a spot on the floor.
Or, rather than try to describe which of many objects
the user wants the robot to grasp, they can simply
point. Finally, gestures allow for more effective com-
munication when combined with speech recognition by
grounding words such as “there” and “it” with recog-
nizable objects.

However, mobile robot applications of gesture recog-
nition impose several difficult requirements on the sys-
tem. First, the gesture recognition system needs to
be small enough to fit onto the mobile robot. This
means that processing power is limited and care must
be taken to design efficient algorithms. Second, the
system needs to work when the robot and the user are
moving, when the precise location of either is unknown
and when the user may be at different distances from
the robot. It is also likely that objects will be mov-
ing in the background of the image. Third, precise
calibration of cameras is difficult if not impossible on
a mobile platform that is accelerating and decelerat-
ing as it moves around. Finally, the system needs to
work at a speed that is comfortable for human tasks,
for example the halting gesture needs to be recognized
quickly enough to halt the robot within a reasonable
time. In this paper we present a gesture recognition
system that meets these requirements.

Mobile Robots 915

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Figure 1: A mobile robot with on-board vision system.

Related work

Gesture recognition has become a very important re-
search area in recent years and there are several mature
implementations. The ALIVE system (Darrell et al.
1994) allows people to interact with virtual agents via
gestures. The ALIVE system differs from ours in that
the cameras are fixed (i.e., not on a mobile platform
as ours are) and that it requires a known background.
Similar restrictions hold for a system by Gavrila and
Davis (Gavrila & Davis 1995). The Perseus system
(Kahn et d. 1996) uses a variety of techniques (e.g.,
motion, color, edge detection) to segment a person
and their body parts. Based on this segmentation the
Perseus system can detect pointing vectors. This sys-
tem is very similar to ours in that it is mounted on
a mobile robot and integrated with robot tasks. The
Perseus system differs from ours in that it requires a
static background, doesn

’

t

detect gestures in three di-
mensions and relies on off-board computation, which
can cause delays in recognition of gestures. Wilson and
Bobick (Wilson & Bobick 1995) use a hidden Markov
model to learn repeatable patterns of human gestures.
Their system differs from ours in that it requires peo-
ple to maintain strict constraints on their orientation
with respect to the cameras.

Recognizing gestures
Our gesture recognition system consists of a stereo
pair of black and white cameras mounted on a
pan/tilt/verge head that is, in turn, mounted on the
mobile robot (see Figure 1). The basis of our stereo vi-
sion work is the PRISM-3 system developed by Keith
Nishihara (Nishihara 1984). The PRISM-3 system pro-
vides us with low-level spatial and temporal disparity

Average Surface Depth

Object

Proximity Space partially enveloping object

Figure 2: A proximity space.

measurements. We use these measurements as input
to our algorithms for gesture recognition.

Our gesture recognition process has two compo-
nents. First, we concentrate our vision system

’

s

atten-
tion on small regions of 3-D visual space. We call these
regions proximity spaces. These spaces are designed to
react to the visual input much as a robot reacts to its
sensory input. Second, we spawn multiple proximity
spaces that attach themselves to various parts of the
agent and are guided by a coarse, three-dimensional
model of the agent. The relationships among these
proximity spaces gives rise to gesture recognition. Each
of these two components is described in the following
two subsections and then their application to gesture
recognition.

The proximity space method

The active vision philosophy emphasizes concentrating
measurements where they are most needed. An impor-
tant aspect of this approach is that it helps limit the
number of measurements necessary while remaining at-
tentive to artifacts in the environment most significant
to the task at hand. We abide by this philosophy by
limiting all our measurements in and about cubic vol-
umes of space called proximity spaces.

Within the bounds of a proximity space, an array
of stereo and motion measurements are made in order
to determine which regions of the space (measurement
cells) are occupied by significant proportions of surface
material, and what the spatial and temporal disparities
are within those regions. Surface material is identified
by detecting visual texture, i.e., variations in pixel val-
ues across regions of the LOG (Laplacian of Gaussian)
filtered stereo pair (see Figure 2).

