
Eleni Stroulia Ashok K. Gael 
Center for Applied Knowledge Processing College of Computing 

Helmholtzstr. 16 Georgia Institute of Technology 
89081 Ulm, Germany Atlanta, GA 30332-0280 

stroulia@faw.uni-ulm.de goel@cc.gatech.edu 

Abstract 

Blame assignment is a classical problem in learning and 
adaptation. Given a problem solver that fails to deliver the 
behaviors desired of it, the blame-assignment task has the 
goal of identifying the cause(s) of the failure. Broadly cat- 
egorized, these causes can be knowledge faults (errors in 
the organization, content, and representation of the problem- 
solver’s domain knowledge) or processing faults (errors in 
the content, and control of the problem-solving process). 
Much of AI research on blame assignment has focused 
on identifying knowledge and control-of-processing faults 
based on the trace of the failed problem-solving episode. In 
this paper, we describe a blame-assignment method for iden- 
tifying content-of-processing faults, i.e., faults in the speci- 
fication of the problem-solving operators. This method uses 
a structure-behavior-function (SBF) model of the problem- 
solving process, which captures the functional semantics of 
the overall task and the operators of the problem solver, 
the compositional semantics of its problem-solving methods 
that combine the operators’ inferences into the outputs of the 
overall task, and the “causal” inter-dependencies between its 
tasks, methods and domain knowledge. We illustrate this 
model-based blame-assignment method with examples from 
AUTOGNOSTIC. 

al 1989) assume that the causes of the failures of their prob- 
lem solvers lie in their incorrect operator-selection heuris- 
tics. Their blame-assignment methods assume that the set of 
available operators is both complete and correctly specified. 
This assumes that the exact same operators used in the failed 
problem-solving episode can be in some way combined to 
produce a correct solution. In contrast, in this paper, we are 
interested in the issue of identifying faults in the specifica- 
tion of the operators. While we too assume that the set of 
available problem-solving operators is complete relative to 
the problem-solver’s task, we admit the possibility that they 
may be incorrectly specified. That is, the information trans- 
formations the operators are designed to perform may not 
be sufficient for delivering a solution to (all of) the problems 
presented to the problem solver. Thus, the research issue 
becomes, given a problem-solver that fails to deliver the 
overall behavior desired of it, to specify a combination of 
knowledge and processing that enables the failing problem 
solver to identify faults in the specification of its operators. 

Introduction 
Blame assignment is a classical problem in learning and 
adaptation (Samuel 1959). Given a problem solver that 
fails to deliver the behaviors desired of it, the general blame- 
assignment task has the goal of identifying the cause(s) of 
the failure. The types of the identified cause(s) can then 
be used as indices to appropriate learning strategies which 
can eliminate the causes of the failure and thus improve the 
problem solver. 

A problem solver may fail due to a wide variety of 
causes that may be broadly categorized into knowledge 
faults and processing faults. The former (Davis 1980; 
Weintraub 1991) pertain to errors in the organization, con- 
tent, and representation of the problem-solver’s domain 
knowledge, while the latter refer to errors in the content 
of, and control over the steps of its processing. Much of AI 
research on blame assignment has focused on the identifi- 
cation of knowledge faults. In this paper, we focus on the 
identification of processing faults. 

AI work on identification of processing faults itself has 
focused on faults in the control of processing. For example, 
both Lex (Mitchell et. al 198 1) and Prodigy (Carbonell et. 

Traditional blame-assignment methods for identifying 
faults in the control of processing are based on problem- 
solving traces. For example, both Lex and Prodigy require 
the trace of the processing in the failed problem-solving 
episode as well as a trace of the processing that would have 
led to problem-solving success. Under the assumption that 
the cause of the failure is that the problem solver does not 
know the exact conditions under which each of the opera- 
tors should be used, both these systems compare the failed 
trace against the successful one to identify situations where 
operators were incorrectly used. In contrast, we describe a 
method which, in addition to the trace of the failed problem 
solving, uses a model of the problem-solver’s processing 
and knowledge to identify faults in the specification of the 
problem-solving operators. We posit that the identification 
of faults in operator specification is facilitated by knowl- 
edge of (i) the functional semantics of the overall task of 
the problem solver, (ii) the functional semantics of its op- 
erators, (iii) the compositional semantics of the problem- 
solving methods that recursively synthesize the inferences 
carried out by the available operators into the outputs of its 
overall task, and (iv) the “causal” inter-dependencies be- 
tween (sub)tasks, methods and domain knowledge. We use 
structure-behavior-function (SBF) models to capture this 
semantics of problem solving. 

