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Abstract Petri Nets: Outline 

The present paper describes the empirical evaluation 
of a linear algebra approach to model-based diagnosis, 
in case the behavioral model of the device under ex- 
amination is described through a Petri net model. In 
particular, we show that algebraic analysis based on P- 
invariants of the net model, can significantly improve 
the performance of a model-based diagnostic system, 
while keeping the integrity of a general framework de- 
fined from a formal logical theory. A system called IN- 
VADS is described and experimental results, performed 
on a car fault domain and involving the comparison 
of different implementations of P-invariant based di- 
agnosis, are then discussed. 

Introduction 
In some recent papers (Portinale 1993), we have shown 
that Petri nets (PNs) (Murata 1989) can be fruitfully 
employed to face the problem of model-based diagno- 
sis. This is accomplished by taking into account a for- 
mal logical framework of reference, defining classical 
notions (from the AI point of view) concerning the 
characterization of a diagnostic problem. In partic- 
ular, it is shown that classical reachability analysis of 
PNs can naturally be exploited in order to realize “for- 
mally correct” (with respect to the logical framework 
of reference) diagnostic inference procedures. In the 
present paper, we focus on the empirical evaluation of 
a particular reachability analysis technique, namely P- 
invariant analysis, in order to show its practical useful- 
ness and its possible advantages with respect to a log- 
ical inference mechanism. This analysis exploits a ma- 
trix representation of the net model and it is grounded 
on a linear algebra algorithm able to compute the so- 
called P-invariants of the net. They informally repre- 
sent the correspondent of logical derivations and form 
the basis for the computation of the diagnoses. We 
will report on the empirical results obtained from some 
tests performed on a car fault domain, by comparing 
different implementations of P-invariant diagnosis and 
a classical abductive approach. 

A Petri net is a directed bipartite graph N = (P, T, F) 
whose vertices are called places (the elements of P rep- 
resented as small circles) and transitions (the element 
of T represented as bars). The set of arcs is repre- 
sented by F. In case the transitive closure F+ of the 
arcs is irreflexive, the net is said to be acyclic. In a 
Petri net, an arc multiplicity function is usually de- 
fined as W : (P x T) U (T x P) -+ LW; in case W 
is such that w(f) = 1 if f E F and w(f) = 0 if 
f 6 F, the net is said to be an ordinary Petri net. 
We will mainly be interested in such a kind of nets. 
For each z E P U 7’ we use the classical notations 
Ox = {y/yFx} and x0 = {y/xFy}. If ex = 0, x is 
said to be a source, while if xe = 0, x is said to be a 
sink. A marking is a function from the set of places to 
nonnegative integers, represented by means of tokens 
into places; a place containing a token is said to be 
marked. A marked Petri net is a pair (N, ,LL) where N 
is a Petri net and ,Q is a marking. The dynamics of 
the net is described by moving tokens from places to 
places according to the concession and firing rules. In 
ordinary Petri nets we say that a transition t has con- 
cession at a marking ,Q if and only if Vp ~~ t &I) > 1. 
If a transition t has concession in a marking p, it may 
fire (execute) producing a new marking p’ such that 
Vp E P p’(p) = p(p)-W(p,t)+W(t,p). A markingp’ 
is reachable from a marking p in a net N (p’ E R(N, ,x)) 
if and only if there exists a sequence of transitions pro- 
ducing P-I’ from ,V in N. If a place of a marked net can- 
not be marked with more than one token, the place is 
said to be safe; if the property holds for every place, the 
net itself and every marking are said to be safe. Given 
a Petri net N = (P,T, F), if n = IT] and m = IPI, the 
incidence matrix of N is the n x m matrix of integers 
A=[aij] such that aij = W(i, j) - W(j, i)(i E T, j E P) 
An m-vector of integers Y such that A . Y = 0 is said 
to be a P-invariant of the net represented by A, the 
entry Y(j) corresponding to place j. The support ay 
of a P-invariant Y is the subset of places correspond- 
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ing to nonzero entries of Y. In a dual way, if AT is 
the transpose matrix of A, an n-vector of integers X 
such that AT . X = 0 is said to be a T-invariant (en- 
tries corresponding to transitions). It is well known 
that any invariant can be obtained as a linear combi- 
nation of invariants having minimal (with respect to 
set inclusion) supports (Murata 1989). 

