
Trajectory Constraints in Qualitative Simulation

Giorgio Brajnik* Daniel J. Clancy
Dip. di Matematica e Informatica

Universith di Udine
Udine - Italy

giorgio@dimi.uniud.it

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712
clancy@cs.utexas.edu

Abstract

We present a method for specifying temporal con-
straints on trajectories of dynamical systems and en-
forcing them during qualitative simulation. This ca-
pability can be used to focus a simulation, simulate
non-autonomous and piecewise-continuous systems,
reason about boundary condition problems and incor-
porate observations into the simulation. The method
has been implemented in TeQSIM, a qualitative simu-
lator that combines the expressive power of qualitative
differential equations with temporal logic. It inter-
leaves temporal logic model checking with the simu-
lation to constrain and refine the resulting predicted
behaviors and to inject discontinuous changes into the
simulation.

of qualitative states) that satisfy continuous and dis-
continuous behavioral requirements specified via tra-
jectory constraints’. Figure 1 describes the relation-
ship between the sources of constraining power within
TeQSIM.

Introduction
State space descriptions, such as differential equations,
constrain the values of related variables within individ-
ual states and are often used in models of continuous
dynamical systems. Besides continuity, which is im-
plicit, these models cannot represent non-local infor-
mation constraining the behavior of the system across
time. Because qualitative simulation (Kuipers 1994;
Forbus 1984) uses an abstraction of ordinary differen-
tial equations, it is based on a state space description
too. The discretization of system trajectories into ab-
stract qualitative states, however, makes the represen-
tation used by qualitative simulation amenable to the
application of temporal formalisms to specify explicit
across-time constraints. In general, these trajectory
constraints can be used to restrict the simulation to a
region of the state space in order to focus the simula-
tion, simulate non-autonomous systems, reason about
boundary condition problems and incorporate obser-
vations into the simulation.

Trajectory constraints are formulated using a com-
bination of temporal logic expressions, a specification
of discontinuous changes and a declaration of exter-
nal events. Temporal logic expressions are written us-
ing a variation of a propositional linear-time tempo-
ral logic (Emerson 1990) that combines state formulae
specifying both qualitative and quantitative informa-
tion about a qualitative state with temporal operators,
such as until, always, and eventually, that quantify
such properties over a sequence of states. Temporal
logic model checking is interleaved with the simulation
to ensure that all and only the behaviors satisfying
temporal logic expressions are included within the re-
sulting description. Our logic extends the work done
by Shults and Kuipers (Kuipers & Shults 1994; Shults
& Kuipers 1996) in two ways. A three-valued logic
is used to allow an expression to be conditionally en-
tailed when quantitative information contained within
the expression can be applied to a behavior to refine it.
In addition, the model checking algorithm is designed
to handle the incremental nature of a qualitative sim-
ulation. An undetermined result occurs whenever the
behavior is not sufficiently determined to evaluate the
truth of a temporal logic expression.

Discontinuous change expressions define when a par-
ticular discontinuity can occur and specify the new val-
ues for the variables that change discontinuously. This
information is propagated through the model to deter-
mine the variables that are indirectly affected by the
change.

TeQSIM (Temporally Constrained QSIM, pro-
nounced tek’sim) restricts the simulation generated
by QSIM (K ui P ers 1994) to behaviors (i.e. sequences

*The research reported in this paper has been performed
while visiting the Qualitative Reasoning Group at the Uni-
versity of Texas at Austin.

Finally, external events enable the modeler to re-
fer to otherwise unpredictable events and to provide a
quantitatively bounded temporal correlation between
the occurrence of these events and distinctions pre-

‘A trajectory for a tuple of variables <VI, . . . , v,> over a
time interval [a, b] C !J?’ U (0, +oo} is defined as a function
r mapping time to variable values defined over the set of
the extended reals, i.e. T : [a, b] + (!R u (-00, +ccI})“.

Qualitative Physics 979

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

TeQSIM uses three sources of information to constrain a simulation:
structural constraints are specified as equations relating model
variables within individual states; implicit continuity constraints
restrict the relationship between variable values across time to ensure
the continuity of each variable; and trajectory constraints restrict
the behavior of individual variables and the interactions between
variables.