The location of a proximity space is controlled by
behaviors generating vectors that influence its motion
from frame to frame. Behaviors generate motion vec-
tors by assessing the visual information within the
proximity space. There are behaviors for following,
clinging, pulling, migrating to a boundary and resiz-

916 Mobile Robots

Figure 3: Coarse 3-D model of a human used
ture recognition.

for ges- I

ing (which does not generate a motion vector, but a
size for the proximity space). Patterned after the sub-
sumption architecture (Brooks 1986), these behaviors
compete for control of the proximity space. In dynamic
terms, the proximity space acts as an inertial mass and
the behaviors as forces acting to accelerate that mass
(see (Huber & Kortenkamp 1995) for a more detailed
description).

Chaining multiple proximity spaces u&g
a human model

In order to recognize gestures, multiple proximity
spaces are spawned, which attach themselves to var-
ious body parts in the image of the gesturing per-
son. Each of these proximity spaces has its own set
of behaviors independently controlling its location in
space. However, these behaviors are constrained by
a coarse three-dimensional, kinematic model of a hu-
man that limits their range of motion. With perfect
tracking there would be no need for a model as the
proximity spaces would track the body parts in an un-
constrained manner. However, real-world noise may
sometimes cause the proximity space to wander off of
their body parts and begin tracking something in the
background or another part on the body. While the
behaviors acting on the proximity spaces continue to
generate motion vectors independent of the model; the
final movement of the proximity spaces is overridden
by the model if the generated vectors are not consistent
with the model.

We have chosen a model that resembles the human
skeleton, with similar limitations on joint motion. The
model, shown in Figure 3, consists of a head connected

to two shoulder joints. There are four proximity spaces
that are tracking various parts of the body. The first
proximity space (PSl) is tracking the head. Its be-
haviors allow it to move freely, but are also biased to
migrate it upward. The second proximity space (PS2)
tracks the shoulder. PSl and PS2 are connected by two
links, Ll and L2. These links are stiff springs that al-
low very little movement along their axes. The lengths
of Ll and L2 are set at the start of tracking and do not
change during tracking. We have a procedure for auto-
matically determining the lengths of the links from the
height of the person being tracked, which is described
later in the paper. The connection between Ll and L2
(Jl) acts as a ball joint. The motion of L2 relative
to Ll (and thus, PS2 relative to PSl) is constrained
by this joint to be Odeg in the up-down direction (i.e.,
shrugging of the shoulders will not affect the location
of the proximity space). The joint Jl also constrains
the movements of L2 relative to Ll by f38 deg in the
in-out direction (i.e., towards and away from the cam-
era). This means that the person must be facing the
cameras to within 38 deg for the gesture recognition
system to work correctly.

The third proximity space (PS3) is tracking the end
of the upper arm and is connected to PS2 by the link
L3. Again, L3 is modeled as a very stiff spring with a
length fixed at the start of tracking. L3 is connected
to L2 with a ball joint (52). L3 can move relative to
L2 up at most 75 deg and down at most 70 deg. It can
move into or out-of perpendicular to the camera by at
most f45 deg. This means that a pointing gesture that
is towards or away from the robot by more than 45 deg
will not be recognized. Finally, the fourth proximity
space (PS4) tracks the end of the lower arm (essentially
the hand) and is connected to PS3 with link L4 at joint
53. The range of motion of L4 relative to L3 at 53 is up
at most 110 deg, down at most -10 deg and into or out-
of perpendicular with the camera by at most f45 deg.
All of the links in the model are continuously scaled
based on the person’s distance from the cameras.