Petri nets and Model-based Diagnosis 
Model-based diagnosis deals with the problem of de- 
termining the explanation of the abnormal behavior of 
a given device, by reasoning on a model (usually a be- 
havioral model) of such a device (Hamscher, Console, 
& de Kleer 1992). Approaches based on “consistency” 
between the observed and the predicted system behav- 
ior (with some components assumed to be faulty) are 
usually considered when the model represents the ex- 
pected behavior of the system; however, when also the 
faulty behavior is taken into account, approaches based 
on “abduction” can be more adequately adopted. 

Since both purely consistency based and purely ab- 
ductive approaches suffer from some drawbacks, some 
effort has been done in order to combine them (Poole 
1989; Console & Torasso 1991). In the present paper, 
we will refer to the framework defined in (Console & 
Torasso 1991). 

Definition 1 A model-bused diagnostic problem is a 
tuple DP = (M, H, CXT, (Q+, @I-)) where: 
- M is a logical theory representing the model of the 
system to be diagnosed; 
- H is a set of ground atoms of M identified us possible 
diagnostic hypotheses (abducibles); 
- CXT is a set of ground atoms of M representing 
contextual information; 
- @r-t is a set of ground atoms of M representing the 
observations to be covered in the current case; 
- !i!!- is a set of ground atoms of M representing the 
values of observable parameters conflicting with the ob- 
servations. 

We assume that M is represented by a set of definite 
clauses. This allows us to focus on a simple kind of 
model that is however representationally adequate for 
significant classes of behavioral models (see (Console et 
al. 1993)). If OBS is the set of current observations, 
the set Qkf is in general a subset of OBS (q+ s OSS), 
while Q- = {m(x)/m(y) E OBS,x # y}. In a similar 
way, given the set CXT we define the set CXT- = 
{c(x)/c(y) E CXT}. The framework has the implicit 
assumption of abstracting from time; this allows us to 
further simplify the logical model by assuming M to 
be a set of definite clauses without recursion (i.e. a 
hierarchical definite logic program). We also assume 
the set OBS be composed by ground atoms having no 

consequences. Similarly, atoms in H cannot appear in 
the head of any clause (i.e. diagnostic hypotheses are 
independent) and so atoms in CXT. 

Definition 2 Given a diagnostic problem DP a diug- 
nosis to DP is a set E c H such that 
Vm(x) E q+ MU CXT U E !- m(x) 
Vm(y) E 9- M U CXT U E y m(y) 

We will refer to a diagnostic problem defined in this 
way as a logic-bused diagnostic problem. Notice that 
definition 2 does not require the set E to mention every 
abducible predicate of M; however, E could not be a 
partial diagnosis in the sense of (de Kleer, Mackworth, 
& Reiter 1992), since there could be an extension of E 
to unmentioned abducible predicates such that some 
atoms in the set qk- are derived. However, in the fol- 
lowing we will consider only fault models (i.e. models 
describing only the consequences of the faulty behav- 
ior of the device under examination); in this case, a 
diagnosis E is interpreted as assigning a “normal” or 
“correct” value to abducible predicates not mentioned 
in E. The capability of dealing with models mixing the 
correct and the faulty behavior of the system requires 
a slight revision of the definition of diagnosis, by con- 
sidering the set Q- to be a set of denials, to be used in 
a contrapositive way. This would allows us to get the 
equivalent of the kernel diagnoses defined in (de Kleer, 
Mackworth, & Reiter 1992)l. 

In (Portinale 1993) a simple Petri net model, called 
Behavioral Petri Net (BPN), has been introduced, in 
order to capture the representational issues discussed 
above. 