Each point in the above diagram represents a real valued trajec-
tory. A qualitative behavior corresponds to a region within this
space of trajectories.
Discontinuous changes specified by the user cause a relaxation of
the continuity constraints applied during simulation (dotted line
surrounding the continuity constraints). Incorporating external
events into the simulation extends the set of trajectories consis-
tent with the structural constraints (dotted line surrounding the
structural constraints).
The qualitative behaviors generated by QSIM correspond to the
trajectories consistent with both the unextended structural con-
straints and the unrelaxed continuity constraints (thick boundary
region), while the set of behaviors generated by TeQSIM corre-
sponds to those trajectories consistent with all three constraint
types (shaded region).

Figure 1: TeQSIM constraint interaction.

dieted by the model.

A Control Problem
TeQSIM has been applied to a variety of problems to
address a range of tasks (Brajnik & Clancy 1996b).
This section provides a simple example to demonstrate
how trajectory information can be used to constrain a
qualitative simulation in a realistic setting. Suppose
that operators of a dam are told of a forecasted per-
turbation to the flow of water into the lake. When
involved in risk assessment decision making, they face
the control problem of determining how to react, in
terms of operations on gates and turbines, in order to
avoid flooding neither the lake nor the downstream ar-
eas.

To show some of TeQSIM’s capabilities, we use a
simple model of a lake, consisting of a reservoir, an in-
coming river and an outgoing river; lake level and out-
flow are regulated through a dam that includes a single
floodgate. The implemented model uses quantitative
information concerning Lake Travis, near Austin (TX),
obtained from the Lower Colorado River Authority.
Quantitative information is provided by numerical ta-
bles which, in this specific case, are interpolated in a
step-wise manner to provide lower and upper bounds
for any intermediate point. Table 2 shows a portion
of the rating table of a floodgate of Lake Travis. Its
columns indicate the lake stage, i.e. level with respect
to the mean sea level, the gate opening, and the gate
discharge rate. A similar table correlates the lake stage
with its volume.

Stage (ft) Opening (ft) Discharge rate (cfs)
665.00 1.00 638.82
665.00 2.00 1277.65

. . . I
720.00 1 8.50 1 6200.00

Figure 2: Rating table for floodgates of Lake Travis.

The simulation starts from a state with initial values
for stage and gate opening that guarantee a steady out-
flow in the downstream leg of the river. It is forecasted
that in 2-3 days the inflow will increase and that for
the subsequent 15-21 days there will be no substantial
change. The task is to determine if there is any risk
of overflowing the dam and, if so, what actions can be
taken to prevent this.

We use TeQSIM to specify trajectory constraints on
input variables: input flow rate and gate opening. The
following trajectory constraints specify the perturba-
tion to the inflow rate (Colorado-up).
(EVENT step-up :time (2 3))
(EVENT step-down :time (17 24))
(DISC-CHANGE (event step-up) ((Colorado-up (if* inf)

:range (1500 1800))))
(DISC-CHANGE (event step-down) ((Colorado-up if*)))

The declaration of an event (e.g. (EVENT step-up
:time (2 3))) d fi e nes a name for a time-point and
provides quantitative bounds (i.e. between days 2 and
3 from the start of the simulation). The expres-
sion (DISC-CHANGE (event step-up ((Colorado-up
(if * inf > : range (1500 1800))) > states that when
event step-up occurs, the qualitative magnitude of
Colorado-up will instantaneously change into the in-
terval (if * inf > and its value will be bounded by the
range [1500, 18001.

