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Abstract 

This paper presents a characterization of sensing fail- 
ures in autonomous mobile robots, a methodology for 
classification and recovery, and a demonstration of this 
approach on a mobile robot performing landmark navi- 
gation. A sensing failure is any event leading to defec- 
tive perception, including sensor malfunctions, software 
errors, environmental changes, and errant expectations. 
The approach demonstrated in this paper exploits the 
ability of the robot to interact with its environment to 
acquire additional information for classification (i.e., ac- 
tive perception). A Generate and Test strategy is used 
to generate hypotheses to explain the symptom result- 
ing from the sensing failure. The recovery scheme re- 
places the affected sensing processes with an alternative 
logical sensor. The approach is implemented as the Sen- 
sor Fusion Effects Exception Handling (SFX-EH) archi- 
tecture. The advantages of SFX-EN are that it requires 
only a partial causal model of sensing failure, the control 
scheme strives for a fast response, tests are constructed 
so as to prevent confounding from collaborating sensors 
which have also failed, and the logical sensor organiza- 
tion allows SFX-EH to be interfaced with the behavioral 
level of existing robot architectures. 

Introduction 
The transfer of autonomous mobile robot (AMR) tech- 
nology to applications in manufacturing, defense, space, 
hazardous waste cleanup, and search and rescue missions 
has been impeded by a lack of mechanisms to ensure ro- 
bust and certain sensing. The actions of an AMR depend 
on its perception; if perception is faulty and goes unno- 
ticed, the robot may “hallucinate” and act incorrectly. 
One key mechanism for robust sensing is fault-tolerance: 
the ability to detect sensing failures and either recover 
from them in such a way as to allow the robot to resume 
performance of its task(s) or to gracefully degrade. 

Previous work in robotic sensing has demonstrated 
how certain types of sensing failures can be detected 
either at the behavioral (i.e., self-monitoring) (Ferrell 
1993; Murphy & Arkin 1992) and/or deliberative layer 
(i.e., global monitoring) (Hughes 1993; Noreils & Chatila 

1995). An open research question is how to recover from 
these failures. In the general case, recovery requires 
identification of the source of the problem; if the cause is 
not known, the wrong response may be employed. Detec- 
tion of a failure does not necessarily mean that the cause 
is known. For example, in (Murphy 1992), three dif- 
ferent problems which interfered with sensing in a secu- 
rity robot (sensor drift, incorrect placement of the robot, 
sensor malfunction) evinced that same symptom: a lack 
of consensus between the observations. The appropri- 
ate response to each problem was significantly different 
(recalibrate the offending sensor, rotate the robot until 
it reached the correct view, and replace the damaged 
sensor with an alternative, respectively). However, the 
correct response was known once the cause was identi- 
fied. While classification is essential for the general case, 
it may be unnecessary in situations where the recovery 
options are limited, i.e. “do whatever works” (Payton et 
al. 1992). 

This paper presents a symbolic AI approach to classi- 
fying and recovering from sensing failures. The char- 
acteristics of the AMR domain is differentiated from 
typical diagnosis applications (e.g. 9 medicine, geologi- 
cal interpretation) in the next section. Related work in 
problem solving and diagnosis for robotic sensing fol- 
lows. An overview of the approach taken in this paper 
is given next. Classification of errors is done with a 
novel extension of the basic Generate and Test strat- 
egy developed for Dendral (Lindsay et al. 1980)) with 
contributions from Generate, Test, Debug (Simmons & 
Davis 1987). This classification scheme takes advantage 
of the robot’s ability to actively use other sensors and 
feature extraction algorithms to test hypotheses about 
the sensing failure; it can be considered a form of active 
perception (Bajcsy 1988). The classification and recov- 
ery scheme is implemented as the exception handling 
(EH) portion of the Sensor Fusion Effects (SFX) archi- 
tecture. Demonstrations of SFX-EH on a mobile robot 
with a landmark navigation behavior are reviewed. The 
paper concludes with a summary and brief discussion, 
including on-going research efforts. 