Definition 3 A Behavioral Petri Net (BPN) is a 4- 
tuple M = (P, TN, TOR, F) such that (P, TN U TOR, F) 
is an acyclic ordinary Petri net that satisfies the fol- 
lowing axioms: 
1. VP E W’PI I 1 A lP”l I 1) 
2. VPl,PZ E p ((“Pl =O P2) A (P; = Pz’> + Pl = P2) 
3. Vt E TN (let1 = 1 A It"1 > 0) V (lot1 > Or\ It') = 1) 
4. vi! E ToR(l”tl 2 2 A It”1 = 1) 
The set of transitions is 
and TO&;. those in the ormer set are the usual kind F 

artitioned into two subset TN 

of transrtrons of ordinary Petri nets while a transition 
t E TOR has concession in a marking iff at least one of 
its input places is marked. They are actually “macro- 
transitions” that can be obtained by means of a set of 
classical transitions (see (Portinale 1993)). It can be 
shown that a BPN model; the same kind’of knowledge 
of a hierarchical definite logic pro ram. Fi ure 1 shows 
an example of a BPN correspon % ing to t B e following 
set of clauses (OR transitions are represented as empty 
thick bars) : 
grcz(zow) A roco(poor) -5 oiZs(hoZed) oiZs(hoZed) --t obca(hugeam) 

‘Notice that definition 2 can be directly used if we con- 
sider E to contain exactly one ground instance for each 
abducible predicate. 
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roco(poor) + jerk(verystrong) osga(worn) + oils(lea/cing) 
oiZs(Zecc/cing) --f obca(smolZam) piws(uorn) + Zaoi(severe) 
jerk(verystrong) --f vibr(verystrong) ente(incr) + htin(recZ) 
engi(run) A Zaoi(severe) --f ente(incr) oiZs(hoZed) --t Zaoi(severe) 
jerk(very-strong) A oiZs(Zeaking) + Zaoi(severe) 

Table 1 shows the key for acronyms used. The net of 
figure 1 is just for explanatory purposes, corresponding 
to a simplified part of a more general model, describ- 
ing the faulty behavior of a car engine. Notice that 
the BPN contains some “dummy places” (labeled in 
figure 1 with capital letters) used to split places rep- 
resenting ground atoms involved in the body of more 
than one clause. This allows us to identify the token 
flow on the net with logical derivations in the logical 
model. OR-transitions model alternative way of ob- 
taining a given atom. 

Since a BPN is acyclic, a partial order 4 over transi- 
tions is defined as tr 4 t2 ++ tr F+tz. A concession rule 
with priority for transitions can then be introduced, re- 
sulting in the enabling rule of a BPN. 
Definition 4 Given a BPN, a transition t is enabled 
(i.e. it may fire) in a given marking 1-1 if and only if 
it has concession at 1-1 and /iIt’ + t such that t’ has 
concession at p. 

For example, in the net of figure 1, if both places 
piws(worn) and oiZs(hoZed) are marked, transition t27 

is not enabled, since there is transition t2 having con- 
cession and such that t2 4 t27. 

Definition 5 An initial marking of a BPN is a safe 
marking ~0 such that PO(~) = 1 +* p = 8. 

A marked BPN is always considered with respect to a 
marking reachable from an initial marking. As shown 
in (Portinale 1993), every marked BPN is safe and in 
a marked BPN there is a unique marking, called the 
fina2 marking, from which no transition can fire. 

Given a BPN N = (P, TN, TOR, F) corresponding 
to a hierarchical definite logic program M, if BM is 

Figure 1: Example of a BPN 

[ ENTITY 1 ACRONYM 11 ENTITY 1 ACRONYM 1 

engine status engi engine temper. ente 
ground clear. grcl high temp. ind. htin 

jerks jerk lack of oil laoi 
oil below car obca oil sump gasket osga 
oil sump status oils piston wear piws 
road conditions roco vibrations vibr 

Table 1: Acronyms used in the BPN of fig. 1 and in 
the corresponding logical model 

the Herbrand base of M, an interpretation function 
@ : P -+ BM associating places of N with ground 
atoms of M can be defined. The function is in general 
a partial function; for example, in figure 1 the func- 
tion @ is considered undefined (I) for places labeled 
with capital letters (dummy places having no direct 
correspondence with ground atoms of M), while for 
the other places the label itself shows the value of Qi. 