A simulation using these trajectory constraints
shows that an overflow of the lake is indeed possible
if no intervening action is taken. To guarantee that
no overflow occurs, a significant opening action is re-
quired. To this end, we postulate that an opening ac-
tion to at least 4 feet occurs after Stage reaches the
top-of-pool threshold. We are interested in know-
ing the latest time at which such an action can oc-
cur to prevent an overflow. The previous trajectory
specification is extended by including an additional
event (corresponding to the opening of the gate), the
corresponding discontinuous action (the gate opening
changes from its initial value op*=l to an interme-
diate-value within (op* max) con&rained to be greater
than or equal to 4) &d the drdering with respect to the
threshold (using the temporal operator BEFORE applied
to a state formula referring to the qualitative value of
Stage and the external event). By focusing the simu-
lation on behaviors that lead to an overflow condition
(using the EVENTUALLY temporal operator applied to
a state formula stating that Stage reaches the value
Top), TeQSIM determines a lower bound for the tem-
PO;& occurrence of actions leading to an overflow.
(EVENT open)
(DISC-CHANGE (event open)

((opening cop* max) :range (4 NIL))))

980 Model-Based Reasoning

r-------,

SiIllUldlO~
&

Model Checking

Dlscontinuow

- Procesfor

Figure 4: TeQSIM architecture.

(BEFORE (qvalue stage (top-of-pool NIL) 1
(EVENTUALLY (qvalue stage (top NIL)))

open))

This simulation tells us (figure 3) that if the gate is
opened to at least 4 feet after 15.5 days then an over-
flow may occur. Taking the action before 15.5 days,
however, will prevent such an outcome. After con-
straining the action to occur before 15.5 days and re-
moving the eventually constraint, a third simulation
produces only two behaviors, verifying that an over-
flow cannot occur. In a similar manner, we infer an
upper bound of 6 ft for the size of the opening ac-
tion, given a restriction on the outflow rate expressed
via the temporal logic expression (always (value-<=
Colorado-dn 350) >.

It is worth noting the amount of uncertainty present
in even such a simple problem: functions (especially
the discharge rate) may be non-linear, numeric en-
velopes are based on a rough step-wise interpolation
of tables, and the specification of input trajectories is
uncertain (i.e. ranges for times and values). Neverthe-
less, with a few simple simulations a reasonably useful
and reliable result has been achieved.

TeQSIM Architecture and Theory
TeQSIM can be divided into two main components.
The preprocessor modifies the qualitative differential
model and decomposes the trajectory specification into
temporal logic and discontinuous change expressions.
The simulation and model checking component inte-
grates temporal logic model checking into the simula-
tion performed by QSIM by filtering and refining qual-
itative behaviors according to a set of temporal logic
expressions; it also injects discontinuous changes into
the simulation. Figure 4 provides an overview of the
system architecture.

The user provides trajectory constraints to TeQSIM
in the form of a trajectory specification that consists of
an external event list and a set of extended temporal
logic and discontinuous change expressions. The exter-
nal event list is a totally ordered sequence of named,
quantitatively bound time points. Events are repre-
sented as landmarks of an auxiliary variable added to
the model. The additional variable causes QSIM to
branch on different orderings between external events
and internal qualitative events identified during the
simulation. The occurrence of external events is re-

stricted by their quantitative bounds and the trajec-
tory constraints specified by the modeler.

The following subsections include a summary of the
formal framework developed for the trajectory spec-
ification language. A more detailed treatment of the
language and main theorems, along with proofs and ad-
ditional lemmas, is given in (Brajnik & Clancy 1996a;
1996b).

Guiding and refining the simulation

Model checking and behavior refinement are performed
by the Temporal Logic Guide (TL-Guide). Each time
QSIM extends a behavior by adding a new state, the
behavior is passed to the TL-Guide. The behavior is
refuted if it contains sufficient information to deter-
mine that each of its completions fail to satisfy the set
of TL expressions. If the behavior conditionally models
the TL expressions, then it is refined by incorporating
relevant quantitative information contained within the
TL expressions. Otherwise, the behavior is retained
unchanged.

The trajectory specification language includes
propositional state formulae that can refer to qual-
itative and quantitative values of variables within
states. Qualitative value information is specified using
(qvalue w (qmag qdir) > where v is a model variable,
qmag is a qualitative magnitude, and qdir is one of
{ inc, std, dec}. NIL can be used anywhere to match
anything. Such a proposition is true for a state exactly
when the qualitative value of v in the state matches the
description (qmag qdir > .