922 Mobile Robots 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Sensing Failures in AMR or unanticipated event. Even if multi-sensor modeling 

A characterization of sensing failures in AMRs is useful 
at this point for two reasons. First, it provides the con- 
text for justifying the approach taken in this paper. Sec- 
ond, it will distinguish classifying and recovering from 
sensing failures for AMRs from the connotations associ- 
ated with general diagnosis in other domains such as 
medicine and the identification of geological features. 
The unique attributes of this domain are: 

The class of sensing failures includes more than sen- 
sor failures. For the purposes of this paper, a sensing 
failure is defined as any event leading to defective per- 
ception. These events may stem from sensor hardware 
malfunctions, bugs in the perceptual processing software 
(e.g., does not work in a particular situation), changes in 
the environment which negatively impact sensing either 
at the hardware or software level (e.g., turning the lights 
off), or errant expectations (e.g., looking for the wrong 
thing at the wrong time). 

The inclusion of software defects, environmental 
change, and errant expectations as sources of sensing 
failures makes classification particularly challenging. In- 
deed, one of the motivations for (Payton et al. 1992) is 
to avoid having to attempt to identify software defects. 
These sources of faulty sensing have the potential to in- 
terrupt progress, especially changes in the environment. 
Exploiting the environment is a fundamental principle 
of behavioral robotics. However, (Howe & Cohen 1990) 
note the difficulty of designing agents that can toler- 
ate environmental change. Since AMRs function in an 
open world, this suggests that this difficulty will be ex- 
acerbated and environmental change will be a significant 
source of problems as robots are deployed in more de- 
manding settings. 

Sensing failures occur frequently, but diflerent types 
occur infrequently. (Ferrell 1993) noted that in ex- 
periments with Hannibal, a hexapod robot with over 
100 sensors, a hardware sensor failure occurred approx- 
imately once every two weeks. Our experience with two 
different mobile robots is consistent. 

It is unrealistic and undesirable to attempt to explic- 
itly model all possible failure modes. (Velde & Carig- 
nan 1984) devised one such explicit modeling scheme. 
However, this scheme assumed that all sensors were of 
the same type and their observations could be corre- 
lated statistically. But it begs the issue of how to ac- 
quire statistical data about a set of events, when, by 
definition, the very members of that set may not be 
known a priori. The difficulties are increased as roboti- 
cists turn to multiple sensors (sensor fusion). Model- 
ing the interactions between sensors for the environment 
and the task leads to a combinatorial explosion with 
a statistical method such as (Velde & Carignan 1984; 
Weller, Groen, & Hertzberger 1989), again ignoring that 
a sensing failure may result from a never encountered 

could be done satisfactorily, the causal models are un- 
likely to be portable to new sensor configurations and 
application domains. 

An AMR can actively perceive. One advantage that an 
AMR has is that it can acquire new information by delib- 
erately engaging its environment = per active perception 
(Bajcsy 1988), and/or by extracting new meanings from 
previous observations (e.g., examines the recent history 
of measurements) . 

An AMR may have both redundant and complemen- 
tary sensing modalities. The trend in robotic sensing 
is to use a small set of general purpose sensors. Some 
sensors may be redundant (i.e., two or more of the same 
sensor). However, the majority of sensors are likely to 
be complementary. For example, at the AAAI Mobile 
Robot Competitions, the entries are invariably equipped 
with vision and sonar. This makes classification chal- 
lenging because the scheme cannot assume that there 
is an alternative sensor which can directly collaborate a 
suspect sensor; instead, inferences from the behaviors of 
other sensors will have to be made. 