One limitation of our gesture recognition system is
that it can only track one arm at a time. There are
two reasons for this limitation. First, we do not have
enough processing power to calculate the locations of
seven proximity spaces at frame rate. Second, when
both arms are fully extended the hands fall out of the
field of view of the cameras. If the person backs up to
fit both hands into the field of view of the cameras then
the pixel regions of arms are too small for tracking.
The arm to be tracked can be specified at the start of
the tracking process and can be switched by the user.
While Figure 3 only shows the model of the right arm
for simplicity, the model for the left arm is simply a

Mobile Robots 917

2 . . 0 0
r relaxed

L c 0 0 k
raised arched halt

Figure 4: Recognizable gestures.

mirror image of the right.
Experiments, which are described in more detail

later, show that our system can recognize gestures from
distances as close as 1.25 meters from the camera (at
which point the person’s arm extends out of the field
of view of the cameras) to as far as 5 meters away
from the robot. The system can track a fully extended
arm as it moves at speeds up to approximately 36 deg
per second (i.e., a person can move their arm in an arc
from straight up to straight down in about five seconds
without the system losing track).

Acquisition and reacquistion using the model
Gesture recognition is initiated by giving the system a
camera-to-person starting distance and a starting arm.
Four proximity spaces are spawned and lay dormant
waiting for some texture to which to attach themselves.
As a person steps into the camera at approximately the
starting distance the head proximity space will attach
itself to the person and begin migrating towards the
top, stopping when it reaches the boundary of the per-
son. The other three proximity spaces are pulled by
their links up along with the head. While the person’s
arm is at their side, these proximity spaces are contin-
ually sweeping arcs along the dashed arrows shown in
Figure 3 looking for texture to which to attach them-
selves. When the arm is extended the three proximity
spaces “lock onto” the arm and begin tracking it. If
they lose track (e.g., the arm moves to fast or is oc-
cluded) they begin searching again along the dashed
arcs shown in Figure 3. If the head proximity space
loses track it begins an active search starting at’the
last known location of the head and spiraling outward.
Many times this re-acquisition process works so quickly
that the user never realizes that tracking was lost.

Defining gestures

Figure 4 shows the gestures that are currently rec-
ognized by the system. These gestures are very eas-

918 Mobile Robots

ily determined by looking at the relative angles be-
tween the links L2, L3 and L4 at the joints 52 and
53 (see Figure 3). Let’s call the angle between L2
and L3 (i.e., the upper arm angle) 01 and the an-
gle between L3 and L4 (i.e., the lower arm angle)
02. Odeg is straight out to the left or right. Then,
if 01 < -5Odeg and 02 < 45deg the gesture is re-
Iwed. If 01 < -50 deg and 02 > 45 deg the gesture is
thumbing. If -5Odeg < 01 < 45deg and 02 < 45deg
the gesture is pointing. If -50 deg < 01 < 45 deg and
02 > 45 deg the gesture is halt. If 01 > 45 deg and
02 < 45 deg the gesture is raised. If 01 > 45 deg and
02 > 45deg the gesture is arched. Thus, the person
is always producing some kind of gesture based on the
joint angles.

Gesture recognition is not immediate as that may
lead to many spurious gestures. Confidence in a ges-
ture is built up logarithmically over time as the an-
gles stay within the limits for the gesture. When the
logarithmic confidence passes a threshold (0.8 in our
experiments) then the gesture is reported by the sys-
tem. That gesture continues to be reported until the
confidence drops below the threshold.

This gesture recognition technique does not cur-
rently support recognizing gestures that occur over
time (e.g., a waving gesture). We believe that our ap-
proach, because it is active, lends itself to this and we
are working towards implementing it.

Connecting gestures to robot action
Simply recognizing gestures is not enough for them to
be useful; they need to be connected to a specific robot
actions. For the last several years we have been work-
ing on an intelligent control architecture, known as $I’,
which can integrate reactive vision and robot processes
with more deliberative reasoning techniques to pro-
duce intelligent, reactive robot behavior (Bonasso et
al. 1995). The architecture consists of three layers of
control: skills, sequencing and planning. Only the first
two layers (skills and sequencing) have been used in
the system described in this paper. The next two sub-
sections will describe the skills of our robot and how
those skills can be intelligently sequenced to perform
tasks.