Given a conjunction of ground atoms J (represented 
as a set) we can determine a corresponding marking 
pJ such that pJ(p) = 1 if a((~) E J and pJ(p) = 0 
otherwise. 
Definition 6 Given a logic-based diagnostic problem 
DP = (M, H,CXT, (@, \k-)) and a BPN NM cor- 
responding to M, we can define the diagnostic prob- 
lem in terms of the BPN model in the following way: 
BPN-DP= (N,PH,Pc,(P+,P-)) where PH = (p E 
P/@(P) E H}, PC = {p E: P/@(p) E CXT}, P+ = 
{p E P/@(p) E @+} and P- = {p E P/@(p) E Q’-}. 

Notice that, Vp E P+ U P- -+ p” = 0 (i.e. p is a sink 
place); similarly, vp E PH u PC +@ p = 8 (i.e. p is 
a source place). The formal connection between logic- 
based and BPN-based characterizations is established 
by means of the following theorem whose proof can be 
found in (Portinale 1993) : 
Theorem 1 Given a logic-based diagnostic problem 
DP = (M, H,CXT, (@, gk-)), let NM be the BPN 
corresponding to M and PE CXT be the marking corre- 
sponding to E U CXT (E C H); if 
(N~,ps~~) I- (U(C) G 
3~ E R(NM, pgXT >/P(P) = 1 A @(PI = 44 
then M U E U CXT I- Q!(C) t) (NM,P~~~) I- a(c) 

Definition 7 Given a diagnostic problem BPN-DP= 
WMJ’H,PC, (P+,P-)), a candidate diagnosis is a 
marking ~0 such that PO(~) = 1 + p E PH. 

We indicate with PC the marking corresponding to 
contextual information (i.e. PC(~) = 1 t) p E PC) and 
with Pz the set of places corresponding to CXT- (i.e. 
Pz = {p E P/+(p) E CXT-}). 

Definition 8 Given a diagnostic problem BPN-DP= 
(NM,PH,Pc, (P’,P-)) a candidate diagnosis ,x~ is a 
solution to BPN-DP (i.e. is a diagnosis) if and only if 
VP E P+ (NM, PO U PC) t- Q(P) 
Vq E P- (NM,PO U PC> Y a(q) 
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Definition 9 A marking ,!.L of a Behavioral Petri Net 
covers a set of places Q if and only if Vp E Q -+ p(p) = 
1, while it zero-covers Q if and only if Vp E Q + 
/4P> = 0. 

The following theorem provides us with an operational 
notion of diagnosis in a BPN framework (see (Portinale 
1993) for the proof): 

Theorem 2 A candidate diagnosis ~0 is a solution to 
BPN-DP= (NM, PH, PC, (P+, P-)) (i.e. is a diagno- 
sis) if and only if the final marking p of (NM, PI-J U pc) 
covers P+ and zero-covers P-. 

This means that the problem of finding the solutions to 
a diagnostic problem can be re-formulated as a reacha- 
bility problem on the net model; this can classically be 
tackled in two different ways, with a reachability graph 
approach (as shown in (Anglano & Portinale 1994)) or 
with an algebraic (invariant-based) approach. The aim 
of this paper is to concentrate on invariant analysis and 
to discuss the performance of a diagnostic algorithm 
based on such a principle, with respect to a classical 
approach based on symbolic manipulation. 

Diagnostic Reasoning by Computing 
FInvariants 

In this section, we will show how to generate an initial 
marking satisfying the condition of theorem 2 from a 
set of P-invariant supports. By definition, P-invariants 
of a net N = (P,T,F) correspond to T-invariants of 
its dual net No = (T, P, F). The following lemma has 
been proved in (Peterka & Murata 1989). 

Lemma 1 Let N = (P, T, F) be a Petri net such that 
Vt E Tjt’I 5 1 and t E T be a sink transition; there 
exists a T-invariant X of N such that X(t) # 0 if and 
only if t is firable from the empty marking. 