Exception handling is a secondary function in an 
AMR. In other domains, diagnosis is their primary task. 
In an AMR, sensing failures can be viewed as exceptions 
which cause the robot’s progress to be suspended. Reli- 
able sensing must be reestablished before the robot can 
resume the behavior and complete the intended task. 
However, an AMR may have only a finite time to spend 
on exception handling. It can’t remain indefinitely in 
a hostile environment such as Three Mile Island or an 
outgassing Near Earth Object without increasing the 
risk of a hardware failure from radiation or catastrophe. 
Therefore, the time dedicated to exception handling is 
an important consideration in the development of any 
classification and recovery scheme. 

Exception handling must be integrated with the whole 
system. To see how sensing failures impact the whole 
system, consider the following examples. First, because 
the robot cannot act correctly without adequate sens- 
ing, an AMR must cease execution of the failed behav- 
ior and possibly revert to a stand-by, defensive mode if 
it cannot continue other behaviors. This requires infor- 
mation about sensing failures to be propagated to the 
behavioral or task manager. If the behavior cannot re- 
cover quickly, the mission planner aspect of the robot 
must be informed so that it can replan or abort the mis- 
sion. Second, since classification and recovery may in- 
volve active perception, contention for sensing resources 
may occur, e.g., is it safe to take away sensor X from 
behavior Y and point it in a different direction? Con- 
tention resolution requires knowledge about the robot’s 
goals, interchangeability of sensors, etc., making excep- 
tion handling a process which must communicate with 
other modules in the robot architecture. Third, if the 
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source of a sensing failure is used by other behaviors, 
the recovery scheme should include replacing the failed 
component in the other behaviors which may be hallu- 
cinat ing , 
problem. 

as well as the behavior that first detected the 

The attributes of the classification and recovery task 
for AMR itemized above lead to a characterization of 
a desirable exception handling mechanism and an ap- 
propriate problem solving strategy. This exception han- 
dler is intended to be applicable to any AMR sensing 
configuration. Because sensor failures occur frequently 
and suspend progress of the robot, exception handling 
must attempt to effect a timely recovery. The exception 
handler must interact with the task manager to prevent 
unsafe actions from occurring during classification and 
recovery. The exception handling scheme can reduce the 
down time by exploiting any situations where a recov- 
ery scheme can be directly invoked, either because the 
symptom clearly defines the cause or because all possi- 
ble causes result in the same response. It should con- 
tinue to attempt to identify the source of the sensing 
failure in a background mode if it invokes a direct re- 
covery scheme. The exception handler can use active 
perception to overcome the open world assumption and 
the resultant difficulty in constructing a complete model 
of failure modes. But active perception leads to a new 
issue of how to safely reallocate sensing resources from 
other behaviors (if needed) to identify the source of the 
problem. Therefore, the exception handling mechanism 
must be a global, or deliberative, process in order to 
reason about possible corroborating sensors which may 
not be allocated to it. These sensors may or may not be 
redundant. The mechanism must be able to handle con- 
tention resolution or communicate its needs to the ap- 
propriate sensor allocation process. When the exception 
handler identifies the source of the failure, it propagates 
the information to other behaviors so they don’t hallu- 
cinate or go into a redundant classification and recovery 
cycle. 

Related Work 
As noted in the introduction, detection, classification, 
and recovery from sensing failures in mobile robots has 
been addressed by (Noreils & Chatila 1995), (Ferrell 
1993) and (Payton et al. 1992). Other noteworthy ef- 
forts are those by (Weller, Groen, & Hertzberger 1989), 
(Velde & Carignan 1984)) (Hanks & Firby 1990), and 
(Chavez & Murphy 1993). 

(Weller, Groen, & Hertzberger 1989) and (Velde 
& Carignan 1984) deal with sensor errors in general. 
(Weller, Groen, & Hertzberger 1989) create modules for 
each sensor containing tests to verify the input based on 
local expert knowledge. Environmental conditions de- 
termine whether a test can be performed or not. The 
partitioning of problem space by symptom is based on 

these modules. The approach taken in this paper follows 
(Weller, Groen, & Hertzberger 1989), testing corrobo- 
rating sensors before using them for error classification. 