Visual skills

Skills are the way in which the robot interacts with
the world. They are tight loops of sensing and acting
that seek to achieve or maintain some state. Skills can
be enabled or disabled depending on the situation and
the set of enabled skills forms a network in which in-
formation passes from skill to skill. Figure 5 shows the
skill network for our work in gesture recognition. The

Figure 5: Mobile robot skills for gesture recognition.

skills labeled vf h are obstacle avoidance and robot mo-
tion skills base on the Vector Field Histogram method
(Borenstein & Koren 1991). They take a goal location,
generated from any skill, and move the robot to that
goal location. The move-to-point, the track-agent
and the recognize-gesture skills allow can provide
goal locations to the vfh skills.

The recognize-gesture skill encapsulates the pro-
cesses described in the previous section and produces
one of the five gestures or no gesture as output. It
also generates as output the (x,y,z) locations of the
four proximity spaces when the gesture was recognized.
The next several subsections described the more inter-
esting gesture recognition skills in detail.

Moving to a point This skill produces an (x,y) goal
for the robot corresponding to the location at which the
person is pointing. This skill takes the (x,y,z) location
of the centroid of the shoulder proximity space (PS2
in Figure 3) and the hand proximity space (PS4 in
Figure 3) and computes a three-dimensional vector. It
then determines the intersection point of this vector
with the floor. Assuming the vector does intersect with
the floor, the skill begins generating a goal for the robot
and the motion control and obstacle avoidance skills
move the robot to that point.

We conducted a number of experiments to determine
the accuracy of the pointing gesture. The experimental
set-up was to have a person point to a marked point
on the floor. The vision system would recognize’ the
pointing gesture and the move-to-point skill would
determine the intersection of the pointing vector with
the floor. We would then compare this point with the
actual location of the target. We choose eight different
target points on the floor in various directions and at
various distances. We pointed five times at each target
point. Two different people did the’ point, both of them
familiar with the system. No feedback was given to the

X

@
-~

3m

X

XK

3m

Figure 6: A sample of experimental results. The per-
son is standing directly in front of the robot and point-
ing at different points on the floor (black circles). The
‘X’ is the point that the robot calculated as the inter-
section between the pointing gesture and the floor.

user between trials. Figure 6 shows a sample of those
points and the system’s performance.

For the five points that were between 2.5 and 4.5
meters away from the person, the mean error distance
from the target to the vector intersection was 0.41 me-
ters, with a standard deviation of 0.17. As the distance
from the person to the target grew the error also grew
rapidly, up to a mean error of over 3 meters at 5.5
meters away.

These results need to be taken with a grain of salt.
There are several factors that can introduce errors into
the system and that cannot be accounted for, includ-
ing: how accurately a person can actually point at a
spot; the initial accuracy of the robot both in position
and orientation; and the tilt of the robot due to an
uneven floor.

Acquiring along a vector When this skill is en-
abled, a pointing gesture will result in the vision sys-
tem searching along the pointing vector and stopping
if it acquires a distinct object. The vision system then
begins tracking that object. This skill takes the (x,y,z)
location of the centroid of the shoulder proximity space
and the hand proximity and computes a three dimen-
sional vector. The skill then causes the vision system
to search along through a tube of space surrounding
that vector until a patch of significant texture is en-
countered. The skill stops searching after a certain
distance, which is passed to the skill as a parameter
at run time. Informal experiments allowed two people

Mobile Robots 919

standing about 2 meters apart to “pass control” of the
system back and forth by pointing at each other. The
system successfully moved from person to person over
10 consecutive times.

Tracking an agent While the vision system is rec-
ognizing gestures it tracks the person’s head. The po-
sition of the person’s head is converted to a goal for
the robot and the robot moves, under local obstacle
avoidance towards that goal. The speed of the robot
is set at a maximum of 0.4 meters per second, but
the robot moves more slowly as it approaches the per-
son it is tracking or as it maneuvers to avoid obsta-
cles. We have successfully tracked people for periods
of twenty to thirty minutes in previous work (Huber
& Kortenkamp 1995). For this work we added gesture
recognition and allowed the person to stop the robot
by giving the “halting” gesture. When the robot de-
tects this gesture it stops moving, but the robot’s head
continues to track the person and the vision system
continues to perform gesture recognition. The robot
resumes moving when the person gives a “raised” ges-
ture.

