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Abstract 

We present a method for specifying temporal con- 
straints on trajectories of dynamical systems and en- 
forcing them during qualitative simulation. This ca- 
pability can be used to focus a simulation, simulate 
non-autonomous and piecewise-continuous systems, 
reason about boundary condition problems and incor- 
porate observations into the simulation. The method 
has been implemented in TeQSIM, a qualitative simu- 
lator that combines the expressive power of qualitative 
differential equations with temporal logic. It inter- 
leaves temporal logic model checking with the simu- 
lation to constrain and refine the resulting predicted 
behaviors and to inject discontinuous changes into the 
simulation. 

of qualitative states) that satisfy continuous and dis- 
continuous behavioral requirements specified via tra- 
jectory constraints’. Figure 1 describes the relation- 
ship between the sources of constraining power within 
TeQSIM. 

Introduction 
State space descriptions, such as differential equations, 
constrain the values of related variables within individ- 
ual states and are often used in models of continuous 
dynamical systems. Besides continuity, which is im- 
plicit, these models cannot represent non-local infor- 
mation constraining the behavior of the system across 
time. Because qualitative simulation (Kuipers 1994; 
Forbus 1984) uses an abstraction of ordinary differen- 
tial equations, it is based on a state space description 
too. The discretization of system trajectories into ab- 
stract qualitative states, however, makes the represen- 
tation used by qualitative simulation amenable to the 
application of temporal formalisms to specify explicit 
across-time constraints. In general, these trajectory 
constraints can be used to restrict the simulation to a 
region of the state space in order to focus the simula- 
tion, simulate non-autonomous systems, reason about 
boundary condition problems and incorporate obser- 
vations into the simulation. 

Trajectory constraints are formulated using a com- 
bination of temporal logic expressions, a specification 
of discontinuous changes and a declaration of exter- 
nal events. Temporal logic expressions are written us- 
ing a variation of a propositional linear-time tempo- 
ral logic (Emerson 1990) that combines state formulae 
specifying both qualitative and quantitative informa- 
tion about a qualitative state with temporal operators, 
such as until, always, and eventually, that quantify 
such properties over a sequence of states. Temporal 
logic model checking is interleaved with the simulation 
to ensure that all and only the behaviors satisfying 
temporal logic expressions are included within the re- 
sulting description. Our logic extends the work done 
by Shults and Kuipers (Kuipers & Shults 1994; Shults 
& Kuipers 1996) in two ways. A three-valued logic 
is used to allow an expression to be conditionally en- 
tailed when quantitative information contained within 
the expression can be applied to a behavior to refine it. 
In addition, the model checking algorithm is designed 
to handle the incremental nature of a qualitative sim- 
ulation. An undetermined result occurs whenever the 
behavior is not sufficiently determined to evaluate the 
truth of a temporal logic expression. 

Discontinuous change expressions define when a par- 
ticular discontinuity can occur and specify the new val- 
ues for the variables that change discontinuously. This 
information is propagated through the model to deter- 
mine the variables that are indirectly affected by the 
change. 

TeQSIM (Temporally Constrained QSIM, pro- 
nounced tek’sim) restricts the simulation generated 
by QSIM (K ui P ers 1994) to behaviors (i.e. sequences 

*The research reported in this paper has been performed 
while visiting the Qualitative Reasoning Group at the Uni- 
versity of Texas at Austin. 

Finally, external events enable the modeler to re- 
fer to otherwise unpredictable events and to provide a 
quantitatively bounded temporal correlation between 
the occurrence of these events and distinctions pre- 

‘A trajectory for a tuple of variables <VI, . . . , v,> over a 
time interval [a, b] C !J?’ U (0, +oo} is defined as a function 
r mapping time to variable values defined over the set of 
the extended reals, i.e. T : [a, b] + (!R u (-00, +ccI})“. 
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TeQSIM uses three sources of information to constrain a simulation: 
structural constraints are specified as equations relating model 
variables within individual states; implicit continuity constraints 
restrict the relationship between variable values across time to ensure 
the continuity of each variable; and trajectory constraints restrict 
the behavior of individual variables and the interactions between 
variables. 