Path formulae are defined recursively as either state
formulae or combinations of path formulae using tem-
poral and boolean operators. A state formula is true of
a behavior if it is true for the first state in the behav-
ior. The path formula (until p q), where both p and
Q are path formulae, is true for a behavior if p holds
for all suffixes of the behavior preceding the first one
where q holds, while (strong-next p) is true for a be-
havior if it contains at least two states and p holds in
the behavior starting at the second state. Other tem-
poral operators can be defined as abbreviations from
these two. We have extended those defined in (Shults
& Kuipers 1996) to provide a more abstract language
to simplify the specification of assertions.

Temporal logic formulae are given meaning with re-
spect to linear-time interpretation structures. These
structures are extended from their typical definition
(e.g. (Emerson 1990)) in order to accommodate the
refinement of behaviors with quantitative information.
In addition to defining a sequence of states and a
propositional interpretation function, means for repre-
senting, generating and applying refinement conditions
are provided. Refinement conditions are needed be-
cause the language provides quantitative propositions
whose truth value cannot always be determined. When
ambiguity occurs for a formula, then the interpreta-
tion is required to provide necessary and sufficient re-

Qualitative Physics 981

TeQSIM produces two behaviors where Stage reaches Top. The first behavior is shown above. The opening action occurs at
T3. The numeric bounds oti this time-point shows that an overflow can occur only if the opening action is performed after
15.5 days. The second behavior provides similar results.

Figure 3: Lake simulation with opening actions leading to overflow.

finement conditions on quantitative ranges to disam-
biguate the truth value of the formula. A refinement
condition is a boolean combination of inequalities be-
tween the partially known numeric value of a variable
in a state and an extended real number.

The trajectory specification language contains po-
tentially ambiguous state formulae like (value-<= v
n), where v is a variable and n E !I? U (-cm, $00).
The formula is true in a state s iff Vx E R(v, s) :
2 5 n, where R(v, s) denotes the range of possible
numeric values for variable 21 in state s; it is false iff
vx E R(v, s) : n < x; otherwise, it is conditionally
true. In such a case, the refinement condition is that
the least upper bound of the possible numeric values
of TJ is equal to n (i.e. v, 5 n, where v, is the unknown
value of 21 in s).

Applying a refinement condition to a state yields
a new, more refined state. For example, the formula
(value-<= X 0.3) generates the condition X, 5 0.3
when interpreted on a state s where R(X, s) = [0, 1.01.
Applying the condition to s leads to a new state s’
where R(X, s’) = [0,0.3].

Notice that ambiguity is not a purely syntactic prop-
erty, but rather it depends on state information. For
example, (value-<= X 0.3) is (unconditionally) true
on a state where R(X, s) = [0,0.25], but only condi-
tionally true if R(X, s) = (0, 1.01. Due to potential
ambiguity, two entailment relations are used to define
the semantics of formulae. The first one, called models,
characterizes non-ambiguous true formulE while the
second one, called conditionally models, characterizes
ambiguous formulae.

To avoid hindering the simulation process, the us-
age of ambiguous formule must be restricted. The
problem is that an arbitrary formula may yield sev-
eral alternative refinement conditions. A disjunction
of refinement conditions can be applied to states, but
it requires the introduction of a new behavior that is
qualitatively identical to the original behavior. For
example, when interpreted on a particular state (or
(value-<= X 0.5) (value-<= Y 15)) may yield the
condition (X, 5 0.5 V Ys 5 15). Applying such a con-
dition yields a state s’ in which R(X, s’) = [. . . ,0.5]
and a state s” where R(Y, s”) = [. . . , 151. A similar,
more severe problem occurs with path formulae.

The set of admissible formule is a syntactic restric-
tion that excludes formulae that may result in disjunc-

982 Model-Based Reasoning

tive conditions. Even though such a restriction reduces
the expressiveness of the language, it does not have
an important impact from a practical point. If the
modeler adheres to the general principle that all im-
portant distinctions are made explicit in the qualita-
tive model (i.e. introduces appropriate landmarks with
associated numerical bounds instead of using quanti-
tative bounds), then the restriction to admissible for-
mulae does not reduce the applicability of TeQSIM.