This means that in N there are some source transitions 
firing from the empty marking, eventually leading to 
the firing of t. Consider now an ordinary Petri net: in 
order a place p to be marked, there must be a tran- 
sition t E. p that fire, while in order a transition t 
to fire, every place p E” t must be marked. If every 
transition of a Petri net has exactly one input place, 
the sentence “a place is marked” corresponds to the 
sentence “a transition can fire” in the dual net. Let us 
then consider the following transformation on a BPN: 

A-fusion. Given a BPN N = (P, TN, TOR, F), pro- 
duce the ordinary Petri net N’ = (P’, {TN U 
ToR}, F’) as follows: for each t E TN such that 
9 = {Ph. .-pk} (k > 1) substitute in P the set 
{Ph. . .pk} with the place pl,k such that *pl,k = 

lJf=, 'pi and~;,~ = {t} 

This transformation simply collapses places that are 
“AND-ed” into a single place representing their con- 
junction; even if the resulting net is no longer a BPN, 
it encodes the same kind of knowledge of the original 
BPN. In fact, let us consider the interpretation func- 
tion @ of N and the following operator @ on it: 

@(P> @ w?) = @(P) uwd 

With a(p) @ I = I @ (a(p) = +(p) 

We can define an interpretation function a’ for N’ from 
the interpretation function <p of N as follows: 

VP> = 
{ 

@a(P) ifpE PnP’ 

93~=, @(pi) if p = pl,k E P’ - P 

Figure 2 shows the net obtained from the BPN of fig- 
ure 1 by means of the A-fusion. Places grcZ(2ow) and 
A are collapsed into place “grcZ(Zow) + A”, V and R 
into place “V + R”, la&( severe) and engi(run) into 
place “Zaoi(moder) + engi(run)“. The interpretation 
function ip’ is such that 
W(grcZ(Zow) + A) = {grcZ(Zow)}, ia’(V + R) = I, 
fV(laoi(severe) + engi(run)) = 
{Zaoi(severe), engi(run)}, @’ 3 @ for remaining 
places. 
Theorem 3 Given a BPN NM corresponding to a hi- 
erarchical definite logic program M, let N& be the net 
obtained from NM through the A-fusion transforma- 
tion, W the interpretation function of Nh and p a 
sink place; the following are equivalent propositions: 
1) there is a P-invariant Y of Nh such that Y(p) # 0; 
2) by marking source places p, such that Y(p,) # 0, 
the place p can eventuaEly be marked; 
31 up, @‘(PS) lJ M I- Q'(P) 
Proof. 1) E 2) is a consequence of lemma 1 and of 
the fact that T-invariants of a net are P-invariants for 

osga worn) 

P &(low)tA 

Figure 2: BPN for P-invariant Computation 
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its dual net. 2) E 3) is a consequence of theorem 1. 0 
From theorem 3 we conclude that the supports of the 
P-invariants of Nh characterize the logical derivations 
from atoms representing diagnostic hypotheses and 
contexts, to atoms representing observable parameters. 
Consider for instance the following diagnostic problem 
BPN-DP= (NM, PH,, PC, (P’, P-)) where NM is the 
net of figure 1 (we remember that such a net is in- 
tended to represent a fault model). Let us suppose to 
have the following set of observations: 
OBS = {htin(red), obca(smaZllzm), vibr(normal)} 
( i.e. the temperature indicator is red, there is a 
small amount of oil below the car and vibrations 
are normal). Contextual information are CXT = 
{grcZ(normaZ), engi(run)} (i.e. we are considering a 
car with a normal ground clearance and in the context 
of the engine being running). Let us also suppose that 
all the “abnormal” observations have to covered, then: 
PH = {piws(worn), osga(wo?%), roco(poor)}, 
PC = {engi(run)} PC = {grcZ(Zow)} 
P+ = {htin(red), obca(smaZZ~m)}, 
P- = {vibr(very-strong), obca(huge-am)}. 
The net of figure 2 is the result of the A-fusion of NM; 
the minimal supports of its P-invariants are: 
u1 = {grcZ(Zow) f A, oiZs(hoZed), roco(poor), M, obca(huge-am)} 