This model-based method for blame assignment is im- 

Model-Based Reasoning 959 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



plemented in AUTOGNOSTIC, a “shell” which provides (i) a 
language for representing SBF models of problem solvers, 
and (ii) mechanisms for monitoring the problem solving, 
receiving and assimilating feedback on the result, assigning 
blame in case of failure, and repairing the problem solver. In 
this paper, we illustrate AUTOGNOSTIC'S blame-assignment 
method for processing faults with examples from AUTOG- 
NOSTIC’S integration with ROUTER (Goel et. al 1994), a 
path-planning system. 

SBF Models of Problem Solving 
SBF models of problem solving analyze the problem- 
solver’s task structure, its domain knowledge and their 
inter-dependencies. In this model, the problem-solver’s 
tasks constitute the building blocks of its problem-solving 
mechanism. The problem-solving methods that it employs 
decompose its complex overall tasks into simpler subtasks. 
These, in turn, get recursively decomposed into even sim- 
pler subtasks until they become elementary reasoning steps, 
i.e., “leaf” tasks. These leaf tasks are directly accomplished 
by the problem-solver’s domain operators. 

A task is specified as a transformation from an input to an 
output information state. It is characterized by the type(s) 
of information it consumes as input and produces as output, 
and the nature of the transformation it performs between the 
two. The functional semantics of a task describes the na- 
ture of the information transformation this task is intended 
to perform, and thus, constitutes a partial description of its 
expected, correct behavior. It is expressed in terms of spe- 
cific domain relations that hold true among the task’s inputs 
and outputs. For a non-leaf task, the functional semantics of 
the subtasks into which the task is recursively decomposed, 
and the ordering relations that the decomposing methods 
impose over them, constitute a partial description of a cor- 
rect reasoning strategy for this task. Henceforth, we will 
use the term strategy to refer to the task tree that results 
from a task’s decomposition by a particular method. 

Methods can be thought of as general plans for how 
the solutions to different low-level subtasks get combined 
to deliver the output desired of higher-level tasks. They 
specify compositions of the problem-solver’s domain op- 
erators into its higher-level tasks. Each method captures 
the semantics of the composition of a set of lower-level 
subtasks into a higher-level task in terms of control inter- 
dependencies (that is, a set of ordering relations), and in- 
formation inter-dependencies, (that is, a set of information 
producer-consumer relations), among these subtasks. 

In addition to the task structure, the SBF model of a 
problem solver specifies its domain knowledge in terms of 
the types of domain objects that the problem solver knows 
about, and the relations applicable to them. This specifi- 
cation of object types and relations captures the problem- 
solver’s ontology of its domain. In addition, the information 
types flowing through the task structure are specified as in- 
stances of domain-object types, and thus each particular task 
input or output is related to the ontological commitments 
associated with the object type of which it is an instance. Fi- 
nally, the specification of the tasks’ functional semantics in 
terms of domain relations, that must hold between their in- 

puts and outputs, captures the “causal” inter-dependencies 
of the inferences drawn to accomplish the tasks with the 
problem-solver’s domain knowledge, where each inference 
is based on some specific domain knowledge. The assump- 
tion here is that if the semantics of a task is specified in 
terms of a particular domain relation, then in order to meet 
its semantics, the set of inferences drawn in service of this 
task will use the knowledge of the problem solver about this 
domain relation. 

The Case Study: ROUTER is a multistrategy navigational 
planner which will be used in this paper to illustrate Au- 
TOGNOSTIC’S model-based method for blame assignment. 
ROUTER'S task, path-planning, is to find a path from 
an initial location to a goal location in a physical space. 
Its spatial model of the navigation world is organized in 
a neighborhood-subneighborhood hierarchy. High-level 
neighborhoods describe large spaces in terms of major 
streets and their intersections. They get refined into lower- 
level neighborhoods which describe both major and mi- 
nor streets and their intersections but over smaller spaces. 
Figure 1 diagrammatically depicts ROUTER'S task struc- 
ture and gives part of the SBF specification of some of 
its tasks and types of domain knowledge. In addition to 
the spatial model, Router contains a memory of past path- 
planning cases; the case memory is organized around the 
neighborhood-subneighborhood hierarchy. 