Each point in the above diagram represents a real valued trajec- 
tory. A qualitative behavior corresponds to a region within this 
space of trajectories. 
Discontinuous changes specified by the user cause a relaxation of 
the continuity constraints applied during simulation (dotted line 
surrounding the continuity constraints). Incorporating external 
events into the simulation extends the set of trajectories consis- 
tent with the structural constraints (dotted line surrounding the 
structural constraints). 
The qualitative behaviors generated by QSIM correspond to the 
trajectories consistent with both the unextended structural con- 
straints and the unrelaxed continuity constraints (thick boundary 
region), while the set of behaviors generated by TeQSIM corre- 
sponds to those trajectories consistent with all three constraint 
types (shaded region). 

Figure 1: TeQSIM constraint interaction. 

dieted by the model. 

A Control Problem 
TeQSIM has been applied to a variety of problems to 
address a range of tasks (Brajnik & Clancy 1996b). 
This section provides a simple example to demonstrate 
how trajectory information can be used to constrain a 
qualitative simulation in a realistic setting. Suppose 
that operators of a dam are told of a forecasted per- 
turbation to the flow of water into the lake. When 
involved in risk assessment decision making, they face 
the control problem of determining how to react, in 
terms of operations on gates and turbines, in order to 
avoid flooding neither the lake nor the downstream ar- 
eas. 

To show some of TeQSIM’s capabilities, we use a 
simple model of a lake, consisting of a reservoir, an in- 
coming river and an outgoing river; lake level and out- 
flow are regulated through a dam that includes a single 
floodgate. The implemented model uses quantitative 
information concerning Lake Travis, near Austin (TX), 
obtained from the Lower Colorado River Authority. 
Quantitative information is provided by numerical ta- 
bles which, in this specific case, are interpolated in a 
step-wise manner to provide lower and upper bounds 
for any intermediate point. Table 2 shows a portion 
of the rating table of a floodgate of Lake Travis. Its 
columns indicate the lake stage, i.e. level with respect 
to the mean sea level, the gate opening, and the gate 
discharge rate. A similar table correlates the lake stage 
with its volume. 

Stage (ft) Opening (ft) Discharge rate (cfs) 
665.00 1.00 638.82 
665.00 2.00 1277.65 

. . . I 
720.00 1 8.50 1 6200.00 

Figure 2: Rating table for floodgates of Lake Travis. 

The simulation starts from a state with initial values 
for stage and gate opening that guarantee a steady out- 
flow in the downstream leg of the river. It is forecasted 
that in 2-3 days the inflow will increase and that for 
the subsequent 15-21 days there will be no substantial 
change. The task is to determine if there is any risk 
of overflowing the dam and, if so, what actions can be 
taken to prevent this. 

We use TeQSIM to specify trajectory constraints on 
input variables: input flow rate and gate opening. The 
following trajectory constraints specify the perturba- 
tion to the inflow rate (Colorado-up). 
(EVENT step-up :time (2 3)) 
(EVENT step-down :time (17 24)) 
(DISC-CHANGE (event step-up) ((Colorado-up (if* inf) 

:range (1500 1800)) ) ) 
(DISC-CHANGE (event step-down) ((Colorado-up if*))) 

The declaration of an event (e.g. (EVENT step-up 
:time (2 3))) d fi e nes a name for a time-point and 
provides quantitative bounds (i.e. between days 2 and 
3 from the start of the simulation). The expres- 
sion (DISC-CHANGE (event step-up ((Colorado-up 
(if * inf > : range (1500 1800))) > states that when 
event step-up occurs, the qualitative magnitude of 
Colorado-up will instantaneously change into the in- 
terval (if * inf > and its value will be bounded by the 
range [1500, 18001. 

A simulation using these trajectory constraints 
shows that an overflow of the lake is indeed possible 
if no intervening action is taken. To guarantee that 
no overflow occurs, a significant opening action is re- 
quired. To this end, we postulate that an opening ac- 
tion to at least 4 feet occurs after Stage reaches the 
top-of-pool threshold. We are interested in know- 
ing the latest time at which such an action can oc- 
cur to prevent an overflow. The previous trajectory 
specification is extended by including an additional 
event (corresponding to the opening of the gate), the 
corresponding discontinuous action (the gate opening 
changes from its initial value op*=l to an interme- 
diate-value within (op* max) con&rained to be greater 
than or equal to 4) &d the drdering with respect to the 
threshold (using the temporal operator BEFORE applied 
to a state formula referring to the qualitative value of 
Stage and the external event). By focusing the simu- 
lation on behaviors that lead to an overflow condition 
(using the EVENTUALLY temporal operator applied to 
a state formula stating that Stage reaches the value 
Top), TeQSIM determines a lower bound for the tem- 
PO;& occurrence of actions leading to an overflow. 
(EVENT open) 
(DISC-CHANGE (event open) 

((opening cop* max) :range (4 NIL)))) 
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Figure 4: TeQSIM architecture. 