Discontinuous Changes
The injection of discontinuous changes into qualitative
simulation consists of identifying when the change oc-
curs and then propagating its effects through the model
to determine which variables inherit their values across
the change and which don’t.

A discontinuous change is specified by (disc-
change precond eflect), where precond is a boolean
combination of qvalue propositions and eflect is
a list of expressions of the form (variable qmag
[: range range] 1. This expression is translated into
the temporal logic path formula (occurs-at precond
(strong-next eflect’)) where eflece is a conjunction
of qvalue, value-<= and value->= formulae derived
from eflect. This formula is true for a behavior iff
eflect’ is true for the state immediately following the
first state in which precond is true.

The Discontinuous Change Processor monitors
states as they are created and tests them against the
preconditions of applicable discontinuous change ex-
pressions. A new state is inserted into the simulation
following state s if the preconditions are satisfied and a
discontinuous change is required to assert the effects in
the successor states. A new, possibly incomplete state
s’ is created by asserting the qualitative values speci-
fied within the effects and inheriting values from s for
variables not affected by the discontinuous change via
continuity relaxation (see below). All consistent com-
pletions of s’ are computed and installed as successors
of s.

Continuity relaxation propagates the effects of a dis-
continuous change through the model by identifying
potentially affected variables. The following assump-
tions are made: (i) state variables (variables whose
time derivative is included in the model) are piecewise-
C1 (i.e. continuous everywhere, and differentiable ev-
erywhere except at isolated points); (ii) non-state vari-

ables are at least piecezuise-C’ (i.e. continuous every-
where except at isolated points); (iii) all discontinuous
changes in -input variables are explicitly specified; and
(iv) the model is valid during the transient caused by
a discontinuous change. These assumptions suffice to
support an effective criterion, proven to be sound, for
automatically identifying all the variables that are po-
tentially affected by the simultaneous discontinuity of
variables in a set A = {VI.. .Vn).

Given a qualitative differential model M, a variable
2 is totally dependent on a set of variables A (writ-
ten d-2) iff M includes a non-differential, contin-
uous relation R(Xr . . . Xi, 2, Xi+i . . . Xn) with n 2 1
such that Vi: Xi E A or A-Xi. For example, if M in-
cludes the constraint (add X Y 2) then {Y, 2)-X.
Furthermore, let TD(d) represent the set of variables
totally dependent on A (i.e. TD(d) = {Xld++X}).

Let E be the set of input variables and S the set of
state variables of M. Then define PZ)A (the set of vari-
ables that are potentially affected by the discontinuity
of variables in A) as the maximum set of variables of
M that satisfies:

1. A C PDA (by definition of A);
2. S n P’DA = 0 (by assumption (i));
3. f n P’DA = A (by assumption (iii));
4. TD(S u E - A) n PVA = 0 (by definition of total

dependency, if 2 totally depends on a set of contin-
uous variables, then 2 must be continuous too and
cannot belong to PVA).
Continuity relaxation handles discontinuous changes

of variables in A by computing the set P’DA so that,
during a transient, variables in P’DA are unconstrained
and can change arbitrarily, whereas those not in PVA
retain their previous qualitative magnitude. The di-
rection of change (i.e. qdir) for all variables is assumed
to be potentially discontinuous.

In the simulation shown in figure 3, the disconti-
nuity occurring to Opening at T3 cannot affect Stage
because the latter is totally dependent on the state
variable Volume. On the other hand, the discontinuity
affects the magnitude of Discharge-rate (not shown
in the figure) because none of the conditions above ap-
ply. Notice also how the discontinuities affect the qdir
of variables.