AUTOGNOSTIC’S SBF model of ROUTER’S problem solv- 
ing specifies that its overall task, path-planning, is de- 
composed into the subtasks elaboration, retrieval, 
search and storage. The elaboration subtask classi- 
fies the initial and goal locations into the neighborhood- 
subneighborhood hierarchy; it identifies the neighbor- 
hoods to which the two locations belong. This is a leaf 
task, i.e., it is directly solved by the domain operator 
elaboration-op. The retrieval subtask recalls from 
ROUTER’S memory a similar path which connects locations 
spatially close to the current initial and goal locations. Next, 
the search subtask produces the desired path, and, subse- 
quently, the storage subtask stores it in memory for future 
reuse. The search task can be accomplished by three differ- 
entmethods,the intrazonal, the interzonal, and the 
case-based method. The first two methods are model- 
based, that is, the semantics of the subtasks resulting from 
the use of these methods refer to model relations. In anal- 
ogy, the semantics of the subtasks resulting from the use of 
the case-based method refer to case-memory relations. 

The first method is applicable only under the condi- 
tion that the initial and the goal problem locations be- 
long in the same neighborhood. It decomposes the 
searchtaskinto thesubtasks search-initialization, 
temp-path-selection and path-increase. Thefirst 
of these subtasks initializes the set of paths already explored 
by ROUTER to contain only a path consisting of a single loca- 
tion, i.e., the initial location. The temp-path-selection 
subtask takes as input this set of explored paths and selects 
from it a particular temporary path which feeds as input to 
the path-increase subtask. The latter task extends the 
temporary path to reach its neighboring points, i.e., all the 

960 ,Model-Based Reasoning 



TYPES OF DOMAIN OBJECTS 

id-test 
domain 
attrs 

rels 

PATH 
path-equivalence 

nodes 
self 
(list-of intersection) 

begins-in-neighborhood 
ends-in-neighborhood 

length 
length(self) 
number 

Path-Planning Semantics 
same-point(initial-lot initial-node(path)) 
same-point(goal-lot final-node(path)) 

Elaboration Semantics 
belongs-in(initial-lot initial-neighborhood) 
belongs-in(goal-lot goal-neighborhood) 

Tmp-Path-Selection Semantics 
3p E explored-paths: 

same-path(p tmp-path) 

Path-Increase Semantics 
V n E nodes(path) 

belongs-in(n initial-neighborhood) 
initial-neighborhood) 

prefix(path tmp-path) 

INTERSECTION 
intersection-equivalence 
intersection-domain 
streets 
self 
(list-of 2 street) 

connected-to 
belongs-in 

TYPES OF DOMAIN RELATIONS 
PREFIX CONNECTED-TO 

input-args pati intersection 
outputargs (list-of path) (list-of intersection) 
truth-table - - 
predicate is-prefix adjacent-ints 
inv-predicate prefix-of adjacent-ints 

Router’s map 

Figure 1: Fragment of ROUTER'S planning task structure and part of the SBF specification of some of ROUTER’S domain 
objects and relations. 

intersections that belong in the common initial- and goal- 
neighborhood and are immediately adjacent to its last node. 
These extended paths are all added to the set of explored 
paths. The last two subtasks are repeatedly performed (as 
denoted by the small circle in the illustration of ROUTER'S 
task structure in Figure l), until one of the explored paths 
reaches the goal location, in which case, it is returned as the 
desired output of the overall task. 