Determining tracking height The coarse 3-D
model used for gesture recognition requires a rough
estimate of the height of the person. For this reason
we have implemented a skill that will automatically
acquire the height of a person being tracked and reset
the 3-D model on-the-run. This skill uses height of the
centroid of the head proximity space as the height of
the person. Experiments on five people ranging from
1.60m to 1.90m tall showed that the system estimated
their height to within an average error of 0.07m. This
is well within the gesture recognition system’s toler-
ance for tracking based on a fixed model.

Interpreting gestures in task contexts

Our target environments involve robots working with
astronauts in space or on planetary surfaces. Recently,
in support of these environments, we have begun to in-
vestigate human-robot interaction through gesturing.
Wanting to exploit the skills described above in as
many situations as possible, we have observed that in
many tasks a human pointing gesture can have a wide
range of interpretations depending on the task. The
middle layer of our $I’ architecture is the RAPS system
(Firby 1994). A reactive action package (RAP) spec-
ifies how and when to carry out routine procedures
through conditional sequencing. As such, a RAP pro-
vides a way to interpret gestures through context lim-
iting procedures of action.

Finding an agent to track One example of inter-
preting the same gesture in two different contexts can

920 Mobile Robots

(define-rap (respond-to-gesture ?agent)
(method motion-gesture

(context (or (current-gesture “Pointing”)
(current-gesture “Halting”)))

(task-net
(t 1 (interpret-gesture-for-motion ?agent))))

(method normal-acquisition
(context (current-gesture “Raised”))
(task-net

(sequence
(tl (speak “Point to the agent’s feet”))
(t2 (interpret-gesture-for-tracking ?agent)))))

(method long-range-acquisition
(context (current-gesture “Arched”))
(task-net

(sequence
(tl (speak “Point at the agent”))
(t2 (find-agent-along-vector ?agent))))))

Figure 7: RAP that uses task context to interpret a
gesture.

be shown in the task of pointing out an agent to be
tracked. In our research we have noted that the desig-
nator agent can simply point to the designated agent’s
feet and the robot can use the move-to-point skill.
But when the designated agent is some distance away
from the designator, the acquire-along-vector skill,
while slower, is less error prone. We devised a two
step gesture approach wherein the first gesture tells the
robot the method to be used to designate the agent to
be tracked, and the second gesture would be the point-
ing gesture itself. Figure 7 shows this RAP (simplified
for the purposes of this paper).

This RAP assumes a gesture has been received. If
it is a pointing or halting gesture, a lower level RAP
is called to stop the robot or to move to a point on
the floor. If the gesture received is “raised”, the usual
tracking RAP will be invoked (interpret-gesture-for-
tracking) which gets a pointing gesture, computes the
point on the floor, and then looks for an agent at the
appropriate height above that point. If, on the other
hand, the arched gesture is detected, the find-agent-
along-vector RAP will be invoked to get a pointing ges-
ture and find an agent somewhere along the indicated
vector. That RAP also enables the tracking skill.

The higher level RAP in Figure 8 sets up a single ges-
ture (such as go to place) or the first of a two gesture
sequence. This RAP has three methods depending on
whether there is a gesture stored in the RAP memory.
Normally, there is no current gesture and the robot
must look for the designating agent, get a gesture,
and respond appropriately (as described in the previ-
ous RAP). Once a gesture task is completed, memory
rules associated with lower level RAPS will remove the

[define-rap (get-and-respond-to-gesture ?agent)
(succeed (or (last-result timeout) (last-result succeed)))
(method no-current-gesture

(context (not (current-gesture ?g)))
(task-net

(sequence
(tl (find-agent ?agent))
(t2 (get-gesture ?agent))
(t3 (respond-to-gesture ?agent)))))

(method useful-current-gesture
(context (and (current-gesture ?g) (not (= ?g “Halting”)))
(task-net