Model Checking

The temporal logic model checking algorithm is de-
signed to evaluate a QSIM behavior with respect to
a set of temporal logic formulae as the behavior is in-
crement ally developed. This allows behaviors to be
filtered and refined as early as possible during the sim-
ulation. Kuipers and Shults (1994) developed a model
checking algorithm to prove properties about contin-
uous dynamical systems by testing a completed sim-
ulation against temporal logic expressions. We have
extended this work to deal with conditionally true for-

mulaz and with behaviors that are not closed, i.e. still
being extended by the simulator.

The model checking algorithm, described in (Brajnik
& Clancy 1996b), computes the function r: Formulae x

Behaviors + {T, F, U} x C, where C is the set of all pos-
sible refinement conditions, including the trivial con-
dition TRUE. A definite answer (i.e. T or F) is provided
when the behavior contains sufficient information to
determine the truth value of the formula. For exam-
ple, a non-closed behavior b will not be sufficiently
determined with respect to the formula (eventually
p) if p is false for all suffixes of b, since p may become
true anytime in the future.

A behavior b is suficiently determined with respect
to a temporal logic formula cp (written b D ‘p) whenever
there is enough information within the behavior to de-
termine a single truth value for all of its completions. If
a behavior is not sufficiently determined for a formula,
then U is returned by the algorithm. The definition of
suficiently determined (omitted due to space restric-
tions) is given recursively on the basis of the syntactic
structure of the formula. We will write b+ ‘p to signify
that b is not sufficiently determined for cp.

Notice that indeterminacy is a property independent
from ambiguity: the former is related to incomplete
behaviors, whereas the latter deals with ambiguous in-
formation present in states of a behavior.

The following theorem supports our use of tempo-
ral logic model checking for guiding and refining the
simulation.

Theorem 1 (TL-guide is sound and complete)
Given a QSIM behavior b and an admissible formula ‘p
then TL-guide:

1. refutes b ifl b D cp and there is no way to extend b to
make it a model for cp.

2. retains b without modifying it ifl
(a) b D cp and b is a model for (p; or
(b) b @ cp and th ere is no necessary refinement condi-

tion C for refining b into a model for ‘p.
3. replaces b with b’ iff

(a) br>cp and b conditionally models ‘p and there exists
C that is necessary and suficient for refining b
into a model for ‘p; or

(b) b @ cp and there is a necessary condition C for
refining b into a model for cp.

Proof. By induction on the length of ‘p; see (Brajnik
& Clancy 1996b).

Discussion and Conclusions
We are currently exploring several directions to extend
the expressiveness of the trajectory specification lan-
guage. Enabling the comparison of magnitudes of vari-
ables across states (e.g. to specify a decreasing oscil-
lation) requires a move from a propositional logic to

Qualitative Physics 983

some sort of first order logic. Expressing the possi-
bility of a discontinuous change requires a more com-
plex relationship between preconditions and effects of a
discontinuous change. Addressing discontinuous feed-
forward control problems requires that preconditions
are specified using arbitrary temporal logic expres-
sions, not simply state formuhe. Simulating hybrid
discrete-continuous systems calls for a more flexible
specification of partially ordered external events.

While the practical time-complexity of a TeQSIM
simulation is dominated by quantitative inferences per-
formed by QSIM, we are still investigating improve-
ments to our algorithm with respect to complexity.

The incorporation of trajectory information into a
qualitative simulation has been explored by DeCoste
(1994)) who introduces suficient discriminatory envi-
sionments to determine whether a goal region is pos-
sible, impossible or inevitable from each state of the
space. Washio and Kitamura (1995) also present a
technique that uses temporal logic to perform a history
oriented envisionment to filter predictions. TeQSIM,
within a rigorously formalized framework, provides a
more expressive language not limited to reachability
problems, refines behaviors as opposed to just filter-
ing them, and incorporates discontinuous changes into
behaviors.

Discontinuities have been investigated by Nishida
and Doshita (1987)) Forbus (1989), Iwasaki and col-
leagues (1995)) and others. The continuity relaxation
method adopted in TeQSIM is conceptually simpler,
sound, widely applicable and practically effective.