As shown in the bottom of Figure 1, ROUTER'S world is 
described in terms of several different object types, such as 
intersections,neighborhoods,streetsandpaths. 
For each type of these domain objects, the SBF model spec- 
ifies the set of values that specific instances of objects may 
take, the attributes of the object type, the predicate that eval- 
uates whether two instances of this object type are identical, 
and the domain relations that relate it to other domain ob- 
jects. The objects in ROUTER'S world are related through 
relations, such as belongs-in which relates intersec- 
tions to neighborhoods. For each type of domain relation 
the SBF model specifies the types of domain objects it ap- 
plies to, and its truth table or the predicate that evaluates 
whether a tuple belongs in this relation or not. 

Model-based Blame Assignment 
In this paper, we focus on the blame-assignment task that 
arises when the problem solver is given as feedback infor- 
mation that a value desired for one of its outputs is different 
from the value actually produced. More specifically, the 
symptom of the failure is a divergence between the ac- 
tual and the desired problem-solving behavior, although the 
actual behavior may be consistent with the range of behav- 
iors intended of the problem solver. We will illustrate the 
model-based method for addressing this task with an exam- 
ple from ROUTER, which given the problem of going from 
(10th center) to (walnut dalney), produces the path ((center 
10th) (10th atlantic) (atlantic walnut) (walnut dalney)), for 
which AUTOGNOSTIC receives the shorter path ((center 10th) 

(center mapple) (mapple dalney) (dalney walnut)) as feedback 
(see Figure 1 right for a map of ROUTER’S navigational 
domain). 

Before localizing the cause of the failure into a spe- 
cific operator or piece of domain knowledge, the blame- 
assignment method evaluates whether the feedback is within 
the class of values the overall problem-solver’s task was in- 
tended to produce; otherwise it would be meaningless to 
examine why it was not actually produced. To this end, it 
evaluates whether the feedback conforms with the overall 
task’s expected correct behavior as specified by the task’s 
functional semantics. As mentioned above, the SBF spec- 
ification of a task’s semantics consists of task’s input and 
output information types and a domain relation. For each 
domain relation, the SBF model specifies a predicate (or, a 
truth table), which makes it possible to evaluate whether or 
not the specific values of input and output information in 
the episode belong to the domain relation. The tuple formed 
by the specific values of the input and output information in 
a particular problem-solving episode should belong in the 
domain relation. 

In our example, AUTOGNOSTIC’S first step is to establish, 
based on the semantics of the overall path-planning task 
(see Figure l), whether the feedback path belongs in the 
class of paths that ROUTER was intended to produce given 
its actual input initial and goal locations. The feedback path 
begins at the initial and ends at the goal location, therefore, 
AUTOGNOSTIC infers that the feedback is indeed a valid output 
for ROUTER’S current problem. 

If the feedback belongs indeed in the class of intended 
correct outputs for the current problem input (see Fig- 
ure 2[1]), then the strategy employed to accomplish this 
task should have produced it. Thus, the blame-assignment 
method postulates that the cause of the failure must lie 
within this strategy, that is, within some of its subtasks. 
From the trace of the failed problem-solving episode, it 
identifies the method which was used for the task in ques- 

Model-Based Reasoning 961 



tion, and focuses the search for the cause of the failure to the 
last subtask of this method producing the erroneous output 
(see Figure 2[ 1.21). 

Having established that the feedback belongs in the class 
of paths that path-planning could have produced for 
this problem, AUTOGNOSTIC postulates that the cause of 
the failure must lie within the strategy used to accomplish 
this task. Thus, it successively refines the focus of its 
investigation to the subtasks involved in the production of 
thepath,i.e., search andnext path-increase. 

If at some point, the semantics of some task is not vali- 
dated by its actual input and the feedback (see Figure 2[2]), 
then the blame-assignment method attempts to infer alter- 
native inputs which would satisfy it. This is meaningful 
only when the task’s input is not part of the overall problem 
specification, otherwise it would be an attempt to redefine 
the problem in order to fit the desired solution. If, however, 
the input of the task in question is produced by some ear- 
lier subtask, and, if alternative values can be found for it 
such that the current task’s semantics is satisfied (see Figure 
2[2.1]), then the blame-assignment method infers that the 
fault must lie within this earlier subtask which produced 
the “wrong” input for the task currently under examination. 
Therefore, it identifies the highest earlier subtask producing 
the information in question, and shifts its focus to assign- 
ing blame for its failure to produce the alternative desired 
value. To identify the producing subtask, the method uses 
the compositional semantics of the methods that gave rise 
to the subtask under examination. Had this knowledge not 
been available in the SBF model, the method would have 
to examine all the subtasks performed before the current 
subtask with failing semantics. 