(Hanks & Firby 1990) propose a planning architecture 
suitable for mobile robots. As with (Noreils & Chatila 
1995), a plan failure triggers exception handling. The 
system recovers by either choosing another method ran- 
domly whose pre-conditions are currently satisfied (sim- 
ilar in concept to logical sensors (Henderson & Shilcrat 
1984) and behaviors (Henderson & Grupen 1990)), or by 
running the same method again (similar to the retesting 
strategy used by (Ferrell 1993)). As with (Payton et al. 
1992), there is no formal error classification scheme. No 
check is performed to confirm that the sensors providing 
information about the pre-conditions are still function- 
ing themselves. If they are not, the recovery scheme may 
pick a method that will either fail, or, more significantly, 
hallucinate and act incorrectly. 

An earlier version of SFX-EH was presented in 
(Chavez & Murphy 1993). This article builds on that 
work, with two significant advances. The control scheme 
is now a global, deliberative process with the ability to 
access information from sensors not allocated to the be- 
havior. The original was restricted to using only in- 
formation directly available to the behavior. This was 
intended to provide fault tolerance entirely within a be- 
havior; in practice with landmark navigation and hall- 
following this proved to be too severe. 

Approach 
This paper concentrates on the exception handling strat- 
egy needed to classify a sensing failure. It assumes that 
an AMR accomplishes a task via independent behaviors 
which have no knowledge about sensing processes being 
used by the other behaviors. A behavior is assumed to 
consist of two parts: a motor process or schema, which 
defines the pattern of activity for the behavior, and a 
perceptual process or schema, which supplies the mo- 
tor process with the necessary perception to guide the 
next action. This assumption allows the perceptual pro- 
cess to be treated as a logical sensor. Alternative logical 
sensors may exist for the percept. The sensor and fea- 
ture extraction algorithms used to compute the percept 
are referred to a5 a description of the percept, synony- 
mous with a logical sensor. There may be more than 
one description of a percept using the same sensor. For 
example, a hazardous waste container can be modeled in 
terms of 2D visual features or 3D visual features; each 
set would form a unique description even though they 
were extracted from the same camera. A logical sensor 
may fuse the evidence from than one description; this is 
generally referred to as sensor fusion of multiple logical 
sensors. 

A description is the smallest granularity for identify- 
ing a sensing failure; therefore, the difference between a 
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software defect (e.g., the algorithm fails after the 100th 
iteration) and errant instantiation (e.g., the algorithm 
is triggered with the wrong parameters) is indistinguish- 
able. However, the exception handler should not assume 
that a failed logical sensor means that the physical sen- 
sor is “bad.” Instead, it should attempt to isolate and 
test the physical sensor separately where possible. 

Either the behavior or a global supervisory monitor 
is assumed to detect a sensing failure and supply the 
exception handler with the symptom and relevant infor- 
mation. The symptom may provide an explicit classi- 
fication of the source of the problem, i.e., serves as a 
complete causal model; for example, upon malfunction- 
ing, the hardware returns a failure code. The symptom 
may only be a partial causal model (e.g., lack of con- 
sensus between observations), thereby necessitating fur- 
ther investigation. The exception handler assumes that 
there is only one sensing failure at a time. This simpli- 
fies classification. By solving one sensing failure, it is 
hoped that any additional failures would be taken care 
of. If not, the new logical sensor will fail and excep- 
tion handling reinvoked. It is worth emphasizing that 
the system does not assume that any additional sensors 
used for classification or recovery are operational; there- 
fore any sensors used for corroboration must be validated 
as functional in advance. Also, the exception handling 
approach supports graceful degradation by acknowledg- 
ing when it can’t solve the problem and turning control 
over to whatever mission planning arrangement is used 
by the robot. 