Our trajectory specification language is similar in
expressiveness to both Allen’s intervaZ algebra (Allen
1984) and Dechter, Meiri and Pearl’s temporal con-
straint networks (Dechter, Meiri, & Pearl 1991). The
usage of the language in TeQSIM, however, is quite dif-
ferent from these two formalisms. Instead of asserting
temporal constraints in a database of assertions and
querying if certain combinations of facts are consistent,
TeQSIM checks that a database of temporally related
facts generated by QSIM satisfy a set of temporal logic
constraints.

TeQSIM supports a general methodology for incor-
porating otherwise inexpressible trajectory informa-
tion into the qualitative simulation process. The cor-
rectness of TL-Guide, of the Discontinuous Change
Processor, and of QSIM guarantee that all possible
trajectories of the modeled system that are compatible
with the model, the initial state and the trajectory con-
straints are included in the generated behaviors. In ad-
dition, the completeness of TL-Guide ensures that all
behaviors generated by TeQSIM are potential models
of the trajectory constraints specified by the modeler.
For these reasons, and its limited complexity, TeQSIM
can be applied to problems where QSIM alone would
not be appropriate.

Acknowledgments
We thank Benjamin Shults for letting us use his TL pro-
gram to implement TeQSIM. This work has taken place
in the Qualitative Reasoning Group at the Artificial In-
telligence Laboratory, The University of Texas at Austin.
Research of the Qualitative Reasoning Group is supported
in part by NSF grants IRI-9216584 and IRI-9504138,
by NASA grants NCC 2-760 and NAG 2-994, and by
the Texas Advanced Research Program under grant no.
003658-242.

QSIM and TeQSIM are available for research purposes
viahttp://www.cs.utexas.edu/users/qr.

References
Allen, J. F. 1984. Towards a general theory of action and
time. Artificial Intelligence 23:123-154.

Brajnik, G., and Clancy, D. J. 1996a. Guiding and refin-
ing simulation using temporal logic. In Proc. of the Third
International Workshop on Temporal Representation and
Reasoning (TIME’96). Key West, Florida: IEEE Com-
puter Society Press. To appear.

Brajnik, G., and Clancy, D. J. 1996b. Temporal con-
straints on trajectories in qualitative simulation. Techni-
cal Report UDMI-RT-01-96, Dip. di Matematica e Infor-
matica, University of Udine, Udine, Italy.

Dechter, R.; Meiri, I.; and Pearl, J. 199 1. Temporal
constraint networks. Artificial Intelligence 49:61-95.

DeCoste, D. 1994. Goal-directed qualitative reasoning
with partial states. Technical Report 57, The Institute
for the Learning Sciences, University of Illinois at Urbana-
Champaign.

Emerson, E. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence. Elsevier Science Publishers/MIT Press. 995-1072.
Chap. 16.

Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence 24:85-168.

Forbus, K. 1989. Introducing actions into qualitative sim-
ulation. In IJCAI-89, 1273-1278.

Iwasaki, Y.; Farquhar, A.; Saraswat, V.; Bobrow, D.;
and Gupta, V. 1995. Modeling time in hybrid systems:
how fast is “instantaneous”? In IJCAI-95, 1773-1780.
Montreal, Canada: Morgan Kaufmann Publishers, Inc.
Kuipers, B., and Shults, B. 1994. Reasoning in logic about
continuous change. In Principles of Knowledge Represen-
tation and Reasoning (KR-94). Morgan Kaufmann Pub-
lishers , Inc.
Kuipers, B. 1994. Qualitative Reasoning: modeling and
simulation with incomplete knowledge. Cambridge, Mas-
sachusetts: MIT Press.
Nishida, T., and Doshita, S. 1987. Reasoning about dis-
continuous change. In AAA I-87, 643-648.

Shults, B., and Kuipers, B. J. 1996. Qualitative simula-
tion and temporal logic: proving properties of continuous
systems. Technical Report TR AI96-244, University of
Texas at Austin, Dept. of Computer Sciences.
Washio, T., and Kitamura, M. 1995. A fast history-
oriented envisioning method introducing temporal logic.
In Ninth International Workshop on Qualitative Reason-
ing (QR-95), 279-288.

984 Model-Based Reasoning