02 = {grcZ(Zow) f A, oiZs(hoZecZ), roco(poor), Y, ente(incr) 

Zaoi(severe) + engi(run), htin(red)} 

u3 = {B, roco(poor),jerk(very-strong), osga(worn), V + R, W, 

oiZs(Zeaking), Zaoi(severe) + engi(rzln), ente(incr), htin(red)} 

(~4 = {B, roco(poor), jerk(very-strong), L, vibr(very-strong)} 

~75 = {obca(smaZZ-am), osga(worn), oiZs(Zeaking), N} 

(~6 = {piws(worn), Zaoi(severe)+engi(run), ente(incr), htin(red)} 

Consider for instance 04: we notice that the sup- 
port contains the source place roco(poor) E PH 
and the sink place vibr(very-strong) E P-. From 
theorem 3 we conclude that M U {roco(poor) ) l- 
vibr(very-strong); this means that any initial mark- 
ing having place roco(poor) marked is not a diagnosis, 
since it will eventually produce a final marking having 
place vibr(very-strong) E P- marked. 

From these considerations, we can devise a P- 
invariant based diagnostic algorithm: after having 
computed the minimal supports of P-invariants, (ef- 
ficient algorithms exist for this task (Martinez & Silva 
1982)) those related to predictions corresponding to 
places in P- are eliminated by taking into account the 
fact that if C? and 6’ are two sets of ground atoms such 
that 6 E 6’, if 5 I- a then &’ I- cu; at the same way, 
supports containing places belonging to Pz are also 
eliminated. We have then to consider the coverability 
of P+ ; for each place p E P+ , we build from remain- 
ing supports the list of places having interpretation 
function corresponding to a diagnostic hypothesis and 
supporting p (i.e. contained in a P-invariant support 

containing p). Final diagnoses are obtained by com- 
bining such lists. 

Let us consider again the diagnostic problem intro- 
duced above; supports 01,02 are discarded since they 
contain place grcZ(Zow) + A such that W(grcZ(Zow) + 
4 = grcZ(Zow) E CXT- (ai also contains 
obca(huge-am) E P-) and support 04 because it 
contains place vibr(very-strong) E P-, Moreover, 
also support ~3 is discarded because of the prun- 
ing of 04; indeed, 6.4 = {roco(poor)} and 15.3 = 
{roco(poor), osga(worn), engi(run)). Since 6.4 C 6.3, 

we need to prune also 03. Only supports 05 and 06 
survive to the pruning phase and we then obtain: 
6~ = {osga(worn} for obca(smaZZ_am) E Pf 
89 = {piws(worn),engi(run)} for htin(red) E P+ 
The only possible combination in this case is 6~ U 
f?g = {piws(worn), engi(run), osga(worn)} represent- 
ing the diagnosis “piws(worn) A osga(worn)” in the 
context “engi(run) A grcZ(normaZ)” (i.e. if the engine 
is running and the car has a normal ground clearance, 
the normal intensity of vibrations, the red temperature 
indicator and the small amount of oil below the car are 
explained by the fact that both the state of the pistons 
and the oil sump gasket are worn). 

Experimental Results 
We implemented the P-invariant approach to diagnosis 
in a system called INVADS (INVAriant based Diagnos- 
tic System) and we performed different series of exper- 
iments addressing the following two issues: 
1. comparison of different implementations of 
invariant-based diagnosis; 
2. comparison between invariant-based diagnosis and 
logical-abductive diagnosis. 
Both types of experiments have been done on a 
BPN relative to a knowledge base describing the fault 
“causal” model of a car engine and consisting in more 
than 100 places and more than 100 transitions. We 
ran the experiments on a SUN Spare station Classic 
with 32 Mbytes of memory; the software environment 
has been realized in SICStus prolog, with an embed- 
ded module for invariant computation written in C. We 
considered 48 different cases of car engine malfunctions 
in such a way to consider all the main fault evolutions 
described in the model. Different running of the same 
batch of cases have been considered for each implemen- 
tation; results about the running time showed a quite 
low variance between different runs, so they have been 
simply averaged. 