(BEFORE (qvalue stage (top-of-pool NIL) 1 
(EVENTUALLY (qvalue stage (top NIL))) 

open) ) 

This simulation tells us (figure 3) that if the gate is 
opened to at least 4 feet after 15.5 days then an over- 
flow may occur. Taking the action before 15.5 days, 
however, will prevent such an outcome. After con- 
straining the action to occur before 15.5 days and re- 
moving the eventually constraint, a third simulation 
produces only two behaviors, verifying that an over- 
flow cannot occur. In a similar manner, we infer an 
upper bound of 6 ft for the size of the opening ac- 
tion, given a restriction on the outflow rate expressed 
via the temporal logic expression (always (value-<= 
Colorado-dn 350) >. 

It is worth noting the amount of uncertainty present 
in even such a simple problem: functions (especially 
the discharge rate) may be non-linear, numeric en- 
velopes are based on a rough step-wise interpolation 
of tables, and the specification of input trajectories is 
uncertain (i.e. ranges for times and values). Neverthe- 
less, with a few simple simulations a reasonably useful 
and reliable result has been achieved. 

TeQSIM Architecture and Theory 
TeQSIM can be divided into two main components. 
The preprocessor modifies the qualitative differential 
model and decomposes the trajectory specification into 
temporal logic and discontinuous change expressions. 
The simulation and model checking component inte- 
grates temporal logic model checking into the simula- 
tion performed by QSIM by filtering and refining qual- 
itative behaviors according to a set of temporal logic 
expressions; it also injects discontinuous changes into 
the simulation. Figure 4 provides an overview of the 
system architecture. 

The user provides trajectory constraints to TeQSIM 
in the form of a trajectory specification that consists of 
an external event list and a set of extended temporal 
logic and discontinuous change expressions. The exter- 
nal event list is a totally ordered sequence of named, 
quantitatively bound time points. Events are repre- 
sented as landmarks of an auxiliary variable added to 
the model. The additional variable causes QSIM to 
branch on different orderings between external events 
and internal qualitative events identified during the 
simulation. The occurrence of external events is re- 

stricted by their quantitative bounds and the trajec- 
tory constraints specified by the modeler. 

The following subsections include a summary of the 
formal framework developed for the trajectory spec- 
ification language. A more detailed treatment of the 
language and main theorems, along with proofs and ad- 
ditional lemmas, is given in (Brajnik & Clancy 1996a; 
1996b). 

Guiding and refining the simulation 

Model checking and behavior refinement are performed 
by the Temporal Logic Guide (TL-Guide). Each time 
QSIM extends a behavior by adding a new state, the 
behavior is passed to the TL-Guide. The behavior is 
refuted if it contains sufficient information to deter- 
mine that each of its completions fail to satisfy the set 
of TL expressions. If the behavior conditionally models 
the TL expressions, then it is refined by incorporating 
relevant quantitative information contained within the 
TL expressions. Otherwise, the behavior is retained 
unchanged. 

The trajectory specification language includes 
propositional state formulae that can refer to qual- 
itative and quantitative values of variables within 
states. Qualitative value information is specified using 
(qvalue w (qmag qdir) > where v is a model variable, 
qmag is a qualitative magnitude, and qdir is one of 
{ inc, std, dec}. NIL can be used anywhere to match 
anything. Such a proposition is true for a state exactly 
when the qualitative value of v in the state matches the 
description ( qmag qdir > . 

Path formulae are defined recursively as either state 
formulae or combinations of path formulae using tem- 
poral and boolean operators. A state formula is true of 
a behavior if it is true for the first state in the behav- 
ior. The path formula (until p q), where both p and 
Q are path formulae, is true for a behavior if p holds 
for all suffixes of the behavior preceding the first one 
where q holds, while (strong-next p) is true for a be- 
havior if it contains at least two states and p holds in 
the behavior starting at the second state. Other tem- 
poral operators can be defined as abbreviations from 
these two. We have extended those defined in (Shults 
& Kuipers 1996) to provide a more abstract language 
to simplify the specification of assertions. 