AB-undesired-value(task infofeedback) 
IFfeedback belongs in the class of values tusk produces for info 
THEN III 

IF tusk is accomplished by an operator 
THEN under-specified-task-semantics WI 

IF the task semantics is an enumerated domain relation 
THEN incorrect-domain-relation [l.l.a] 

IF tusk is accomplished by a method M 
THEN AB-undesired-value(task-i infofeedback) [W 

where tusk-i E subtasks(tusk M) and info E output(task-i) 
ELSE PI 

IF there is alternative value, v, for info i, where i E input(task) 
for which tusk could have produced feedback for info 

THEN AB-undesired-value(task-i i v) WI 
where i E output(task-i) n 
,?I tusk-j: i E output(task-j) n tusk-i E subtasks(task-j) 

ELSE over-constrained-task-semantics WI 
IF the violated semantics is an enumerated domain relation 
THEN incomplete-domain-relation [2.2.a] 

Figure 2: The blame-assignment algorithm. The different 
diagnostic hypotheses that can be postulated are shown in 
boldface. 

The ability to infer possible alternative values for types 
of information produced by the problem-solver’s interme- 
diate subtasks is based on the SBF specification first, of 
the functional semantics of the task under inspection, and 
second, of the domain relations on which this semantics 

is based. As we have already described, based on these 
types of knowledge, the blame-assignment method is able 
to evaluate whether or not a particular value tuple validates 
a task’s semantics. In addition, given a partially specified 
tuple, the blame-assignment method is potentially able to 
identify possible values for the unspecified tuple members 
such that the tuple belongs in the relation and satisfies the 
semantics. If the domain relation is exhaustively described 
in a truth table, then the possible values are inferred through 
a search of this table for all the tuples that match the par- 
tially specified one. If it is evaluated by a predicate, then 
there are two possibilities. Either an inverse predicate is 
also specified in the SBF model, such that it maps the task’s 
output to its possible inputs, or the task’s input is an instance 
of an object type with an exhaustively described domain. 
In the former case, the inverse predicate is applied to the 
task’s desired output to produce the possible values for the 
alternative input which could lead to its production. In the 
latter case, the input domain is searched for these values 
which, together with the desired output, would satisfy the 
semantics of the task. Thus, given the output desired of a 
task, and based on the SBF specification of its semantics 
the blame-assignment method is potentially able to infer 
the input which could possibly lead the task to produce it. 
Clearly, if none of the above conditions is true, then no 
alternative inputs can be inferred. 

The semantics of path-increase, which specify that 
the produced path must be a extension of the path selected by 
tmp-path-selection (preJix(tmp-path path)), fails for the 
feedback path. The path selected in the last repetition of the 
loop was ((center 10th) (10th utluntic) (at&tic walnut)) and it is 
not a prefix of the feedback, therefore the desired path could 
not possibly have been produced by the path-increase 
task given the temporary path it received as input. Thus, 
AUTOGNOSTIC attempts to infer alternative values for the in- 
put temporary path which could enable path-increase 
to produce the desired path. The relation prefix is eval- 
uated by a predicate, and the SBF model also specifies an 
inverse predicate for it which, given a path, produces all its 
possible prefixes. Given the possible prefixes of the desired 
path, AUTOGNOSTIC infers that if ((center 10th) (center mup- 
pie) (mupple dulney)) had been selected, the path- increase 
subtask could, in principle, have produced the feedback. 
Thus, the cause of the failure must lie within the subtask 
which selected the “wrong” path, tmp-path-selec tion. 
Therefore, it focuses the investigation towards identifying 
why this earlier subtask did not select the right path. 

The blame-assignment method may reach a leaf task 
whose semantics is validated by both the feedback and the 
value actually produced for its output (see Figure 2[ 1.11). 
This situation implies that the problem-solver’s task struc- 
ture is not sufficiently tailored to producing the right kind of 
solutions. In such situations the blame-assignment method 
postulates the following two types of errors as possible 
causes for the failure. First, the task’s semantics may be 
under-speci$ed and they allow both the actual and feed- 
back values to be produced, when only the latter conforms 
with the requirements of the problem-solver’s environment. 