The exception handling strategy is divided into two 
steps: error classification and error recovery. The error 
classification module uses a variation of Generate and 
Test (Lindsay et al. 1980) to generate hypotheses about 
the underlying cause of the failure. There are three ad- 
vantages to using Generate and Test. First, since it is 
an exhaustive search, it catches errors that occur infre- 
quently. Second, Generate and Test allows the robot to 
actively collect additional information. Because robotic 
behaviors generally are reactive in the sense of (Brooks 
1986)) their perception is limited to local representations 
focused solely on the motor action. As a result, there 
is usually not enough information available to a behav- 
ior to isolate the cause locally. Active acquisition of 
additional information is critical to the success of error 
classification. Three, the tests do not require redundant 
sensors, instead information from other modalities can 
be used. A Generate and Test strategy does have one 
disadvantage; because it performs an exhaustive search, 
it can be time consuming. However, this disadvantage 
has not been encountered in practice to date because of 
the small search space for the set of sensors typically 
used by mobile robots. 

Error classification follows the same basic procedure 
as Generate and Test (Lindsay et al. 1980): 

1. Generate all possible causes based on the symptom. 

2. Order the list of associated tests and execute the tests 
to confirm any of these causes. 

3. Terminate classification when all tests have been per- 
formed or an environmental change has been con- 
firmed. Testing does not terminate upon the first con- 
firmed sensor failure because an environmental change 
can cause a sensor diagnostic test to report a false 
positive. This can be determined by examining the 
results of all tests. If the list of tests is exhausted and 
no source of the failure can be identified, an errant ex- 
pectation (i.e., planner failure) is assumed to be the 
cause. 

There are five novel extensions to Generate and Test 
for classifying sensor failures in AMRs. One, the prob- 
lem space is constrained by the symptom (e.g., missing 
observation, lack of consensus between multiple obser- 
vations, highly uncertain evidence, etc.) in order to re- 
duce search. Two, the exception handler generates all 
possible hypotheses and tests associated with that symp- 
tom at one time in order to reduce testing time and re- 
sources, and to prevent cycles in testing. Portions of 
the tests associated with the hypotheses may be redun- 
dant; this prevents them from being rerun. Three, the 
list of hypothetical causes always includes violations of 
the pre-conditions for each description (sub-logical sen- 
sor) in the logical sensor. This is similar in philosophy 
to GTD (Simmons & Davis 1987) where the debugger 
challenges the pre-conditions of nodes in the dependency 
structure. Note that in this application, the challenge 
is part of the initial hypothesis generation step rather 
than a debugging step. Example pre-conditions are suf- 
ficient ambient light and adequate power supply. Four, 
the tests are ordered to ensure correctness. If additional 
sensors are being used in the tests to corroborate obser- 
vations or verify the condition of the environment, they 
must first be tested (if possible) to confirm that they 
are operational. Five, the list of tests is examined and 
redundant tests removed in order to speed up testing. 

Once the sensing failure is classified, recovery is 
straightforward since the logical sensor scheme explicitly 
represents equivalences between sensing processes. The 
search for an alternative degenerates to a table look- 
up. If the sensing failure is due to either a malfunction 
or an environmental change, error recovery attempts to 
replace the logical sensor with an alternative. The alter- 
native must satisfy any new pre-conditions discovered 
by the classification process. For example, if the reason 
for a sensing failure with a video camera is because the 
ambient lighting is extremely low, then a logical sensor 
using a redundant video camera is not considered. If 
there is no viable alternative logical sensor, the error 
recovery process declares a mission failure and passes 
control to the planner portion of the robot. 
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Motor Process 

Error Ckzssif~ation 

1. Generate hypotheses 
2. Order tests and execute Search for akemative 

Active Perception Mission Planner/ 
Routines Task Manager 

Mission Planner/ 
Task Maauger 

Figure 1: Overview of SFX-EH. 