Temporal logic formulae are given meaning with re- 
spect to linear-time interpretation structures. These 
structures are extended from their typical definition 
(e.g. (Emerson 1990)) in order to accommodate the 
refinement of behaviors with quantitative information. 
In addition to defining a sequence of states and a 
propositional interpretation function, means for repre- 
senting, generating and applying refinement conditions 
are provided. Refinement conditions are needed be- 
cause the language provides quantitative propositions 
whose truth value cannot always be determined. When 
ambiguity occurs for a formula, then the interpreta- 
tion is required to provide necessary and sufficient re- 
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TeQSIM produces two behaviors where Stage reaches Top. The first behavior is shown above. The opening action occurs at 
T3. The numeric bounds oti this time-point shows that an overflow can occur only if the opening action is performed after 
15.5 days. The second behavior provides similar results. 

Figure 3: Lake simulation with opening actions leading to overflow. 

finement conditions on quantitative ranges to disam- 
biguate the truth value of the formula. A refinement 
condition is a boolean combination of inequalities be- 
tween the partially known numeric value of a variable 
in a state and an extended real number. 

The trajectory specification language contains po- 
tentially ambiguous state formulae like (value-<= v 
n), where v is a variable and n E !I? U (-cm, $00). 
The formula is true in a state s iff Vx E R( v, s) : 
2 5 n, where R(v, s) denotes the range of possible 
numeric values for variable 21 in state s; it is false iff 
vx E R(v, s) : n < x; otherwise, it is conditionally 
true. In such a case, the refinement condition is that 
the least upper bound of the possible numeric values 
of TJ is equal to n (i.e. v, 5 n, where v, is the unknown 
value of 21 in s). 

Applying a refinement condition to a state yields 
a new, more refined state. For example, the formula 
(value-<= X 0.3) generates the condition X, 5 0.3 
when interpreted on a state s where R(X, s) = [0, 1.01. 
Applying the condition to s leads to a new state s’ 
where R(X, s’) = [0,0.3]. 

Notice that ambiguity is not a purely syntactic prop- 
erty, but rather it depends on state information. For 
example, (value-<= X 0.3) is (unconditionally) true 
on a state where R(X, s) = [0,0.25], but only condi- 
tionally true if R(X, s) = (0, 1.01. Due to potential 
ambiguity, two entailment relations are used to define 
the semantics of formulae. The first one, called models, 
characterizes non-ambiguous true formulE while the 
second one, called conditionally models, characterizes 
ambiguous formulae. 

To avoid hindering the simulation process, the us- 
age of ambiguous formule must be restricted. The 
problem is that an arbitrary formula may yield sev- 
eral alternative refinement conditions. A disjunction 
of refinement conditions can be applied to states, but 
it requires the introduction of a new behavior that is 
qualitatively identical to the original behavior. For 
example, when interpreted on a particular state (or 
(value-<= X 0.5) (value-<= Y 15)) may yield the 
condition (X, 5 0.5 V Ys 5 15). Applying such a con- 
dition yields a state s’ in which R(X, s’) = [. . . ,0.5] 
and a state s” where R(Y, s”) = [. . . , 151. A similar, 
more severe problem occurs with path formulae. 

The set of admissible formule is a syntactic restric- 
tion that excludes formulae that may result in disjunc- 
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tive conditions. Even though such a restriction reduces 
the expressiveness of the language, it does not have 
an important impact from a practical point. If the 
modeler adheres to the general principle that all im- 
portant distinctions are made explicit in the qualita- 
tive model (i.e. introduces appropriate landmarks with 
associated numerical bounds instead of using quanti- 
tative bounds), then the restriction to admissible for- 
mulae does not reduce the applicability of TeQSIM. 

Discontinuous Changes 
The injection of discontinuous changes into qualitative 
simulation consists of identifying when the change oc- 
curs and then propagating its effects through the model 
to determine which variables inherit their values across 
the change and which don’t. 

A discontinuous change is specified by (disc- 
change precond eflect), where precond is a boolean 
combination of qvalue propositions and eflect is 
a list of expressions of the form (variable qmag 
[ : range range] 1. This expression is translated into 
the temporal logic path formula (occurs-at precond 
(strong-next eflect’)) where eflece is a conjunction 
of qvalue, value-<= and value->= formulae derived 
from eflect. This formula is true for a behavior iff 
eflect’ is true for the state immediately following the 
first state in which precond is true. 