962 Model-Based Reasoning 



In such cases, the function of this subtask should be re- 
fined (i.e., more domain relations should be added to its 
functional semantics), so that the overall problem-solving 
process becomes more selective. Second, if the task seman- 
tics refer to domain relations exhaustively described in truth 
tables, the blame-assignment method hypothesizes as an ad- 
ditional cause of the failure the incorrect domain knowledge 
of the problem solver regarding this relation which allows 
the mapping from its actual input to its actual output (see 
Figure 2[1 .l .a]). This mapping could potentially be in- 
correct, in which case the task should have never produced 
the undesired actual value, and it should have preferred the 
feedback. Among these two hypotheses, the subsequent re- 
pair step will first attempt to address the former one, which 
is the more grave one, by identifying new semantics for 
the under-specified operator. If this is not possible, it will 
attempt to address the latter one. 

AUTOGNOSTIC evaluates the functional semantics of 
tmp-path-selection and notices that it is satisfied by 
the desired temporary path. Indeed, this path belongs in 
the set of paths that ROUTER has already explored. Thus, 
AUTOGNOSTIC infers that this desired value could have been 
produced by tmp-path-selection. This task is a leaf 
task, and therefore, the error must lie within the operator 
that accomplishes it (notice, the task’s semantics does not 
depend on any truth-table defined domain relations). That 
is, the specification of the tmp-path-selection opera- 
tor is incomplete with respect to quality of solutions that 
is desired of the overall path-planning task. Indeed, 
the intrazonal-search-method performs a breadth- 
first search in the space of possible paths with no particular 
quality criterion to guide it. If there is a quality desired of 
ROUTER’S paths, then a “best’‘-first search method would be 
more appropriate. By postulating the under-specification 
of the tmp-path-selection operator as cause for this 
failure of ROUTER, AUTOGNOSTIC’S subsequent repair step 
is able to search for additional semantics with which to 
characterize the information transformation of this opera- 
tor. As a result, it modifies this operator so as to select the 
shortest of the available explored paths, thus transforming 
the intrazonal-search method intoagreedy,shortest- 
path first search. 

Alternatively, the blame-assignment method may reach 
a task whose semantics is violated by the feedback, and 
no alternative values can be found for its input which can 
satisfy it (see Figure 2[2.2]). Under these circumstances, 
it postulates that the cause of the failure may be the over- 
constrained task semantics which does not allow it to pro- 
duce the feedback as its output, although this value is ac- 
ceptable given the information transformation intended of 
the overall task. In such cases the function of this subtask 
should be respecified in terms of other domain relations, in 
order to extend the class of its output values to include in 
it the feedback value. In addition, if the domain relations 
defining its semantics are exhaustively described by truth ta- 
bles, the blame-assignment method postulates that the cause 
of the failure may be the incomplete domain knowledge of 
the problem solver regarding this relation which does not 

include the a tuple relating the task’s actual input with its de- 
sired output, although it belongs in this relation (see Figure 
2[2.2.a]). 

This could have been the case in our example, if the 
tmp-path-selection semantics specified that the se- 
lected temporary path had to be the most scenic (or, for 
that matter, any other property that the desired temporary 
path does not satisfy) of the already explored paths. In this 
case, the blame-assignment method would have postulated 
that this operator was over-constrained. 

Assigning blame is ntless unless it results in repair- 
ing the error and improving the problem solving. Indeed, 
whether or not repair of the fault identified by blame as- 
signment results in improvement in problem-solving per- 
formance provides a good measure of the efficacy of the 
blame-assignment method. The repair of an incorrectly 
specified operator in AUTOGNOSTIC involves the discovery 
of relations that characterize the examples of behavior de- 
sired of the operator, and that differentiate them from the 
examples of its actual undesired behavior. As described 
in (Stroulia 1995), these discovered relations are used to 
re-specify the operator’s functional semantics. 