Implementation Testing 

We tested three different kinds of implementation of P- 
invariant based diagnosis that we classified as follows: 
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off-line invariant computation (OFF); net simplifica- 
tion (SIM); observation addition (ADD). 
The first kind of implementation (OFF) simply con- 
sists in the off-line computation of all the P-invariants 
of the net obtained from the A-fusion on the BPN un- 
der examination; this approach makes explicit the in- 
formation related to the P-invariants once for all and 
any diagnostic case that will be provided to the system, 
will use the same set of P-invariants. However, we have 
to search the solution in a search space (the set of P- 
invariants supports) that contains information that is 
not relevant to the current case. The complexity of a 
diagnostic algorithm based on this principle is just the 
complexity of the phase concerning the generation of 
diagnoses from P-invariant supports. 

The SIM approach consists in simplifying the net 
with respect to the observations made in the case to 
be solved. This can be done by considering the sets 
P’ and P- from the current diagnostic problem, iter- 
atively repeating the following actions, until no transi- 
tion is removed. 
for each place p $ P+ U P- do remove p; 
for each transition t/t’ = 0 do remove t; 
This allows us to consider only the part of the net rele- 
vant to the current set of observations and to compute 
the P-invariants only for this reduced net. A diag- 
nostic algorithm based on SIM must take into account 
three different phases for each case to be solved: net 
simplification, P-invariant computation and diagnosis 
generation. Since the set of P-invariant supports from 
which to generate diagnoses is reduced with respect 
to the previous approach, diagnosis generation could 
result much faster than in OFF. 

The ADD approach is conceptually similar to SIM; 
we consider the net obtained from the A-fusion on the 
current BPN, by deleting all the sink places represent- 
ing observable parameters. Given the current set of 
observations, we then add to N the sink places cor- 
responding to sets P+ and P-. Also in this case we 

have to consider three distinct phases namely observa- 
tion addition, P-invariant computation and diagnosis 
generation and, as in the previous case, the set of P- 
invariant supports we get does not contain information 
irrelevant to current observations. 
Results concerning the comparison of the three pro- 
posed strategies are summarized in figure 3, where the 
average computation times of the above strategies are 
reported for the 48 sample cases we used. The SIM 
approach resulted in very high execution times, essen- 
tially because of the expensiveness of the net simplifica- 
tion phase. This can be see in figure 4 where cpu times 
of net simplification and observation addition phases 
are plotted. Notice also that the basic pattern of the 
SIM strategy in figure 3 is essentially determined by 
the net simplification phase. We did not investigate 
the possibility of directly performing the simplification 
on the incidence matrix of the net; our claim is that 
a matrix simplification will be less expensive, but it 
would not improve to much the result. 
Between OFF and ADD, the latter strategy resulted 
to be better in terms of global execution time, even 
if without showing the huge difference of the SIM 
strategy. Obviously, the OFF strategy resulted in the 
higher computation time (with respect to both SIM 
and ADD strategies) for the diagnosis generation phase 
and for the invariant computation phase, but the fact 
that the latter phase is done off-line, determined the 
situation depicted in figure 3. 

Logical and P-invariant Diagnosis 
Comparison 
To test the performance of a P-invariant diagnostic al- 
gorithm against a classical logical approach, we chose 
to compare the INVADS system using the ADD strat- 
egy with an abductive diagnostic system called AID 

(Console et al. 1993). The reasons for such a direct 
comparison are twofold: 
1. both systems rely on the same formal framework of 
reference we previously discussed; 
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2. both systems share the same implementation en- 
vironment (a SICStus prolog implementation for SUN 
spare stations). 
Also for this experiment, we tested different runs of the 
batch of our sample cases. In particular, we measured 
for each case C the percentage gain of INVADS vs AID, 
defined as follows: 

G(C) = T%D-T%WADS 

Tkk4DS 

where TzID and TFf&VADs represent the execution 
times on case C of AID and INVADS respectively. Re- 
sults on our car engine fault domain showed a quite 
good behavior of P-invariant based approach (see fig- 
ure 5); the average gain resulted to be of 34.41% with 
some peaks of about (or even more then) 100%. 