The Discontinuous Change Processor monitors 
states as they are created and tests them against the 
preconditions of applicable discontinuous change ex- 
pressions. A new state is inserted into the simulation 
following state s if the preconditions are satisfied and a 
discontinuous change is required to assert the effects in 
the successor states. A new, possibly incomplete state 
s’ is created by asserting the qualitative values speci- 
fied within the effects and inheriting values from s for 
variables not affected by the discontinuous change via 
continuity relaxation (see below). All consistent com- 
pletions of s’ are computed and installed as successors 
of s. 

Continuity relaxation propagates the effects of a dis- 
continuous change through the model by identifying 
potentially affected variables. The following assump- 
tions are made: (i) state variables (variables whose 
time derivative is included in the model) are piecewise- 
C1 (i.e. continuous everywhere, and differentiable ev- 
erywhere except at isolated points); (ii) non-state vari- 



ables are at least piecezuise-C’ (i.e. continuous every- 
where except at isolated points); (iii) all discontinuous 
changes in -input variables are explicitly specified; and 
(iv) the model is valid during the transient caused by 
a discontinuous change. These assumptions suffice to 
support an effective criterion, proven to be sound, for 
automatically identifying all the variables that are po- 
tentially affected by the simultaneous discontinuity of 
variables in a set A = {VI.. .Vn). 

Given a qualitative differential model M, a variable 
2 is totally dependent on a set of variables A (writ- 
ten d-2) iff M includes a non-differential, contin- 
uous relation R(Xr . . . Xi, 2, Xi+i . . . Xn) with n 2 1 
such that Vi: Xi E A or A-Xi. For example, if M in- 
cludes the constraint (add X Y 2) then {Y, 2)-X. 
Furthermore, let TD(d) represent the set of variables 
totally dependent on A (i.e. TD(d) = {Xld++X}). 

Let E be the set of input variables and S the set of 
state variables of M. Then define PZ)A (the set of vari- 
ables that are potentially affected by the discontinuity 
of variables in A) as the maximum set of variables of 
M that satisfies: 

1. A C PDA (by definition of A); 
2. S n P’DA = 0 (by assumption (i)); 
3. f n P’DA = A (by assumption (iii)); 
4. TD(S u E - A) n PVA = 0 (by definition of total 

dependency, if 2 totally depends on a set of contin- 
uous variables, then 2 must be continuous too and 
cannot belong to PVA). 
Continuity relaxation handles discontinuous changes 

of variables in A by computing the set P’DA so that, 
during a transient, variables in P’DA are unconstrained 
and can change arbitrarily, whereas those not in PVA 
retain their previous qualitative magnitude. The di- 
rection of change (i.e. qdir) for all variables is assumed 
to be potentially discontinuous. 

In the simulation shown in figure 3, the disconti- 
nuity occurring to Opening at T3 cannot affect Stage 
because the latter is totally dependent on the state 
variable Volume. On the other hand, the discontinuity 
affects the magnitude of Discharge-rate (not shown 
in the figure) because none of the conditions above ap- 
ply. Notice also how the discontinuities affect the qdir 
of variables. 

Model Checking 

The temporal logic model checking algorithm is de- 
signed to evaluate a QSIM behavior with respect to 
a set of temporal logic formulae as the behavior is in- 
crement ally developed. This allows behaviors to be 
filtered and refined as early as possible during the sim- 
ulation. Kuipers and Shults (1994) developed a model 
checking algorithm to prove properties about contin- 
uous dynamical systems by testing a completed sim- 
ulation against temporal logic expressions. We have 
extended this work to deal with conditionally true for- 

mulaz and with behaviors that are not closed, i.e. still 
being extended by the simulator. 

The model checking algorithm, described in (Brajnik 
& Clancy 1996b), computes the function r: Formulae x 

Behaviors + {T, F, U} x C, where C is the set of all pos- 
sible refinement conditions, including the trivial con- 
dition TRUE. A definite answer (i.e. T or F) is provided 
when the behavior contains sufficient information to 
determine the truth value of the formula. For exam- 
ple, a non-closed behavior b will not be sufficiently 
determined with respect to the formula (eventually 
p) if p is false for all suffixes of b, since p may become 
true anytime in the future. 