Implementation: SFX-E 
The exception handling strategy described above has 
been implemented as an extension to the Sensor Fu- 
sion Architecture (SFX) (Murphy & Arkin 1992)) called 
SFX-EH (SFX Exception Handling). Figure 1 shows a 
conceptual layout of sensing activities in SFX-EH. The 
perceptual process component of a behavior executes in 
three steps, as per SFX. First, observations are collected 
from each description in the logical sensor, e.g., grab 
an image, run feature extraction algorithms on it. Next, 
the descriptions are preprocessed to compensatefor asyn- 
chronous observations, etc. The fusion step integrates 
the evidence for the percept from each description and 
passes it to the motor process. Situations where the log- 
ical sensor consists of a single description are treated as 
a degenerate case of sensor fusion and the fusion step is 
null. 

At this time, self-monitoring perceptual processes 
within a behavior are the only mechanisms for detect- 
ing sensing failures, but behavioral and planning level 
monitoring is not precluded. SFX examines the data for 
a failure after each step. The four symptoms currently 
recognized by SFX are: missing data (the description 
has not been updated with a new reading), highly un- 
certain data (the observation of a description is vague or 
ambiguous), highly confEicting observations (the observa- 
tions from multiple descriptions do not show a consen- 
sus), and below minimum certainty in the percept (the 
evidence that the percept is correct is too low for the 
motor process to safely use). Hardware or dedicated di- 
agnostic software can short-circuit the detection process. 
If an explicit error is detected, perceptual processing for 
the behavior is immediately suspended, and the associ- 
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Figure 2: Diagram of the Exception Handling Knowl- 
edge Structure (EHKS) 

ated recovery scheme implemented (if any) or control is 
passed to the exception handler. 

The exception handling module is global. It relies on 
the Exception Handling Knowledge Structure (EHKS) 
to provide it with the relevant data about the sensing 
failure and the task. The EHKS, shown in Figure 2, 
is a frame with six slots. The failure step slot is a 
flag that describes whether the failure occurred at what 
stage of execution. The errors slot gives the failure 
condition encountered. The bodies of evidence slot 
is list of frames, each of which holds data from each 
description in the logical sensor. The environmental 
pre-conditions slot also holds a list of frames, each of 
which describe the attribute of the environment (if any) 
which serves as a pre-condition for using that sensor, 
the expected value of the environmental attribute for 
acceptable performance of the sensors, and pointers to 
other sensors which share the same environmental pre- 
condition. The EKHS contains this so it can challenge 
the environmental pre-conditions. 

The hypotheses take the form that a particular de- 
scription or logical sensor has failed. The failure condi- 
tions describe if the failure occurred during the collection 
step, the pre-processing step, or the fusion step, along 
with what type of failure occurred. If the failure oc- 
curred during the collection step or the pre-processing 
step, then individual suspect bodies of evidence are di- 
rectly known; otherwise, all bodies of evidence are con- 
sidered suspect. 



Once the suspect descriptions have been identified, 
the actual list of tests is generated. The tests are used 
to determine the specific cause of the error by investi- 
gating potential sensor malfunctions and environmental 
changes. Generating the test list requires deciding which 
environmental conditions need to be tested, based on 
which descriptions are suspect. Because the environ- 
mental pre-conditions may hold different attribute val- 
ues for each sensor, an environmental change can affect 
some sensors, but not others. Also, because challeng- 
ing environmental pre-conditions may require additional 
sensing, the system must be certain that the sensor to 
be used for additional sensing is operating nominally. 
Thus, a sensor diagnostic must be run before collecting 
additional sensor data. 

The test list is generated by initially checking if any 
descriptions in the Affected Sensors slot of an envi- 
ronmental frame and in the sensing plan contribute a 
suspect body of evidence. If so, and no sensing is re- 
quired to acquire data to determine the value of the 
desired environment al attribute, then the environmen- 
tal pre-condition challenge is added to the test list. If 
additional sensing is required to challenge an environ- 
mental pre-condition, then a diagnostic for the sensor 
which performs the additional sensing is added to the 
test list in front of the environmental pre-condition chal- 
lenge. Finally, duplicate sensor diagnostic routines are 
removed from the list, if present. Each test list item 
contains identification of the test and indicates if the 
test is for an environmental change, a sensor diagnostic 
for a sensor contributing a body of evidence, or a sensor 
diagnostic for an environmental sensor. 