In addition to ROUTER, AUTOGNOSTIC to date has been 
integrated with QITIK:! (Goel 1989; Goel 1991), a de- 
sign system, and REFLECS a reactive robot. In one set 
of experiments, AUTOGNOSTIC was tested with 8, 4, and 
1 individual problems with ROUTER, KRITIK2, and RE- 
FLECS respectively. Each experiment in this set addressed 
a different learning task in that blame assignment identi- 
fied a different kind of fault. We found that after repair 
the problem-solver’s performance improved in each exper- 
iment. The differences among the three problem solvers 
(paradigm: deliberative vs. reactive; task: planning, de- 
sign, navigation) provide some evidence for the generality 
of the SBF language and the model-based blame-assignment 
method. 

Also, to evaluate long-term learning, in another set of 
experiments, AUTOGNOST~ integration with ROUTER was 
tested twice with 3 sequences of 40 randomly generated 
problems. For each problem, a different kind of “better” 
path was given as feedback. In this set of experiments, 
we found that AUTOGNOSTIC converged to a modified task 
structure of ROUTER after modifying the same three or four 
operators. The modified task structure was significantly 
superior to the original one in terms of problem-solving 
performance (Stroulia 1995). Collectively these exper- 
iments appear to indicate that the SBF language and the 
model-based method for blame assignment are appropriate 
for problem solvers whose behaviors can be described in 
terms of the interactions among a set of identifiable design 
elements with well-defined function 

Related Resea 
The analysis of problem solving in terms of task structures 
builds on Chandrasekaran (1989). The representation lan- 
guage of SBF models is based on another type of SBF mod- 
els that describe how physical devices work (Goel 1989). 
KIUTIK=! uses SBF models of physical devices for diagnosis 

Model-Based Reasoning 963 



(Stroulia et. al 1992; Goel& Stroulia 1996) and for design 
adaptation (Goel 1991). In formulating AUTOGNOSTIC’S 
SBF language for modeling problem solvers, we needed to 
make many changes to KRITIK2’s SBF models. For exam- 
ple, we had to significantly enhance the SBF language for 
capturing the functional semantics of tasks. 

Teiresias (D avis 1980), Gordius (Simmons 1988), 
Cream (Weintraub 1991), and Meta-Aqua (Ram & Cox 
1994) identify knowledge faults. In addition to Lex 
(Mitchell et. al 1981) and Prodigy (Carbonell et. al 1989), 
which we have already discussed, Castle (Freed at. al 
1992) too identifies processing faults. It uses a model of the 
problem solver that specifies the behavior expected of it, the 
interacting components of the problem solver, and the as- 
sumptions underlying their correct behavior. This is similar 
to the SBF specification of functional semantics of the tasks 
and subtasks of the problem solver. Like AUTOGNOSTIC, 
Castle’s model provides a justification structure for the ex- 
pected problem-solving behavior. But Castle’s models lack 
the hierarchical organization and compositional semantics 
of SBF models, thus, they do not provide any guidance in 
searching through the inter-dependencies of the problem- 
solver’s components. The blame assignment task in Castle 
is also different: given the failure of an explicitly stated 
assumption about the problem-solver’s behavior, it identi- 
fies the component whose design assumptions support the 
failed expectation and postulates errors in its functioning. 
In contrast, given a behavior desired of the problem solver, 
AUTOGNOSTIC uses the functional semantics of tasks and 
subtasks to postulate alternative behaviors desired of them. 

Conclusions 
In this paper, we have described a blame-assignment 
method, able to identify faults in the specification of a 
problem-solver’s operators, based on the problem-solver’s 
SBF model. The SBF model of a problem solver captures 
(i) the functional semantics of the problem-solver’s tasks, 
(ii) the compositional semantics of the methods that recur- 
sively synthesize the inferences drawn by its operators into 
the outputs of its overall task, and (iii) the “causal” inter- 
dependencies between its tasks and domain knowledge. 

The SBF specification of the tasks’ functional semantics 
plays a variety of roles in this blame-assignment method. 
First, the functional semantics of the problem-solver’s over- 
all task establishes the range of behaviors that the problem 
solver is intended to deliver, irrespective of whether or not 
it is explicitly designed to do so. Second, based on the 
functional semantics of the problem-solver’s intermediate 
subtasks and the overall behavior desired of it, the blame- 
assignment method infers the behaviors desired of these 
subtasks. Third, by comparing the functional semantics of 
the problem-solver’s operators with the behaviors desired 
of them, it identifies when the functions originally designed 
in these operators are incorrect (under-specified or over- 
constrained) with respect to the behaviors desired of the 
problem-solver. 