(sequence
(t 1 (recognize-gesture ?agent))
(t2 (respond-to-gesture ?agent)))))

(method current-halt-gesture
(context (and (current-gesture ?g) (= ?g “Halting”)))
(task-net

(sequence
(tl (speak “I need another gesture”))
(t2 (find-agent-at ?agent))
(t3 (get-gesture ?agent))
(t4 (respond-to-gesture ?agent))))))

Figure 8: RAP that sets up the gesture recognition
process.

used gestures from the RAP memory.
But sometimes a lower level RAP will fail, e.g.,

when the designated agent can’t be found, and a ges-
ture such as “Raised” will remain in the RAP mem-
ory. .Thus, in the second method, an other than
halting gesture is current and the robot will turn on
the recognize-gesture skill (for subsequent gestures)
and attempt to carry out (retry) the task indicated by
the current gesture.

In some cases, the robot will receive an emergency
halting gesture before a lower level RAP is completed
such as in the middle of a movement. If this happens
the robot’s last recollection of a gesture will be “‘Halt-
ing.” In these cases, the robot tells the designating
agent that they need to start over, and continues as in
the first method. These RAPS do not show the details
of enabling actual skills, see (Bonasso et al. 1995) for
details of how this works.

Conclusions

Our goal is to develop technologies that allow for ef-
fective human/robot teams in dynamic environments.
The ability to use the human’s natural communication
tendencies allows the robot to be more effective and
safer when working among humans. The contributions
of our system include a demonstration of gesture recog-
nition in real-time while on-board a mobile robot. The
system does not require the user to wear any special
equipment nor does it require that the robot, user or
background be static. Our contributions also include

integrating the gesture recognition system with an in-
telligent agent architecture that can interpret complex
gestures within tasks contexts. This complete system
is a first step towards realizing effective human/robot
teams. In the future we hope to extend the system
by recognizing gestures over time and by integrating
gesture recognition with speech recognition.

References
Bonasso, R. P.; Kortenkamp, D.; Miller, D. P.; and
Slack, M. 1995. Experiences with an architecture
for intelligent, reactive agents. In Proceedings 1995
IJCAI Workshop on Agent Theories, Architectures,
and Languages.

Borenstein, J., and Koren, Y. 1991. The Vector
Field Histogram for fast obstacle-avoidance for mo-
bile robots. IEEE Journal of Robotics and Automa-
tion 7(3).

Brooks, R. A. 1986. A Robust Layered Control Sys-
tem for a Mobile Robot. IEEE Journal of Robotics
and Automation 2(1).

Cassell, J. 1995. Speech, action and gestures as con-
text for on-going task-oriented talk. In Working Notes
of the 1995 AAAI Fall Symposium on Embodied Lan-
guage and Action.

Darrell, T. J.; Maes, P.; Blumberg, B.; and Pentland,
A. 1994. A novel environment for situated vision and
behavior. In Workshop on Visual Behaviors: Com-
puter Vision and Pattern Recognition.

Firby, R. J. 1994. Task networks for controlling con-
tinuous processes. In Proceedings of the Second Inter-
national Conference on AI Planning Systems.

Gavrila, D. M., and Davis, L. 1995. 3-D model-based
tracking of human upper body movemerit: A multi-
view approach. In IEEE Symposium on Computer
Vision.

Huber, E., and Kortenkamp, D. 1995. Using stereo
vision to pursue moving agents with a mobile robot.
In 1995 IEEE International Conference on Robotics
and Automation.

Kahn, R. E.; Swain, M. J.; Prokopowicz, P. N.; and
Firby, R. J. 1996. Gesture recognition using the
perseus architecture. Computer Vision and Pattern
Recognition.

Nishihara, H. 1984. Practical real-time imaging stereo
matcher. Optical Engineering 23(5).

Wilson, A., and Bobick, A. 1995. Configuration states
for the representation and recognition of gesture. In
International Workshop on Automatic Face and Ges-
ture Recognition.

Mobile Robots 921