Demonstrations 
The current version of SFX-EH has been transferred 

to Clementine, a Denning MRV-4 mobile robot, shown 
in Figure 3 and demonstrated for landmark navigation 
using redundant sensors. The objective was to show the 
operation of the classification and recovery scheme for 
all types of failures in a realistic setting. 

The behavior used for this demonstration was move- 
to-goal(goal=purple-square), where the goal was a 
purple square landmark. The behavior was purely reac- 
tive; the robot had no a priori knowledge of its relative 
position. The presence of the landmark in the image 
elicited a constant attraction potential field. Two logical 
sensors were available for perceiving the purple square. 
The default logical sensor consisted of one description 
taken from the color video camera mounted on front of 
the robot (camera 0). The landmark was represented by 
two features: the intensity values in HSV space corre- 
sponding to that shade of “

purple

”

, 

and shape via the 
Hu invariant spatial moments (Pratt 1991). The belief 
in the landmark was computed as how well the Hu spa- 
tial moments of a candidate “

purple

” 

region matched the 

a. 

b. 

Figure 3: Landmark navigation: a.) Initiating sensor 
malfunction by covering camera b.) Recovery by turning 
to alternative sensor (shown in mid turn) c.) Resump- 
tion of behavior and completion of task. 
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** STARTING ERROR CLASSIFICATION ** 
Body of evidence 0: Sensor type is color camcorder 

STEP 1: Identification of suspect 
Pre-processing errors discovered 

of evidence 

Fig. 3a. the robot is making normal progress towards 
the landmark using the default logical sensor as a grad- 
uate student is about to place a box over the camera 
to simulate a sensor malfunction (e.g., dirt on the lens). 
In Fig. 3b. the robot has halted while it generates hy- 
potheses and tests them. It uses the video camera in the 
rear to attempt to establish whether an environmental 
change has occurred. If so, both cameras should report 
images with a high average intensity level. The output 
of the two cameras does not agree; camera 1 shows no in- 
dication of an environmental change but camera 0 does. 
Since the cameras are mounted on the same small robot, 
it is unlikely that only one camera would be affected by 
an environmental change. Therefore, SFX-EH concludes 
that camera 0, or its software, has become defective and 
must be replaced. Fig. 3c. shows the robot resuming 
progress towards the landmark, but turned 180” in or- 
der to use the alternative logical sensor. The sign of the 
motor commands are automatically reversed when cam- 
era 1 is the “leader;” other behaviors which depend on 
the direction of motion receive the reversed commands. 

Suspect body of evidence: 0 
This BOE did not report missing data 

STEP 2: Generation of candidate hypotheses (tests) 
Building test list. 

Color camera diagnostic: 
This is an environmental sensor diagnostic. 
Check intensity: 
This test challenges an environmental pre’cond. 
Color camera diagnostic: 
This is a suspect sensor diagnostic for sensor number 0. 
Check intensity: 
This is s+ suspect sensor diagnostic for sensor number 0. 

Done building test list. 

STEP 3: Execution of tests 

Test 1: This is a color video hardware diagnostic function. 
to see if any good color cameras exist. 
Testing color sensor number 0 which was marked good... 
Found a good color sensor, number 0. Ok to run other tests. 

Test 2: This is to find out if any color sensor reports good intensity. 
Color sensor 0 reports below minimum intensity threshold. 
Environmental intensity is ok, detected with sensor 1. 