Conclusions 
In the present paper, we have shown how Petri net 
reachability analysis could be used as a formal basis 
for explaining the misbehavior of a given device. We 
briefly discussed a net model called BPN, used to de- 
scribe the behavior of the device under examination. 
The BPN model is not proposed as a direct tool of diag- 
nostic knowledge representation, but rather as an anal- 
ysis formalism that can be derived from other forms of 
knowledge representation, like for instance causal net- 
works as described in (Portinale 1992). We concen- 
trated on P-invariant reachability analysis, represent- 
ing the starting point for the definition of an innovative 
approach to model-based diagnosis. 

We tested the different implementation of the ap- 
proach on a car engine fault domain, by getting an en- 
couraging comparison with a classical logical approach 
to diagnosis. Notice also that, besides the fact that P- 
invariants are obtained through a linear algebra based 
computation (that can result more efficient than sym- 
bolic computation), parallel algorithms can be devised 
for this kind of approach (Marinescu, Beaven, & Stan- 
sifer 1991; Lin et al. 1993)). This clearly adds more 
interest to the net invariant approach to diagnosis, by 

Figure 5: Percentage Gain INVADS vs AID 

also taking into account the fact that its complemen- 
tary approach (i.e. the diagnosis based on reachabil- 
ity graph analysis) has been shown to be very ade- 
quate to a parallel implementation (Anglano & Porti- 
nale 1994). Future works are planned in order to com- 
pare P-invariant diagnosis also with this approach. 

References 
Anglano, C., and Portinale, L. 1994. B-W analysis: a 
backward reachability analysis for diagnostic problem 
solving suitable to parallel implementation. In LNCS 
815, 39-58. Springer Verlag. 

Console, L., and Torasso, P. 1991. A spectrum of 
logical definitions of model-based diagnosis. Compu- 
tational Intelligence 7(3):133-141. 

Console, L.; Portinale, L.; Theseider Dupre, D.; and 
Torasso, P. 1993. Combining heuristic and causal 
reasoning in diagnostic problem solving. In Second 
Generation Expert Systems. Springer Verlag. 46,68. 

de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. 
Characterizing diagnoses and systems. Artificial In- 
telligence 56(2-3):197-222. 

Hamscher, W.; Console, L.; and de Kleer, J. 1992. 
Readings in Model-Based Diagnosis. Morgan Kauf- 
mann. 

Lin, C.; Chaundhury, A.; Whinston, A.; and Mari- 
nescu, D. 1993. Logical inference of Horn clauses in 
Petri net models, IEEE TKDE 5(3):416-425. 

Marinescu, D.; Beaven, M.; and Stansifer, R. 1991. A 
parallel algorithm for computing invariants of a Petri 
net model. In Proc. 4th PNPM, 136-143. 

Martinez, J., and Silva, M. 1982. A simple and 
fast algorithm to obtain all invariants of a general- 
ized Petri net. In Applications and Theory of Petri 
Nets. Springer Verlag. 301-310. 

Murata, T. 1989. Petri nets: Properties, analysis and 
applications. Proceedings of the IEEE 77(4):541-580. 

Pete&a, G., and Murata, T. 1989. Proof procedure 
and answer extraction in Petri net model of logic pro- 
grams. IEEE TSE 15(2):209-217. 

Poole, D. 1989. Normality and faults in logic-based 
diagnosis. In Proc. 11th IJCAI, 1304-1310. 

Portinale, L. 1992. Verification of causal models us- 
ing Petri nets. International JournaZ of Intelligent 
Systems 7(8):715-742. 

Portinale, L. 1993. Petri net models for diagnos- 
tic knowledge representation and reasoning. PhD 
Thesis, Dip. Informatica, Universita’ di Torino. 
ftp://ftp.di.unito.it/pub/portinal. 

958 Model-Based Reasoning 