The SBF specification of the compositional semantics of 
the methods that the problem solver uses to accomplish its 
overall task enables the blame-assignment method to in- 

vestigate only the tasks involved in the production of the 
output for which an undesired value was produced . The 
blame-assignment method focuses the in vestigation from 
higher- to lower- level tasks and from one type of informa- 
tion to another, and thus, limits the number of information 
inter-dependencies that it examines. 

Finally, based on the “causal” inter-dependencies be- 
tween the tasks’ functional semantics with the problem- 
solver’s domain knowledge, the blame-assignment method 
is able to identify incorrect uses of this knowledge 
specification of the problem-solver’s operators, and 
in this domain knowledge. 

in the 
errors 

eferences 
Carbonell, J.G.; Knoblock, C.A.; and Minton, S. 1989. Prodigy: 
An Integrated Architecture for Planning and Learning. Architec- 
tures for Intelligence, Hillsdale, NJ: LEA. 
Chandrasekaran, B. 1989. Task Structures, Knowledge Acquisi- 
tion and Machine Learning. Machine Learning 4: 341-347. 
Davis, R. 1980. Meta-Rules: Reasoning about Control. ArtiJciuZ 
Intelligence 15: 179-222. 
Freed, M.; Krulwich, B.; Birnbaum, L.; and Collins, G. 1992. 
Reasoning about performance intentions. In Proc. of the Four- 
teenth Annual Conference of Cognitive Science Society, 7- 12. 
Goel, A. 1989. Integration of Case-Based Reasoning and Model- 
Based Reasoning for Adaptive Design Problem Solving, Ph.D. 
diss, The Ohio State University. 
Goel, A. 1991. A Model-Based Approach to Case Adaptation, In 
Proceedings of the Thirteenth Annual Conference of the Cogni- 
tive Science Society, 143-148. 
Goel, A.; Ali; K.; Donnellan, M.; Gomez, A.; and Callantine, T. 
1994. Multistrategy Adaptive Navigational Path Planning. IEEE 
Expert, 9(6):57-65. 
Goel, A. and Stroulia, E. 1996. Functional Representation and 
Functional Device Models and Model-Based Diagnosis in Adap- 
tive Design. In ArtiJiciul Intelligence in Design, Engineering and 
Manufacturing (to appear). 
Mitchell, T.M.; Utgoff, P.E.; Nudel, B.; and Banerji, R.B. 1981. 
Learning problem-solving heuristics through practice. In Proc. 
of the Seventh International Joint Conference on Artijciul Intel- 
ligence, 127- 134. 
Ram, A.; and Cox M.T. 1994. Introspective Reasoning Using 
Meta-Explanations for Multistrategy Learning. Machine Learn- 
ing: A Multistrategy Approach IV. (eds.) R.S. Michalski and G. 
Tecuci, 349-377. San Mateo, CA: Morgan Kaufmann, 
Samuel, A. 1959. Some studies in machine learning using the 
game of checkers. IBM Journal of R&D. Reprinted in Feigen- 
baum and Feldman (eds): Computers und Thought, McGraw- 
Hill, New York. 
Simmons, R.G. 1988. Combining Associational Causal Reason- 
ing to Solve Interpretation and Planning Problems, Ph.D. diss, 
MIT. 
Stroulia, E.; Shankar, M.; Goel, A.; and Penberthy, L. 1992. A 
Model-Based Approach to Blame Assignment in Design. In J.S. 
Gero (ed.) Proc. of the Second International Conference on AI in 
Design, 5 19-537. Kluwer Academic Publishers. 
Stroulia, E. 1995. Failure-Driven Learning as Model-Based Self- 
Redesign, Ph.D. diss, Georgia Inst. of Technology. 
Weintraub, M. 1991. An Explanation-Based Approach to As- 
signing Credit, Ph.D. diss, The Ohio State University. 

964 Model-Based Reasoning 