== CONFIRMED TEST LIST ====== 
Color camera error 
__---__-____c---_-------w---- __----_---------------------- 
** ERROR CLASSIFICATION COMPLETE ** 
** STARTING ERROR RECOVERY ******I* 
Recovery 1 

Original sensing plan: 
description 0: sensor number 0, named Sony- Videocam 

Performing color video hardware error recovery. 
REPLACING sensor number 0 with sensor number 1 

Repaired sensing plan 
Description 0: sensor number 1, named Sony- Videocam 
** ERROR RECOVERY COMPLETE ** 

Conclusions and On-going Work 
The Generate and Test approach taken by SFX-EH has 
several advantages. It requires only a partial causal 
model of sensing failure, and that partial causal model is 
based on interactions between physical sensors and the 
environment, rather than limited to models of how the 
sensors respond for a task, which are difficult to acquire. 
This is expected to allow the problem solving knowledge 
associated with a specific physical sensor configuration 
to be portable to other tasks. The classification pro- 
cess can be short-circuited when all causes of a sv-mp- 
tom have the same recovery scheme. The constructionof 
tests takes into account possible confounding from other 
failed sensors, adding more reliability to the classifica- 
tion and recovery process, plus preventing cycles in test- 
ing. Unlike previous systems, the tests themselves can 
extract information from complementary sensors. The 
logical sensor organization allows exception handling to 
be interfaced with the behavioral level of existing robot 

Figure 4: Abbreviated output from SFX-EH. 

landmark model. The alternative logical sensor applied 
the same algorithms but used the color video camera 
mounted on the rear of the robot (camera 1). While the 
logical sensors are redundant in terms of the type of in- 
formation they produce, the robot must face backwards 
in order to use camera 1 for landmark navigation. 

In each run, the robot was placed in an open area 
within 25 feet of the purple-square landmark. Depend- 
ing on the purpose of the demonstration, the robot may architectures. 
or-may not have been placed facing the landmark. As SFX-EH has two disadvantages. The most significant 
the robot made progress towards the landmark, a failure is that the hypotheses and tests are based on domain- 
would be introduced. Sensor malfunctions were intro- 
duced by pulling the video cable out of a camera and 
putting a box over one camera to simulate a problem 
with the optics. Turning out the lights, an environmen- 
tal change, was simulated by putting boxes over both 
cameras simultaneously. An errant expectation was gen- 
erated by moving the landmark in the middle of a run 
or orienting the robot where it was not seeing the land- 
mark. 

dependent knowledge, not purely general purpose prob- 
lem solving skills. The basic structure can be ported 
to new applications, but new knowledge will have to be 
added. However, most of the domain-dependent knowl- 
edge is portable because the knowledge base is organized 
around sensor interactions, not a casual model of the 
sensors for a specific behavior. For example, a change in 
the environment can be confirmed with a redundant sen- 
sor regardless of what the robot was attempting to per- 
ceive prior to the failure. The addition of general prob- 
lem solving strategies and a learning mechanism, such as 

Figure 3 shows instances from a typical sequence; the 
corresponding output of SFX-EH is in Figure 4. In 
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Case-Based Learning, is being considered. Second, the 
logical sensor representation allows rapid generation ofa 
small set of tests and ease of generation, but introduces 
other problems due to coarse granularity and a possible 
lack of available alternate logical sensors. However, these 
problems, especially the issue of when to re-consider a 
“bad” physical sensor, appear to be tractable and will 
be addressed in future refinements of SFX-EH. 

The demonstrations provided additional insights and 
directions for future research. A practical issue is when 
to retry a sensor that has been identified as “bad.” It 
should also be noted that experience with SFX-EH has 
shown that the testing, not the problem space search 
needed for hypothesis generation is the bottleneck in re- 
covering from a sensing failure. Part of this experience is 
due to the small set of possible hypotheses implemented 
at this time. But a large part of the rapid generation of 
hypotheses is due to a) the category of sensing failure 
indexing the classifier into the subspace of potentially 
applicable hypotheses and b) the coarse granularity of 
the failure modes. 

SFX-EH currently lacks the ability to resolve resource 
contention due to active perception demands and does 
not update the sensing status to other behaviors. These 
issues are being actively addressed by the addition of 
a global event-driven sensing manager. The utility of 
the SFX-EH style of classification and recovery is not 
limited to AMR; SFX-EH is currently being applied to 
intelligent process control for power generation as well. 
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