A behavior b is suficiently determined with respect 
to a temporal logic formula cp (written b D ‘p) whenever 
there is enough information within the behavior to de- 
termine a single truth value for all of its completions. If 
a behavior is not sufficiently determined for a formula, 
then U is returned by the algorithm. The definition of 
suficiently determined (omitted due to space restric- 
tions) is given recursively on the basis of the syntactic 
structure of the formula. We will write b+ ‘p to signify 
that b is not sufficiently determined for cp. 

Notice that indeterminacy is a property independent 
from ambiguity: the former is related to incomplete 
behaviors, whereas the latter deals with ambiguous in- 
formation present in states of a behavior. 

The following theorem supports our use of tempo- 
ral logic model checking for guiding and refining the 
simulation. 

Theorem 1 (TL-guide is sound and complete) 
Given a QSIM behavior b and an admissible formula ‘p 
then TL-guide: 

1. refutes b ifl b D cp and there is no way to extend b to 
make it a model for cp. 

2. retains b without modifying it ifl 
(a) b D cp and b is a model for (p; or 
(b) b @ cp and th ere is no necessary refinement condi- 

tion C for refining b into a model for ‘p. 
3. replaces b with b’ iff 

(a) br>cp and b conditionally models ‘p and there exists 
C that is necessary and suficient for refining b 
into a model for ‘p; or 

(b) b @ cp and there is a necessary condition C for 
refining b into a model for cp. 

Proof. By induction on the length of ‘p; see (Brajnik 
& Clancy 1996b). 

Discussion and Conclusions 
We are currently exploring several directions to extend 
the expressiveness of the trajectory specification lan- 
guage. Enabling the comparison of magnitudes of vari- 
ables across states (e.g. to specify a decreasing oscil- 
lation) requires a move from a propositional logic to 
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some sort of first order logic. Expressing the possi- 
bility of a discontinuous change requires a more com- 
plex relationship between preconditions and effects of a 
discontinuous change. Addressing discontinuous feed- 
forward control problems requires that preconditions 
are specified using arbitrary temporal logic expres- 
sions, not simply state formuhe. Simulating hybrid 
discrete-continuous systems calls for a more flexible 
specification of partially ordered external events. 

While the practical time-complexity of a TeQSIM 
simulation is dominated by quantitative inferences per- 
formed by QSIM, we are still investigating improve- 
ments to our algorithm with respect to complexity. 

The incorporation of trajectory information into a 
qualitative simulation has been explored by DeCoste 
(1994)) who introduces suficient discriminatory envi- 
sionments to determine whether a goal region is pos- 
sible, impossible or inevitable from each state of the 
space. Washio and Kitamura (1995) also present a 
technique that uses temporal logic to perform a history 
oriented envisionment to filter predictions. TeQSIM, 
within a rigorously formalized framework, provides a 
more expressive language not limited to reachability 
problems, refines behaviors as opposed to just filter- 
ing them, and incorporates discontinuous changes into 
behaviors. 

Discontinuities have been investigated by Nishida 
and Doshita (1987)) Forbus (1989), Iwasaki and col- 
leagues (1995)) and others. The continuity relaxation 
method adopted in TeQSIM is conceptually simpler, 
sound, widely applicable and practically effective. 

Our trajectory specification language is similar in 
expressiveness to both Allen’s intervaZ algebra (Allen 
1984) and Dechter, Meiri and Pearl’s temporal con- 
straint networks (Dechter, Meiri, & Pearl 1991). The 
usage of the language in TeQSIM, however, is quite dif- 
ferent from these two formalisms. Instead of asserting 
temporal constraints in a database of assertions and 
querying if certain combinations of facts are consistent, 
TeQSIM checks that a database of temporally related 
facts generated by QSIM satisfy a set of temporal logic 
constraints. 

TeQSIM supports a general methodology for incor- 
porating otherwise inexpressible trajectory informa- 
tion into the qualitative simulation process. The cor- 
rectness of TL-Guide, of the Discontinuous Change 
Processor, and of QSIM guarantee that all possible 
trajectories of the modeled system that are compatible 
with the model, the initial state and the trajectory con- 
straints are included in the generated behaviors. In ad- 
dition, the completeness of TL-Guide ensures that all 
behaviors generated by TeQSIM are potential models 
of the trajectory constraints specified by the modeler. 
For these reasons, and its limited complexity, TeQSIM 
can be applied to problems where QSIM alone would 
not be appropriate. 
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